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Abstract

In this paper, we are concerned with the problem of deploying public facilities via a
1-Euclidean election under the majority rule. In a 1-Euclidean election, voters and
candidates can be mapped into R1, and each voter’s preference is determined by the
distances from the voter to the candidates. Specifically, each candidate considered in
this work consists of arbitrary k points, and the winner is determined with Condorcet
criterion. Given that k is fixed, we show that determining whether a Condorcet
winner exists can be done in time linear to the number of voters.

1 Introduction

We start with the definition of the problem. The election considered in this paper consists
of three things, voters, candidates, and how a voter prefers a candidate to another. In the
1-Euclidean election we are concerned with, voters are n points in R1, and candidates are
all subsets of R1 of size k. Let d(x, y) be the distance between x and y. The distance from
a point x to a set Y is defined as

min {d(x, y) : y ∈ Y },

also denoted by d(x, Y ). A voter x prefers candidate Y to candidate Z if d(x, Y ) < d(x, Z).
A Condorcet winner is a candidate such that no alternative can please more voters than it
does. Our goal is to compute a Condorcet winner of a 1-Euclidean election if one exists, or
report the non-existence.

Related work

For k = 1, a Condorcet winner always exists and coincides with a median [5]. For k = 1
and Rd with d > 1, Wu et al. [17] proposed an O(nd−1 log n)-time algorithm. Later on,
de Berg et al. [8] revised the time complexity to O(n log n). Respecting Condorcet winners
for k > 1, to our understanding, related results have been developed only in R1. Barberà and
Beviá [3, 4] gave some properties of a Condorcet winner consisting of k points, namely the
internal consistency, Pareto feasibility, and Nash stability. Hajduková [11] then developed
an algorithm that verifies if a given decision is a Condorcet winner.

There are several results regarding the computation of a Condorcet winner on graphs.
We refer the reader to [2, 12, 13, 16]. Results regarding the structure of voters’ preferences
are also widely developed [6, 9, 14, 15]. See [10] for a brief survey. The reason why people
pay attention to this kind of elections is that such elections have a natural interpretation,
like locating facilities into the space to meet voters’ demands. In this paper, we also call
the k points that constitute a candidate the facilities.

In the rest of the paper, we first summarize some preliminary results in Section 2.
Then, in Sections 3 and 4 we reduce the solution space so that an enumerative procedure
is applicable. The analysis of the time complexity is given in Section 5. Omitted proofs are
given in the appendix.



2 Preliminaries

Let [n] be the set of integers {1, . . . , n}, and let S be the set of voters. We assume S = [n].
For i ∈ S, the point that corresponds to i is denoted by pi. We assume that i < j implies
pi < pj . A subset of voters is called a community. Let PS = {pi : i ∈ S}, the preference
profile, by which one can determine how a voter prefers one candidate to another. An
instance is a triple (S, k, PS), where k is the number of facilities that constitute a candidate.

For the instance (S, k, PS), an S/k-decision
(
(xh, Sh)

)k
h=1

is a k-tuple of pairs, where
xh ∈ R with x1 < · · · < xk and (S1, . . . , Sk) is a partition of S. We use the term “decision” if
there is no danger of misinterpretation. For a decision d = ((xh, Sh))kh=1, voter i is assigned
to xj if i ∈ Sj , denoted by xj = x(i, d). We refer to (x1, . . . , xk) and (S1, . . . , Sk) as dL and
dA, respectively. For notational succinctness, dL and dA are also used as the sets with the
corresponding elements.

For two points x, y ∈ R1, voter i prefers x to y, denoted by y ≺i x, if |x− pi| < |y − pi|.
Analogously, for two S/k-decisions d and d′, voter i prefers d′ to d, denoted by d ≺i d

′, if
x(i, d) ≺i x(i, d′).

Definition 1 (Condorcet winner). Given an instance (S, k, PS), an S/k-decision d∗ is a
Condorcet winner if there is no S/k-decision d such that

|{i ∈ S : d ≺i d
∗}| < |{i ∈ S : d∗ ≺i d}|.

Note that the definition relaxes the one given in the beginning of Section 1 since the partition
of voters does not depend on the facilities. With the envy-freeness defined below, the sets
of Condorcet winner of both formulations are identical.

An S/k-decision d = ((xi, Si))
k
i=1 is envy-free if for i ∈ S and j ∈ [k], xj �i x(i, d).

Decision d is internally consistent if for i ∈ [k], (xi, Si) is a Condorcet winner of (Si, 1, PSi
).

In other words, a decision is internally consistent if xi coincides with a median of PSi
, for

i ∈ [k].

