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Abstract

To choose a suitable multi-winner rule, i.e., a voting rule for selecting a subset of k alternatives
based on a collection of preferences, is a hard and ambiguous task. Depending on the context,
it varies widely what constitutes the choice of an “optimal” subset. In this paper, we offer a
new perspective to measure the quality of such subsets and—consequently—multi-winner rules.
We provide a quantitative analysis using methods from the theory of approximation algorithms
and estimate how well multi-winner rules approximate two extreme objectives: diversity as
captured by the (Approval) Chamberlin–Courant rule and individual excellence as captured by
Multi-winner Approval Voting. With both theoretical and experimental methods we classify
multi-winner rules in terms of their quantitative alignment with these two opposing objectives.

1 Introduction
A multi-winner rule is a voting method for selecting a fixed-size subset of alternatives, a so-called
committee. More formally, it is a function that given a set of objects, preferences of a population
of voters over these objects, and an integer k, returns a subset of exactly k objects. Multi-winner
rules are applicable to problems from and beyond the political domain, for instance to selecting a
representative body such as a parliament or university senate [13, 18], to shortlisting candidates (e.g.,
in a competition) [6], designing search engines [15, 37] and other recommendation systems [35], and
as mechanisms for locating facilities [19].

Ideally, a multi-winner rule should select the “best” committee, but the suitability of a chosen
committee strongly depends on the specific context. For instance, if voters are experts (e.g., judges in
a sport competition) whose preferences reflect their estimates of the objective qualities of candidates,
then the goal is typically to pick k individually best candidates, e.g., those candidates who receive
the highest scores from judges. Intuitively and somehow simplified, in this and similar scenarios the
quality of candidates can be assessed separately, and a suitable multi-winner rule should pick the k
best-rated ones. On the contrary, if the voters are citizens and the goal is to choose locations for k
public facilities (say, hospitals), then our goal is very different: assessing the candidates separately
can result in building all the facilities in one densely populated area; yet, it is preferable to spread
them in order to ensure that as many citizens as possible have access to some facility in their vicinity.

These two examples illustrate two very different goals of multi-winner rules, which can be
informally described as follows [18]: Diversity requires that a rule should select a committee which
represents as many voters as possible; this translates to choosing a hospital distribution that covers as
many citizens as possible. Individual excellence suggests picking those candidates that individually
receive the highest total support from the voters; this translates to selecting a group of best contestants
in the previous example. However, many real-life scenarios do not fall clearly into one of the two
categories. For example, rankings provided by a search engine should list the most relevant websites
but also provide every user at least one helpful link. In such cases, a mechanism designer would
be interested in choosing a rule that guarantees some degree of diversity and individual excellence
at the same time, putting more emphasis on either of them depending on the particular context.
Consequently, to properly match rules with specific applications, it is essential to understand to which
degree committees chosen by established multi-winner rules are diverse or individually excellent. In
this paper we (1) develop a set of tools that allow one to better understand the nature of multi-winner
rules and to assess the tradeoffs between their diversity and individual excellence, and (2) provide
a classification that clarifies the behavior of these rules with respect to the two criteria. We focus
on the case where voters express their preferences by providing subsets of approved candidates (the
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approval-based model), yet our approach is applicable to other preference models as well.

1.1 Methodology and Contribution
In our approach we identify two multi-winner rules, the Chamberlin–Courant rule (CC) and Multi-
winner Approval Voting (AV), as distinctive representatives of the principles of diversity and individual
excellence, respectively. Next, we measure how close certain rules are to AV and CC—we measure
this distance by using the concept of the worst-case approximation. Thus, by investigating how well
certain rules approximate AV (resp. CC), we provide guarantees of how individually excellent (resp.
diverse) these rules are. Such guarantees could be viewed as quantitative properties that measure
the level of diversity and individual excellence of the studied rules. This is quite different from the
traditional axiomatic approach to investigating properties of voting rules, which is qualitative: a rule
can either satisfy a property or not. Our approach provides much more fine-grained information and
allows us to estimate the degree to which a certain property is satisfied. With these methods, we
understand voting rules as a compromise between different (often contradictory) goals.