Proposition 1 (Barberà and Beviá [3, 4]). Given an instance (S, k, PS) and a decision
d = ((xh, Sh))kh=1, if d is a Condorcet winner, then d is envy-free and internally consistent.

Proposition 1 gives necessary conditions for being a Condorcet winner. To determine
whether a given decision is a Condorcet winner, Hajduková gave the notion of simple rival,
which makes the verification feasible. Given an instance (S, k, PS), let d and d′ be two S/k-
decisions such that dL = (x1, · · · , xk) and d′L = (x′1, · · · , x′k). Let ∆(d, d′) = {j ∈ [k] : xj 6=
x′j}. The decision d′ is a potential rival of d if

• ∆(d, d′) 6= ∅ ;

• for j1 < j2 < j3, {j1, j3} ⊆ ∆(d, d′) implies j2 ∈ ∆(d, d′) ;

• for i ∈ ∆(d, d′), either xi < x′i or x′i < xi.

If d′ further satisfies ∣∣{i ∈ S : d′ ≺i d}
∣∣ < ∣∣{i ∈ S : d ≺i d

′}
∣∣,

then d′ is a simple rival of d. Figure 1 gives an example.

Proposition 2 (Hajduková [11]). For an instance (S, k, PS), an S/k-decision d is a Con-
dorcet winner if and only if d is envy-free and has no simple rival.

Note that a decision with no simple rival may not be envy-free (Figure 2). Hajduková’s
verification algorithm was developed based on Proposition 2. The envy-freeness can be
verified in a straightforward manner, while determining the existence of a simple rival needs
a careful counting on the gain and loss of the votes, as shown in Section 3.
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Figure 1: An envy-free decision d with dL = (5, 21, 45). Decision d has a simple rival which
is an envy-free decision d′ with d′L = (21, 42, 47).
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decision d = ((5, {3, 4, 5, 6}), (12, {7, 10, 12, 14, 16}))

x1 x2

Figure 2: A non-envy-free decision d with no simple rival. Decision d is not a Condorcet
winner since more voters prefer decision d′ =

(
(5, {3, 4, 5, 6, 7}), (12, {10, 12, 14, 16}

)
to d.

3 The score of a decision

Consider the instance (S, k, PS). For two S/k-decisions d and d′, let

N(d′, d) = |{i ∈ S : d ≺i d
′}| .

The margin of d′ with respect to d is defined as

Nd(d′) = N(d′, d)−N(d, d′).

Let dL = (x1, · · · , xk). Assume that x0 = −∞ and xk+1 =∞. For 0 ≤ i ≤ k, let

Nd(d′)|i = |{j ∈ S : pj ∈ (xi, xi+1), d ≺j d
′}| − |{j ∈ S : pj ∈ (xi, xi+1), d′ ≺j d}| .

Then we have

Nd(d′) =

k∑
i=0

Nd(d′)|i − |PS ∩ (dL \ d′L)|. (1)

Assume that d∗ is an S/k-decision that maximizes Nd(·). Obviously, d is a Condorcet winner
if and only if Nd(d∗) ≤ 0.

Lemma 1. For x < x′ < z′ < z, the following statements are equivalent.

• |x′ − z′| ≤ |x− z|/2.

• There is a point y such that any point w in (x′, z′) satisfies x ≺w y and z ≺w y.

Proof. Omitted.

With Lemma 1, we may compute Nd(d∗) as follows. Note that by deploying the two
facilities at xi + ε and xi+1 − ε, each voter in the interval prefers d∗ to d.

Observation 1. There are at most two facilities of d∗ in the interval (xi, xi+1), for 0 ≤
i ≤ k.



For an instance (S, k, PS), we define the following scoring functions, c, f , g+, and g−.

c(x, y) = |PS ∩ (x, y)|

f(x, z) = max

{
c

(
x+ y

2
,
y + z

2

)
: y ∈ (x, z)

}
g+(x, z) = max

{
c

(
x+ y

2
,
y + z

2

)
− c

(
x,
x+ y

2

)
: y ∈ (x, z)

}
g−(x, z) = max

{
c

(
x+ y

2
,
y + z

2

)
− c

(
y + z

2
, z

)
: y ∈ (x, z)

}
.

Since S is finite, the above functions are well-defined. With Observation 1, Nd(d∗)|i is
determined as follows.

Proposition 3. Given an instance (S, k, PS) and an S/k-decision d with dL = (x1, . . . , xk),
let d∗ be an S/k-decision that maximizes Nd(·). For 0 ≤ i ≤ k, if |{xi, xi+1}∩d∗L| = 0, then

Nd(d∗)|i =


−c(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 0

2f(xi, xi+1)− c(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 1

c(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 2.

Proposition 4. Given an instance (S, k, PS) and an S/k-decision d = ((xi, Si))
k
i=1, let d∗

be an S/k-decision that maximizes Nd(·). For 0 ≤ i ≤ k, if |{xi, xi+1} ∩ d∗L| = 1, then

Nd(d∗)|i =


−n+i or − n−i+1, if |d∗L ∩ (xi, xi+1)| = 0

g+(xi, xi+1) or g−(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 1

c(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 2,

where n−i = |{j ∈ Si : pj < xi}| and n+i = |{j ∈ Si : pj > xi}|.

Proposition 5. Given an instance (S, k, PS) and an S/k-decision d with dL = (x1, . . . , xk),
let d∗ be an S/k-decision that maximizes Nd(·). For 0 ≤ i ≤ k, if |{xi, xi+1}∩d∗L| = 2, then

Nd(d∗)|i =


0, if |d∗L ∩ (xi, xi+1)| = 0

f(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 1

c(xi, xi+1), if |d∗L ∩ (xi, xi+1)| = 2.

Propositions 3, 4, and 5 enable us to compute the maximum of Nd(·) by dynamic program-
ming, as shown in Section 5. To find a Condorcet winner, we reduce the number of decisions
to be tested. An essential observation is derived from the scoring functions.

Observation 2. Given that x is fixed, f(x, z) is nondecreasing on z. Conversely, given x
and f(x, z) = τ , z is bounded above depending on x and τ .

4 Bounding the position of a facility

To efficiently verify whether a decision is Condorcet, Hajduková further gave some necessary
conditions. For a Condorcet winner d = ((xi, Si))

k
i=1 of an instance (S, k, PS), d satisfies

• ∀i,j∈[k] ||Si| − |Sj || ≤ 2.



3 5 7 12 17 21 23 25

x1 x2 = ? x3

Figure 3: A Condorcet winner of instance ([8], 3, {3, 5, 7, 12, 17, 21, 23, 25}). The decision d
with dA = ({1, 2, 3}, {4, 5}, {6, 7, 8}) and dL = (x1, x2, x3) is a Condorcet winner. As shown
in Section 4, 12 < x2 < 17. Since neither x2 6= 12 nor x2 6= 17, x2 is singular.
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Figure 4: A community Si. In this example, n−i = 2 and n+i = 3

• ∀i∈[k] |Si| 6= min{|Sj | : j ∈ [k]} =⇒ xi ∈ PS .

In the remainder of this section, we assume that the decisions under consideration satisfy
the above two conditions. Along with the internal consistency, we call such decisions regular
decisions. For a Condorcet winner, the property of being regular guarantees that facilities
coincide with some voters, except those belonging to the communities whose size is even
and minimum. We call such a community Sh singular, i.e. |Sh| = min { |T | : T ∈ dA } and
|Sh| is even. The facility xh is referred to as a singular facility. Note that it is possible for
a Condorcet winner to have singular facilities. See Figure 3 for an example.

Below are some notations, illustrated in Figure 4. Given a decision d = ((xi, Si))
k
i=1, we

denote the median of Si by med(Si), and for i ∈ [k] we define the following.

• v+i and v−i are the minimal and maximal element of Si, respectively.

• n−i = |{j ∈ Si : pj < xi}| and n+i = |{j ∈ Si : pj > xi}|.

• x−i = max{j ∈ Si : pj < xi} and x+i = min{j ∈ Si : pj > xi}.

• m−i = max{j ∈ Si : j ≤ med(Si)} and m+
i = min{j ∈ Si : j ≥ med(Si)}.

Let Sh be a singular community. If h = 1, then moving xh to pm+
h

keeps the property of

being a Condorcet winner.

Lemma 2. Let d = ((xi, Si))
k
i=1 be a Condorcet winner of (S, k, PS), where pm−1

< x1 <

pm+
1

. If d′ = ((x′i, Si))
k
i=1 with

x′i =

{
pm+

1
, if i = 1

xi, otherwise,

then d′ is a Condorcet winner of (S, k, PS).



Proof. Suppose to the contrary that d′ is not a Condorcet winner. First, d′ is envy-free
since otherwise d is not a Condorcet winner. By Proposition 2, there is a simple rival of d′.
Let d′′ be a decision that maximizes Nd′(·). Since PS ∩ (x1, x

′
1) = ∅, we may assume that

d′′L ∩ [x1, x
′
1) = ∅. Then, we claim that Nd′(d

′′) ≤ Nd(d∗), where d∗ is a decision modified
from d′′.