Our main contribution lies in developing a new method for evaluating multi-winner rules. Specifi-
cally, we provide two types of analyses for a number of multi-winner rules:

(1) In Section 3, we derive theoretical upper bounds on how much an outcome of the considered multi-
winner rules can differ from the outcomes of CC and AV. We call these bounds CC-guarantee
and AV-guarantee. These can be interpreted as worst-case (over all possible preference profiles)
guarantees for diversity and individual excellence. Our guarantees are given as functions of the
committee size k and return values between 0 and 1. Intuitively, a higher CC-guarantee (resp.
AV-guarantee) indicates a better performance in terms of diversity (resp. individual excellence),
where 1 denotes that the rule performs as good as CC (resp., AV). Table 1 summarizes our results.
We also prove bounds on how well proportional rules can approximate AV and CC.

(2) In Section 4, we complement the worst-case analysis from Section 3 with an experimental study
yielding approximation ratios for actual data sets. In extensive experiments we estimate how on
average the outcomes of the considered rules differ from the outcomes of CC and AV.

In Section 5, we complement our results with an analysis of the axiom of efficiency, which can be
viewed as an incarnation of Pareto efficiency, in the context of multi-winner elections. We say that a
committee W1 dominates a committee W2 if each voter approves as many members of W1 as of W2

and some voter approves strictly more members of W1 than of W2. Efficiency says that a rule should
never select a dominated committee; thus efficiency could be viewed as a basic axiom for individual
excellence. Since efficiency appears to be very fundamental, it may come as a surprise that many
known rules (in particular, the Monroe rule and all sequential rules) do not satisfy this property. The
result of this analysis is also summarized in Table 1.

Our most important findings can be summarized as follows. Proportional Approval Voting (PAV)
achieves the best compromise between AV and CC; this can be observed both from theoretical and
experimental results. The sequential rules seq-PAV and Phragmén’s rule, however, achieve almost the
same quality while being polynomial-time computable (in contrast to PAV, which is computationally
intractable [4, 35]). Also the 2-Geometric rule achieves a very good compromise, but is slightly
leaning towards diversity. More generally, we show that the p-Geometric rule spans the whole
spectrum from AV to CC, controlled through the parameter p. Hence, by adjusting the parameter p,
one can obtain any desired compromise between AV and CC.

1.2 Related Work
The normative study of multi-winner election rules typically focuses on axiomatic analysis. For
approval-based rules a number of axioms describing proportionality have been recently identified and
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AV-guarantee CC-guarantee effic.
lower upper lower upper

AV 1 1 1
k

1
k 3

CC 1
k

1
k 1 1 3

seq-CC 1
k

1
k 1− 1/e 1− (1− 1/k)k 7

PAV 1
2+
√
k

2
b
√
kc −

1
k

1
2

1
2 + 1

4k−2 3

p-Geometric W(k log(p))
k log(p)+W(k log(p))

1
k + 2W(k log(p))

k log(p)
p−1
p

p
p+ k

k+2

3

seq-PAV 1
2
√
k

2
b
√
kc −

1
k

1
log(k)+2

1
2 + 1

4k−2 7

α-Monroe 1
k

1
k

1
2

1
2 + 1

k−1 7

Greedy α-Monr. 1
k

1
k

1
2

1
2 + 1

k−1 7

seq-Phragmén 1
5
√
k+1

2
b
√
kc −

1
k

1
2

1
2 + 1

4k−2 7

Table 1: Summary of worst-case guarantees for the considered multi-winner rules. The guarantees
are functions of the committee size k. A higher value means a better guarantee, with 1 denoting
the optimal performance. In most cases we could only find (accurate) estimates instead of the exact
values of the guarantees: the “lower” and “upper” values in the table denote that the respective
guarantee is between these two values. The formulas for the guarantees of the p-Geometric rule
are depicted in Figure 1 (page 9). The column “efficiency” indicates whether the rule satisfies the
efficiency axiom as discussed in Section 5.

explored, in particular in the context of the rules that we study in this paper [1, 3, 10, 22, 32, 33, 37].
Similar properties for the ordinal model have been discussed by Dummett [14], Elkind et al. [17],
Aziz et al. [2] and in the original works by Monroe [26] and Chamberlin and Courant [13]; and for
the model with weak preferences by Baumeister et al. [7]. For a survey on properties of multi-winner
rules, with the focus on the ideas of individual excellence, diversity, and proportionality, we refer the
reader to the book chapter by Faliszewski et al. [18].

Another approach to understanding the nature of different multi-winner rules is to analyze how
these rules behave on certain subdomains of preferences, where their behavior is much easier to
interpret, e.g., on two-dimensional geometric preferences [16], on party-list profiles [11], or on
single-peaked and single-crossing domains [2]. Other approaches include analyzing certain aspects of
multi-winner rules in specifically-designed probabilistic models [21, 23, 30, 34], quantifying regret
and distortion in utilitarian models [12], assessing their robustness [9], and evaluating them based on
data collected from surveys [31, 39].

2 Preliminaries
For each t ∈ N, we let [t] = {1, . . . , t}. For a set X , we write S(X) to denote the powerset of X ,
i.e., the set of all subsets of X . By Sk(X) we denote the set of all k-element subsets of X .

Let C = {c1, . . . , cm} and N = {1, . . . , n} be sets of m candidates and n voters, respectively.
Voters reveal their preferences by indicating which candidates they like: by A(i) ⊆ C we denote the
approval set of voter i (that is, the set of candidates that i approves of). For a candidate c ∈ C, by
N(c) ⊆ N we denote the set of voters who approve c. Given a set of candidates X ⊆ C, we write
N(X) to denote the set of voters who approve at least one candidate in X , that is N(X) = {i ∈ N :
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X ∩A(i) 6= ∅}. We call the collection of approval sets A = (A(1), A(2), . . . , A(n)), one per each
voter, an approval profile. We use the symbol A to represent the set of all possible approval profiles.

We call the elements of Sk(C) size-k committees. Hereinafter, we will always use the symbol k
to represent the desired size of the committee to be elected. An approval-based committee rule (in
short, an ABC rule) is a functionR : A× N→ S(Sk(C)) that takes as an input an approval profile
and an integer k ∈ N (the required committee size), and returns a set of size-k committees.1 Below,
we recall the definitions of ABC rules which are the objects of our study.

Multi-winner Approval Voting (AV). This rule selects k candidates which are approved by most
voters. More formally, for a profile A the AV-score of committee W is defined as scav(A,W ) =∑

c∈W |N(c)|, and AV selects committees W that maximize scav(A,W ).

Approval Chamberlin–Courant (CC). For a profile A we define the CC-score of a committee
W as sccc(A,W ) =

∑
i∈N min

(
1, |A(i) ∩W |

)
= |N(W )|; CC outputs argmaxW sccc(A,W ).

In words, CC aims at finding a committee W such that as many voters as possible have their
representatives in W (a representative of a voter is a candidate she approves of). The CC rule was
first mentioned by Thiele [38], and then introduced in a more general context by Chamberlin and
Courant [13].

Proportional Approval Voting (PAV). This rule selects committees with the highest PAV-scores,
defined as scpav(A,W ) =

∑
i∈N H (|W ∩A(i)|), where H(t) is the t-th harmonic number,

i.e., H(t) =
∑t
i=1

1/i. By using the harmonic function H(·), voters who already have more
representatives in the committee get less voting power than those with fewer representatives.
While using other concave functions instead of H(·) would give similar effects, the harmonic
function is particularly well justified—it implies a number of appealing properties of the rule [1],
and it allows one to view PAV as an extension of the famous d’Hondt method [11, 22].

p-Geometric. This rule, introduced by Skowron et al. [35], can be described similarly to PAV. The
difference is that it uses an exponentially decreasing function instead of the harmonic function
to describe the relation between the voting power of individual voters and the number of their
approved representatives in the committee. Formally, for a given parameter p ≥ 1 the p-geometric
rule assigns to each committee W the score scp-geom(A,W ) =

∑
i∈N

∑|A(i)∩W |
j=1

1
pj , and picks

the committees with the highest scores. It is easy to see that the 1-geometric rule is simply AV.

Sequential CC/AV/PAV/p-Geometric. For each rule R ∈ {CC,AV,PAV, p-geometric}, we de-
fine its sequential variant, denoted as seq-R, as follows. We start with an empty solution W = ∅
and in each of the k consecutive steps we add toW a candidate c that maximizes scR(A,W∪{c}),
i.e., the candidate that improves the committee’s score most. We break ties lexicographicly.

Monroe. Monroe’s rule [26], similarly to CC, aims at maximizing the number of voters who are
represented in the elected committee. The difference is that for calculating the score of a com-
mittee, Monroe additionally imposes that each candidate should be responsible for representing
roughly the same number of voters. Formally, a Monroe assignment of the voters to a com-
mittee W is a function φ : N → W such that each candidate c ∈ W is assigned roughly the
same number of voters, i.e., that bn/kc ≤ |φ−1(c)| ≤ dn/ke. Let Φ(W ) be the set of all pos-
sible Monroe assignments to W . The Monroe-score of W is defined as scMonroe(A,W ) =
maxφ∈Φ(W )

∑
i∈N |A(i) ∩ {φ(i)}|; the rule returns argmaxW scMonroe(A,W ).