Since ∆(d, d′) = {1}, Nd′(d
′′)|i 6= Nd(d′′)|i implies i = 0 or i = 1. For i = 0 or

x′i /∈ d′′L, |{xi, xi+1} ∩ d′′L| ≤ 1. In this case, let d∗ = d′′, and by Propositions 3 and 4
Nd′(d

′′)|i = Nd(d′′)|i.
For i = 1 and x′i ∈ d′′L, either |{x′i, xi+1} ∩ d′′L| = 1 or |{x′i, xi+1} ∩ d′′L| = 2. From d′′L,

we replace x′1 with x1, and let d∗ be an envy-free decision with this set of facilities. By
Propositions 4 and 5 it can be derived that Nd′(d

′′)|1 ≤ Nd(d∗)|1.

Thus, the claim follows, and

0 < Nd′(d
′′) ≤ Nd(d∗) ≤ 0,

which is a contradiction.

Remark 1. Because of symmetry, xk can be deployed at pm−k
.

For 1 < h < k, we show that xh can be determined, depending on xh−1 and dA. Let
d′ be a decision with ∆(d, d′) = {h}. Assume that x′h = bh, where the value bh is to be
determined. For a potential rival d′′ of d′ which maximizes Nd′(·), we show that d′′ can be
modified as a decision d∗ so that Nd′(d

′′) ≤ Nd(d∗). Then d is a Condorcet winner implies
that d′ is also a Condorcet winner. It is clear that Nd′(·)|i ≤ Nd(d)|i for i 6= h−1. Consider
Nd′(d

∗)|h−1. By Propositions 3, 4, and 5, this partial margin depends on f(xh−1, xh),
g+(xh−1, xh), or g−(xh−1, xh). In the following, we show how Observation 2 enables us to
ensure the property of having no simple rival.

4.1 Scoring functions with respect to a Condorcet winner

We intend to give an upper bound on a singular facility of a Condorcet winner, where the
upper bound depends on the scoring functions and a predecessor. First, we show that in a
Condorcet winner, f(xh−1, xh) depends on xh−1 and dA only.

Lemma 3. Let d = ((xi, Si))
k
i=1 be a Condorcet winner of (S, k, PS). For 1 < h < k, if xh

is singular and |Sh| < |Sh−1|, then

f(xh−1, xh) = n+h−1.

Proof. Clearly f(xh−1, xh) ≥ n+h−1 since by moving xh−1 to xh−1 + ε, there are n+h−1 voters
prefer the newly deployed facility to the original one.

Suppose to the contrary that f(xh−1, xh) > n+h−1. If |Sh−1| is odd, then n+h−1 + 1 =
(|Sh−1|+ 1) /2. By moving xh−1 and xh towards right, a decision d′ can be constructed with
N(d′, d) ≥ (n+h−1 + 1) + |Sh| /2 = (|Sh−1|+ |Sh|+ 1)/2. If |Sh−1| is even and xh−1 = pm−h−1

,

then n+h−1 + 1 = |Sh−1|/2 + 1. By moving xh−1 and xh towards right, a decision d′ can

be constructed with N(d′, d) ≥ (n+h−1 + 1) + |Sh| /2 = (|Sh−1| + |Sh|)/2 + 1. If |Sh−1| is

even and xh−1 = pm+
h−1

, then n+h−1 + 1 = |Sh−1|/2. By moving xh−1 and xh towards left, a

decision d′ can be constructed with N(d′, d) ≥ |Sh−1| /2 + (n+h−1 + 1) = |Sh−1|.
In all three cases, we have N(d′, d) +N(d, d′) = |Sh−1|+ |Sh| and N(d′, d) > (|Sh−1|+

|Sh|)/2. Hence, we know that N(d′, d) > N(d, d′), which contradicts that d is a Condorcet
winner.



A similar argument as in the proof of Lemma 3 can be applied to derive f(xh−1, xh) for
|Sh| = |Sh−1|. The result is stated in Lemma 4.

Lemma 4. Let d = ((xi, Si))
k
i=1 be a Condorcet winner of (S, k, PS). For 1 < h < k, if xh

is singular and |Sh| = |Sh−1|, then

f(xh−1, xh) = |Sh|/2.

Proof. Omitted.

By Lemmas 3 and 4, once xh−1 and dA are given, the scoring function f(xh−1, xh) can
be determined. Recall from Observation 2 that xh can be bounded above by given xh−1
and f(xh−1, xh). When the regular decision under consideration is fixed, for 1 < h < k such
that Sh is singular, we define

τ(h) =

{
n+h−1, if |Sh| < |Sh−1|
|Sh|/2, otherwise.

In addition, let

σh = min {pj − pi : 1 ≤ i < j ≤ |S|, {pi, pj} ⊆ (xh−1, pm+
h

), j − i = τ(h)}.