Greedy Monroe [36]. This is a sequential variant of the Monroe’s rule. It proceeds in k steps: In
each step it selects a candidate c and a group G of bn/kc or dn/ke not-yet removed voters2 so that

1Rules which for some profiles return multiple committees as tied winners are often called irresolute. In practice, one
usually uses some tie-breaking mechanism to single out a winning committee.

2To be precise, for n = k · bn/kc+ c, the first c groups of voters to be removed have size dn/ke and the remaining k − c
have size bn/kc.
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|N(c) ∩G| is maximal; next candidate c is added to the winning committee and the voters from
G are removed from the further consideration.

Phragmén’s Sequential Rule (seq-Phragmén). Perhaps the easiest way to define the family of
Phragmén’s rules [10, 20, 27–29] is by describing them as load distribution procedures. We
assume that each selected committee member c is associated with one unit of load that needs
to be distributed among those voters who approve c (though it does not have to be distributed
equally). Seq-Phragmén proceeds in k steps. In each step it selects one candidate and distributes
its load as follows: let `j(i − 1) denote the total load assigned to voter j just before the i-th
step. In the i-th step the rule selects a candidate c and finds a load distribution {xj : j ∈ N}
that satisfies the following three conditions: (1) xj > 0 implies that c ∈ A(j), (2)

∑
j∈N xj = 1

(3) the maximum load assigned to a voter, maxj∈N (`j(i− 1) + xj), is minimized. The new total
load assigned to a voter j ∈ N after the i-th step is `j(i) = `j(i− 1) + xj .

3 Worst-Case Guarantees of Multi-winner Rules
The Chamberlin–Courant Rule and Approval Voting represent two extreme points in the spectrum of
multi-winner rules [11, 16, 18, 22]. Specifically, CC and AV are prime examples of rules aiming at
diversity, and at individual excellence, respectively. For a detailed discussion on these two principles
we refer the reader to the book chapter of Faliszewski et al. [18], but below we also include a simple
example which illustrates the difference between AV and CC. In short, AV cares about selecting
candidates who receive the highest total support from the population of voters, and CC cares mostly
about representing the minorities in the elected committee.

Example 1. Consider a profile where 30 voters approve candidates {c1, c2, c3}, 20 voters approve
{c4, c5, c6}, and 5 voters approve {c7, c8, c9}. Let k = 3. For this profile AV selects candidates
{c1, c2, c3}, while CC selects the committee {c1, c4, c7} (among others).

In this section we analyze the multi-winner rules from Section 2 with respect to how well they
perform in terms of diversity, and individual excellence. In our study we use the established idea of
approximation from computer science, but in a novel way: by estimating how well a given ruleR
approximates CC (resp., AV), we quantify howR performs with respect to diversity (resp., individual
excellence). This differs from the typical use of the idea of approximation in the following aspects:
(1) We do not seek new algorithms approximating a given objective function as well as possible,
but rather analyze how well the existing known rules approximate given functions (even if it is
apparent that better and simpler approximation algorithms exist, these algorithms might not share
other important properties of the considered rules). (2) We are not approximating computationally
hard rules with rules easier to compute. On contrary, we will be investigating how computationally
hard rules (such as PAV, Monroe, etc.) approximate AV, which is easy to compute.

Definition 1. Recall that for a profile A, scav(A,W ) and sccc(A,W ) denote the AV-score and CC-
score of committeeW , respectively. The AV-guarantee of an ABC ruleR is a function κav : N→ [0, 1]
that takes as input an integer k, representing the size of the committee, and is defined as:

κav(k) = inf
A∈A

minW∈R(A,k) scav(A,W )

maxW∈Sk(C) scav(A,W )
.

Analogously, the CC-guarantee ofR is defined by

κcc(k) = inf
A∈A

minW∈R(A,k) sccc(A,W )

maxW∈Sk(C) sccc(A,W )
.
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The AV and CC-guarantees can be viewed as quantitative properties of multi-winner rules. In
comparison with the traditional qualitative approach (analyzing properties which can be either
satisfied or not), a quantitative analysis provides much more fine-grained information regarding the
behavior of a rule with respect to some normative criterion. In the remaining part of this section we
evaluate the previously defined rules against their AV- and CC-guarantees.

3.1 Guarantees for CC and AV
Clearly, the AV-guarantee of Approval Voting and the CC-guarantee of the Chamberlin–Courant rule
are the constant-one function. Below we establish the AV-guarantee of CC and vice versa.

Proposition 1. The CC-guarantee of AV is 1/k.

Proof. Consider an approval profile A, and let Wav be an AV-winning committee for A. We know
that Wav contains a candidate who is approved by most voters—let us call such a candidate cmax.
Clearly, it holds that sccc(A,Wav) ≥ |N(cmax)|. Further, for any size-k committee W ⊆ C we
have that sccc(A,W ) ≤ k|N(cmax)|, which proves that the AV-guarantee of CC is at least 1/k.
To see that the guarantee cannot be higher than 1/k consider a family of profiles where the set of
voters can be divided into k disjoint groups: N1, N2, . . . , Nk, with |N1| = x+ 1 and |Ni| = x for
i ≥ 2, for some large value x. Assume that m = k2 and that all voters from Ni approve candidates
c(i−1)k+1, c(i−1)k+2, . . . cik. For this profile AV selects committee {c1, . . . ck} with the CC-score
equal to x + 1. The optimal CC committee is e.g., {c1, ck+1, . . . , ck(k−1)+1}, with the CC-score
equal to kx+ 1.

Proposition 2. The AV-guarantee of CC and sequential CC is 1/k.

Proposition 1 and Proposition 2 give a baseline for our further analysis. In particular, we would
expect that “good” rules implementing a tradeoff between diversity and individual excellence, should
have AV and CC-guarantees better than 1/k.

We conclude this section by noting that the CC-guarantee of the sequential Chamberlin–Courant
rule is 1− (1− 1/k)k (which approaches 1 − 1/e ≈ 0.63 for large k). This is the result of the fact
that sequential CC is a (1− (1− 1/k)k)-approximation algorithm for CC [24].

3.2 An Optimal Proportional Compromise
Next, we examine what are the possible AV- and CC-guarantees that a proportional rule could
achieve. We consider a very weak definition of proportionality, called lower quota. This axiom is
widely used [5] in the context of apportionment methods (which are special cases of approval-based
multi-winner rules) and is strictly weaker than proportionality axioms typically used in the context of
approval-based multiwinner rules (such as extended and proportional justified representation [1, 32]).

Definition 2. We call a profile A a party-list profile if for each pair of voters i, j ∈ N it holds that
either A(i) ∩ A(j) = ∅ or that A(i) = A(j). For a given committee size k we say that a group of
voters V ⊆ N is `-cohesive, if |V | ≥ n`

k and
∣∣⋂

i∈V A(i)
∣∣ ≥ `.

An ABC rule R satisfies lower quota if for each party-list profile A, each k ∈ N and each
`-cohesive group of voters V ⊆ N it holds that at least ` members of each winning committee from
R(A, k) are approved by the members of V .

We obtain the following two upper bounds on the guarantees of proportional rules.

Proposition 3. The AV-guarantee of a rule that satisfies lower quota is at most 2
b
√
kc −

1
k .
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Proof. Let us fix k, and consider the following approval-based profile A with n = k ·x voters divided
into k equal-size groups: N = N1 ∪ . . . ∪Nk, with |Ni| = x for each i ∈ [k]. All the voters from
the first b

√
kc groups approve k candidates denoted as x1, . . . , xk. For each i > b

√
kc all the voters

from Ni approve a single candidate yi.
LetR be a rule that satisfies lower quota. Let W and Wav denote the committees returned byR

and by AV, respectively. Lower quota ensures that yi ∈W for each i > b
√
kc. Thus,

scav(A,W ) =
(
k − b

√
kc
)
x+ b

√
kc · x · b

√
kc ≤ 2kx− b

√
kcx.

On the other hand, one can observe that Wav = {x1, . . . , xk}, and so scav(A,Wav) = b
√
kc · x · k.

As a result we have:

scav(A,W )

scav(A,Wav)
≤ 2kx− b

√
kcx

b
√
kc · x · k

=
2

b
√
kc
− 1

k
.

Proposition 4. The CC-guarantee of a rule that satisfies lower quota is at most 3
4 + 3

8k−4 .