Below we give upper bounds on xh. The first two result from the property of having no
simple rival.

Lemma 5. Let d = ((xi, Si))
k
i=1 be a Condorcet winner of (S, k, PS). For 1 < h < k, we

have
(xh − xh−1)/2 ≤ σh.

Proof. Omitted.

Lemma 6. Let d = ((xi, Si))
k
i=1 be a Condorcet winner of (S, k, PS). For 1 < h < k, if xh

is singular, then
(xh − xh−1)/2 ≤ pm−h − pv+

h−1
.

Proof. Suppose to the contrary that pm−h
−pv+

h−1
< (xh−xh−1)/2. Since xh > pm−h

, we have

x−h = m−h . It follows that px−h
− pv+

h−1
< (xh − xh−1)/2, and by Lemma 1 there is a point y

such that the 1 + n−h voters in [pv+
h−1

, px−h
] prefer y to xh−1 and to xh. Since pm−h

< xh, we

have n+h ≤ |Sh|/2 = n−h . By moving xh to y, we have a simple rival of d, which leads to a
contradiction.

The last bound on singular facility xh results from the envy-freeness of a decision.

Lemma 7. Let d = ((xi, Si))
k
i=1 be a decision of (S, k, PS). If d is envy-free, then for

1 < i < k
xi ≤ 2pv−i

− xi−1.

By Lemmas 5, 6 and 7, for a Condorcet winner d = ((xi, Si))
k
i=1, if xh is singular, then

there is an upper bound bh, derived as

bh = min
{
xh−1 + 2 min {σh, pm−h − pv+

h−1
}, 2pv−h

− xh−1
}
. (2)



4.2 A dominant decision

Given an instance (S, k, PS), let d = ((xi, Si))
k
i=1 and d′ = ((x′i, Si))

k
i=1 such that ∆(d, d′) =

{h}. If Sh is singular and xh < x′h ≤ min{bh, pm+
h
}, we claim that the existence of a simple

rival of d′ results in a simple rival of d. We assume that |Sh| < |Sh−1|, and leave the case
|Sh| = |Sh−1| to Appendix A.

Consider the scoring functions. By definition, we have

• c(x′h−1, x′h) = c(xh−1, xh)

• c(x′h, x′h+1) ≤ c(xh, xh+1)

• f(x′h, x
′
h+1) ≤ f(xh, xh+1)

• g+(x′h, x
′
h+1) ≤ g+(xh, xh+1)

• g−(x′h, x
′
h+1) ≤ g−(xh, xh+1).

It remains to consider the relations between f(x′h−1, x
′
h) and f(xh−1, xh), g+(x′h−1, x

′
h) and

g+(xh−1, xh), and g−(x′h−1, x
′
h) and g−(xh−1, xh).

Lemma 8. f(x′h−1, x
′
h) = f(xh−1, xh).

Proof. By definition we have

f(x′h−1, x
′
h) ≥ f(xh−1, xh).

To show that f(x′h−1, x
′
h) is upper bounded by f(xh−1, xh), recall the definition of x′h. It

can be derived that
(x′h − x′h−1)/2 ≤ σh,

which implies
f(x′h−1, x

′
h) ≤ τ(h).

Moreover, since xh is a location of a singular facility, by Lemmas 3 and 4, we have

τ(h) = f(xh−1, xh).

Lemma 9. g+(x′h−1, x
′
h) = g+(xh−1, xh).

Proof. By definition, we have

n+h−1 ≤ g+(xh−1, xh) ≤ g+(x′h−1, x
′
h) ≤ f(x′h−1, x

′
h),

and by Lemma 3, we have
f(xh−1, xh) = n+h−1.

Along with Lemma 8, the equalities hold.



Lemma 10. g−(x′h−1, x
′
h) = g−(xh−1, xh).

Proof. By definition,

f(x′h−1, x
′
h) ≥ g−(x′h−1, x

′
h) ≥ g−(xh−1, xh) ≥ |Sh|/2.

Since d is regular and is a Condorcet winner,

f(xh−1, xh) ≤ dc(xh−1, xh)/2e ≤ |Sh|/2 + 1.

Along with Lemma 8, we have f(x′h−1, x
′
h) ≤ |Sh|/2 + 1. It follows that g−(x′h−1, x

′
h) =

|Sh|/2+1 only if pm−h
−pv+

h−1
< (x′h−x′h−1)/2. This implies that pm−h

−pv+
h−1

< (bh−x′h−1)/2,

which is a contradiction.

Remark 2. For |Sh−1| = |Sh|, all inequalities mentioned above hold except that for g+. It is
possible that g+(x′h−1, x

′
h) = g+(xh−1, xh) + 1. For a simple rival d′′ of d′, if Nd′(d

′′)|h−1 =
g+(x′h−1, x

′
h), we can modify d′′ to be d∗ so that Nd(d∗)|h−1 ≥ g+(x′h−1, x

′
h). Details are

given in Appendix A.

Theorem 1. Given an instance (S, k, PS), let d = ((xi, Si))
k
i=1 and d′ = ((x′i, Si))

k
i=1 be

two regular decisions such that ∆(d, d′) = {h}. If Sh is singular and pm−h
< xh < x′h ≤

min{bh, pm+
h
}, then d is a Condorcet winner implies that d′ is a Condorcet winner.

Proof. (sketch) Suppose to the contrary that d is a Condorcet winner but d′ is not. We may
assume that d′ has a simple rival because the envy-freeness follows from Lemma 7 and the
envy-freeness of d. Let d′′ = ((x′′i , S

′′
i ))ki=1 be a simple rival of d′ which maximizes Nd′(·).

By Eq (1),

Nd′(d
′′) =

k∑
i=0

Nd′(d
′′)|i − |PS ∩ (d′L \ d′′L)|.

Let d∗ be an envy-free decision such that

x∗i =

{
x′′i , if x′′i 6= x′h
xh, otherwise.

If |Sh−1| > |Sh|, by Lemmas 5, 6, and 7, for 0 ≤ i ≤ k it can be derived from Proposi-
tions 3, 4, and 5 that

Nd′(d
′′)|i ≤ Nd(d∗)|i

(with an exception indicated in Remark 3). In addition, xh /∈ PS implies |PS ∩ (dL \ d∗L)| ≤
|PS ∩ (d′L \ d′′L)|. It follows that

0 <

k∑
i=0

Nd′(d
′′)|i − |PS ∩ (d′L \ d′′L)| ≤

k∑
i=0

Nd(d∗)|i − |PS ∩ (dL \ d∗L)| ≤ 0,

which is a contradiction. For |Sh−1| = |Sh|, as noted in Remark 2, a contradiction can also
be derived.

Remark 3. The strict inequality c(x′h, x
′
h+1) < c(xh, xh+1) implies c(x′h, x

′
h+1) + 1 =

c(xh, xh+1). However, in this case PS ∩ (dL \ d∗L) is a proper subset of PS ∩ (d′L \ d′′L).

Theorem 1 leads to the following result.

Corollary 1. Let d be a Condorcet winner of an instance (S, k, PS). There is a Condorcet
winner d′ with d′A = dA and d′L ⊆ {pm−h , pm+

h
, bh : h ∈ [k]}.

For the example given in Figure 3, we let x2 = b2 = min{15, 19} = 15. This decision is a
Condorcet winner. Note that there are a right rival and a left rival for x2 = 12 and x2 = 17,
respectively.



5 Algorithm

Based on Corollary 1, for an instance (S, k, PS) one may implement the following procedure
to determine the existence of a Condorcet winner.

1. Enumerate all k-partitions of a given instance.

2. For each k-partition, enumerate all deployments of facilities from

{pm−h , pm+
h
, bh : h ∈ [k]}.

3. For a chosen decision, verify if it is a Condorcet winner.

For a Condorcet winner d, since d is regular, we have ||Si|−|Sj || ≤ 2 for {i, j} ⊆ [k], and thus
the number of k-partitions is of O(3k). Step 2 shows that the number of possible deployments
of facilities is at most 3k, given a k-partition. Let T (n, k) be the time complexity for verifying
if a decision is a Condorcet winner, where n = |S|. We have that a Condorcet winner can
be computed in O(32k · T (n, k)) time if it exists.

To verify if a decision d = ((xi, Si))
k
i=1 is a Condorcet winner, we propose an algorithm

based on dynamic programming. The envy-freeness of a decision can easily be checked.
To determine if there is a simple rival of decision d, we compute the maximum of Nd(·)
recursively as follows. Because of symmetry, we show how Nd(d′) is computed for d′ being
a right rival of d.

Let Margin(i, j) be the margin that is the optimum of

maximize Nd(d′)
subject to d′ is a right rival of d

∆(d, d′) = {i, i+ 1, . . . , j}.

For 1 ≤ i ≤ m < j and ` ≤ m − i + 1, let s(i,m, `, ub) be the maximum results from
deploying ` facilities in (xi, xm+1], with the restriction that one of the facilities coincides
with xm+1 if ub = true. Let

δi =

{
1, if xi ∈ PS

0, otherwise.