3.3 Guarantees for Monroe and Greedy Monroe
Let us turn our attention to the Monroe rule and its greedy variant. Since Monroe is often considered
a proportional rule, as it satisfies proportionality axioms such as proportional justified representa-
tion [32]. Hence, one could expect that in terms of AV and CC-guarantees this rule is between AV
and CC. Surprisingly, this is not the case and in fact it does not offer a better AV-guarantee than CC.

Proposition 5. The AV-guarantee of Greedy Monroe and Monroe is 1/k.

Proposition 6. The CC-guarantee of Monroe and greedy Monroe is between 1
2 and 1

2 + 1
k−1 .

3.4 Guarantees for PAV
Let us now move to multi-winner voting systems offering asymptotically better guarantees than
the (greedy) Monroe rule. As we will see, the examination of such rules requires a more complex
combinatorial analysis. We start with Proportional Approval Voting.

Theorem 1. The AV-guarantee of PAV is between 1
2+
√
k

and 2√
k

.

Proof. First, we show that the AV-guarantee of PAV is at least equal to 1
2+
√
k

. Consider an approval
profile A and a PAV-winning committee Wpav; let npav = |N(Wpav)| denote the number of voters
who approve some member of Wpav. For each i ∈ N we set wi = |A(i) ∩Wpav|. Let Wav be a
committee with the highest AV-score. W.l.o.g., we can assume that Wav 6= Wpav. Now, consider
a candidate c ∈ Wav \Wpav with the highest AV-score, and let nc = |N(c)| denote the number
of voters who approve c. If we replace a candidate c′ ∈ Wpav with c, the PAV-score of Wpav will
change by:

∆(c, c′) =
∑

i : c∈A(i)∧c′ /∈A(i)

1

wi + 1
−

∑
i : c′∈A(i)∧c/∈A(i)

1

wi

=
∑

i : c∈A(i)

1

wi + 1
−

∑
i : c′∈A(i)

1

wi
+

∑
i : {c,c′}⊆A(i)

1

wi
− 1

wi + 1

≥
∑

i∈N(c)

1

wi + 1
−

∑
i∈N(c′)

1

wi
.

(1)
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Let us now compute the sum:∑
c′∈Wpav

∆(c, c′) =
∑

c′∈Wpav

∑
i∈N(c)

1

wi + 1
−

∑
c′∈Wpav

∑
i∈N(c′)

1

wi

= k
∑

i∈N(c)

1

wi + 1
−
∑
i∈N

∑
c′∈Wpav∩A(i)

1

wi
= k

∑
i∈N(c)

1

wi + 1
− npav

(2)

We know that for each c′ ∈ W we have ∆(c, c′) ≤ 0, thus k
∑
i∈N(c)

1
wi+1 − npav ≤ 0 and∑

i∈N(c)
1

wi+1 ≤
npav

k . We now use the inequality between harmonic and arithmetic mean to get:

npav

k
≥

∑
i∈N(c)

1

wi + 1
≥ n2

c∑
i∈N(c)(wi + 1)

=
n2
c∑

i∈N(c) wi + nc
.

This can be reformulated as:

knc ≤
npav

(∑
i∈N(c) wi + nc

)
nc

=
npav

∑
i∈N(c) wi

nc
+ npav

Now, let us consider two cases. If npav ≤ nc
√
k, then we observe that:

scav(A,Wav)

scav(A,Wpav)
≤
∑
i∈N wi + knc∑

i∈N wi
= 1 +

knc∑
i∈N wi

≤ 1 +

npav
∑

i∈N(c) wi

nc
+ npav∑

i∈N wi

≤ 2 +

npav
∑

i∈N(c) wi

nc∑
i∈N wi

≤ 2 +
npav

nc
≤
√
k + 2.

On the other hand, if npav ≥ nc
√
k, then:

scav(A,Wav)

scav(A,Wpav)
≤
∑
i∈N wi + knc∑

i∈N wi
= 1 +

knc∑
i∈N wi

≤ 1 +
knc
npav

≤ 1 +
√
k.

In either case we have that scav(A,Wpav)
scav(A,Wav) ≥

1
2+
√
k

. This yields the required lower bound.
The fact that the AV-guarantee of PAV is at most equal to 2

b
√
kc −

1
k follows from Proposition 3

and the fact that PAV satisfies lower-quota [11].

Theorem 2. The CC-guarantee of PAV is between 1
2 and 1

2 + 1
4k−2 .