By Propositions 3, 4 and 5, we have the following recursive formulae.

s(i,m, `,true) = max{s(i,m− 1, `− 1, false)− n+m,
s(i,m− 1, `− 2, false) + g+(xm, xm+1),

s(i,m− 1, `− 3, false) + c(xm, xm+1),

s(i,m− 1, `− 1,true),

s(i,m− 1, `− 2,true) + f(xm, xm+1),

s(i,m− 1, `− 3,true) + c(xm, xm+1)}.

s(i,m, `, false) = max{s(i,m− 1, `, false)− c(xm, xm+1)− δm+1,

s(i,m− 1, `− 1, false) + 2f(xm, xm+1)− c(xm, xm+1)− δm+1,

s(i,m− 1, `− 2, false) + c(xm, xm+1)− δm+1,

s(i,m− 1, `,true)− n−m+1 − δm+1,

s(i,m− 1, `− 1,true) + g−(xm, xm+1)− δm+1,

s(i,m− 1, `− 2,true) + c(xm, xm+1)− δm+1}.



If i < j < k,

Margin(i, j) = max{s(i, j − 1, j − i, false) + g+(xj , xj+1),

s(i, j − 1, j − i− 1, false) + c(xj , xj+1),

s(i, j − 1, j − i,true) + f(xj , xj+1),

s(i, j − 1, j − i− 1,true) + c(xj , xj+1)}.

If i < j = k,

Margin(i, j) = max{s(i, j − 1, j − i, false) + n+j ,

s(i, j − 1, j − i,true) + n+j }.

The terminal conditions hold when ` = 0 or i = m, namely

s(i,m, 0,ub) =

{
−∑m

y=i |Sy| − n−m+1 − δm+1, if ub = false

−∞, if ub = true

s(i, i, `, ub) =


−n−i + 2f(xi, xi+1)− c(xi, xi+1)− δi − δi+1, if ` = 1 and ub = false

−|Si|, if ` = 1 and ub = true

−∞, if ` ≥ 2.

Margin(i, j) =

{
−n−i + g+(xi, xi+1)− δi, if i = j < k

−n−i + n+i − δi, if i = j = k.

Remark 4. By reversing the x-axis, the recursive formulae given above are applied to derive
Nd(d′) for d′ being a left rival of d. For convenience, we use Margin′ and s′ to differentiate.

Decision d has a simple rival if and only if

max
1≤i≤j≤k

Margin(i, j) > 0 or max
1≤i≤j≤k

Margin′(i, j) > 0.

For 0 ≤ i ≤ k, the values n−i , n+i , f(xi, xi+1), c(xi, xi+1), g+(xi, xi+1), and g−(xi, xi+1) can
be computed in O(n) time. With this preprocessing, the computation can be done in O(k3)
time, using dynamic programming. Thus, T (n, k) ∈ O(n+ k3).

Theorem 2. Given an instance (S, k, PS), determining whether a Condorcet winner exists
takes O(32k(n+ k3)) time, where n = |S|. Moreover, a Condorcet winner can be computed
if it exists.

Note that the number of k-partitions is not of Ω(32k), as to k = n the n-partition is unique.
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[5] S. Barberá, B. Moreno: Top monotonicity: A common root for single peakedness, single
crossing and the median voter result. Games and Econ. Behav. 73 (2011) 345–359.

[6] J. Chen, K. Pruhs, G. J. Woeginger: The one-dimensional Euclidean domain: Finitely
many obstructions are not enough, arXiv:1506.03838.

[7] L. Chen, L. Chen, X. Deng, Q. Fang and F. Tian, Condorcet winners for public goods,
Ann. Oper. Res. 137 (2005) 229–242.

[8] M. de Berg, J. Gudmundsson, M. Mehr: Faster Algorithms for Computing Plurality
Points, Proc. 32nd Int. Symp. Computational Geometry (SoCG 2016), pp. 32:1–32:15.

[9] E. Elkind, P. Faliszewski: Recognizing 1-Euclidean preferences: an alternative approach.
Proc. 7th Int. Symp. Algorithmic Game Theory (SAGT 2014), pp. 146–157.

[10] E. Elkind, M. Lackner, D. Peters: Preference restrictions in computational social choice:
recent progress. Proc. 25th Int. Joint Conference on Artificial Intelligence (IJCAI 2016),
pp. 4062–4064.
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A Scoring functions for |Sh| = |Sh−1|
Consider two regular decisions d = ((xi, Si))

k
i=1 and d′ = ((x′i, Si))

k
i=1. Assume that

∆(d, d′) = {h}, Sh is singular and pm−h
< xh < x′h ≤ min{bh, pm+

h
}.

Lemma 11. If |Sh−1| = |Sh| and d′′ is a decision such that Nd′(d
′′) > 0 and Nd′(d

′′)|h−1 =
g+(x′h−1, x

′
h), then

g+(x′h−1, x
′
h) = g+(xh−1, xh) + 1 =⇒ d is not a Condorcet winner.

Proof. Since |Sh−1| = |Sh| by definition

|Sh|
2
− 1 ≤ g+(xh−1, xh) ≤ g+(x′h−1, x

′
h) ≤ f(x′h−1, x

′
h) ≤ |Sh|

2
.

The assumption g+(x′h−1, x
′
h) = g+(xh−1, xh) + 1 implies

g+(xh−1, xh) =
|Sh|

2
− 1. (3)

and

g+(x′h−1, x
′
h) =

|Sh|
2
.

Moreover, Eq. (3) holds only if xh−1 = pm+
h−1

, which implies

c(xh−1, xh) = |Sh| − 1.

Along with Lemma 8, we have

f(xh−1, xh) = f(x′h−1, x
′
h) =

|Sh|
2
.

We claim that there is a decision d∗ such that Nd(d∗) > 0. Since Nd′(d
′′)|h−1 =

g+(x′h−1, x
′
h), we may assume that there is exactly one facility x′′j belonging to (x′h−1, x

′
h),

and x′′j+1 coincides with x′h. If |{i ∈ Sh : x′′j ≺i x
′′
j+1}| = 0, then let d∗ be a decision modified

from d′′ by moving x′′j towards right properly. The difference on the margin satisfies

Nd(d∗)−Nd′(d
′′) = 2f(xh−1, xh)− c(xh−1, xh) +

|Sh|
2
− g+(x′h−1, x

′
h) > 0.

Otherwise, move both x′′j and x′′j+1 into (xh−1, xh), and it follows that

Nd(d∗)−Nd′(d
′′) ≥ c(xh−1, xh)−

( |Sh|
2
− 1

)
− g+(x′h−1, x

′
h) = 0.

In either case, the difference is nonnegative, and the claim follows.



B A remark on Hajduková’s algorithm

To verify if a given decision is a Condorcet winner, Hajduková [11] developed an algorithm,
where the envy-freeness and the existence of a simple rival are verified. In Hajduková’s
algorithm, the existence of a (right) simple rival is affirmed if one of the following holds: for
1 ≤ i ≤ j ≤ k

j−1∑
h=i

f(xh, xh+1) + n+j >
1

2

j∑
h=i

|Sh|.

j−1∑
h=i

f(xh, xh+1) + n+j =
1

2

j∑
h=i

|Sh| and pv−j+1
− px+

j
< (xj+1 − xj)/2.

Nevertheless, the verification works correctly if and only if

d′ is a simple rival of d with ∆(d′, d) = {h ∈ [n] : i ≤ h ≤ j}
=⇒ for i ≤ h ≤ j, x′h ∈ (xh, xh+1).

Notice that the statement is not true, while the following is a counterexample.

0 2 4 5 14 16 20 22 32 34 36 38 50 52 5456 58 60 70 72 74 76 78 80 82

x1 x2 x3 x4

0 2 4 5 14 16 20 22 32 34 36 38 50 52 5456 58 60 70 72 74 76 78 80 82

x0
4x0

3x0
2x0

1

L

L0

The two figures demonstrate two decisions of an instance with k = 4. The upper one, say
d, is regular, envy-free, and supposed to have no simple rival according to Hajduková’s
algorithm. However, the lower one, with x′2 ∈ (x3, x4), is a simple rival of d.



C An algorithm for computing the votes of a potential
rival

For a decision d, here we present in Algorithm 1 how f(xh, xh+1), g+(xh, xh+1) and
g−(xh, xh+1) are computed. The values n−h , n+h , and c(xh, xh+1) can be computed in O(n)
time straightforwardly.

Algorithm 1: Computing f(xh, xh+1), g+(xh, xh+1) and g−(xh, xh+1)

Input: xh, xh+1, voters located in (xh, xh+1)
Output: f(xh, xh+1), g+(xh, xh+1) and g−(xh, xh+1)

1 begin
2 f ←− 0
3 g+ ←− 0
4 g− ←− 0
5 ctr←− 0

6 i←− x+h
7 j ←− i
8 while pj < xh+1 do
9 ctr←− ctr + 1

10 while pj − pi ≥ (xh+1 − xh)/2 do
11 i←− i+ 1
12 ctr←− ctr− 1

13 f ←− max { f, ctr }
14 g+ ←− max { g+, ctr− i+ x+h }
15 g− ←− max { g−, ctr + j − x−h+1 }
16 j ←− j + 1

17 return f, g+, g−
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