3.5 Guarantees for Sequential PAV
For sequential PAV we can prove qualitatively similar AV-guarantees to the ones for PAV.

Theorem 3. The AV-guarantee of sequential PAV is between 1
2
√
k

and 2
b
√
kc −

1
k .

Let us now discuss the CC-guarantee of sequential PAV. One can observe that the construction for
PAV from Theorem 2 also works for sequential PAV, which shows that the CC-guarantee of seq-PAV
is at most equal to 1

2 + 1
4k−2 . Proposition 7 below establishes a lower bound. In this case however,

the gap between the lower and upper bounds on the CC-guarantee of the rule is large. Finding a more
accurate estimate remains an interesting open question.

Proposition 7. The CC-guarantee of sequential PAV is at least equal to 1
log(k)+2 .

8



p1 2 3 4 5 6
0

0.5

1

(a) AV-guarantee

p1 2 3 4 5 6
0

0.5

1

(b) CC-guarantee

Figure 1: Visualization of guarantees from Theorem 4 and Theorem 5: AV- and CC-guarantees for
k = 20 and varying p. On each figure the upper and the lower line depict the upper and the lower
bound, respectively, on the appropriate guarantee.

3.6 Guarantees for p-Geometric Rule
The following two theorems estimate the guarantees for the p-geometric rule. These guarantees are
visualized in Figure 1. We can see that p-geometric rules, for p ∈ [1,∞), form a spectrum connecting
AV and CC (with p → 1 we approach AV and with p → ∞ we approach CC): by adjusting the
parameter p one can control the tradeoff between the diversity and individual excellence of the rule.

Let us recall that W(·) denotes the Lambert W function. For each z it holds that z = W(z)eW(z).
Intuitively, W(·) is a function that asymptotically increases slower than the natural logarithm log.

Theorem 4. The AV-guarantee of the p-geometric rule is between:

W(k log(p))

k log(p) + W(k log(p))
and

2W(k log(p))

k log(p)
+

1

k
.

Theorem 5. The CC-guarantee of the p-geometric rule is between p−1
p and p

p+ k
k+2

.

3.7 Guarantees for the Sequential Phragmén’s Rule
Finally we consider seq-Phragmén, another rule aimed at achieving proportionality of representation.

Theorem 6. The AV-guarantee of seq-Phragmén is between 1
5
√
k+1

and 2
b
√
kc −

1
k .

The next theorem shows that the CC-guarantee of seq-Phragmén is asymptotically equal to 1
2 .

Theorem 7. The CC-guarantee of seq-Phragmén is between 1
2 and 1

2 + 1
4k−2 .

4 Average Guarantees: Experimental Analysis
To complement the theoretical analysis of Section 4, we have run experiments that aim at assessing
AV-ratios and CC-ratios achieved by several voting rules. These two ratios are per-instance analogues
of AV- and CC-guarantee and are defined as follows: Given a voting rule R and a profile A, the
AV-ratio and the CC-ratio are defined as:

minW∈R(A,k) scav(A,W )

maxW∈Sk(C) scav(A,W )
and

minW∈R(A,k) sccc(A,W )

maxW∈Sk(C) sccc(A,W )
.

In these experiments, we have calculated the AV- and CC-ratios for real-world and randomly generated
profiles and compared them for different voting rules. We have used two data sets: profiles obtained
from preflib.org [25] and profiles generated via an uniform distribution (see details below).
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Figure 2: Results for the preflib dataset (upper boxplot shows AV-ratios, the lower CC-ratios).
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Datasets. We restricted our attention to profiles where both the AV-ratio of CC and the CC-ratio of
AV is at most 0.9. This excludes profiles where an (almost) perfect compromise between AV and CC
exists. The uniform dataset consists of 500 profiles with 20 candidates and 50 voters, each. Voters’
approval sets are of size 2–5 (chosen uniformly at random); the approval sets of a given size are also
chosen uniformly at random. Experiments for the uniform dataset use a committee size of k = 5.

The preflib dataset is based on preferences obtained from preflib.org. Since their database
does not contain approval-based datasets, we extracted approval profiles from ranked ballots as
follows: for each ranked profile and i ∈ {1, . . . , k − 1}, we generated an approval profile assuming
that voters approve all candidates that are ranked in the top i positions. As before, we excluded
profiles that allowed an almost perfect compromise between AV and CC. For the preflib dataset we
considered k ∈ {3, . . . , 7} and obtained a total number of 243 instances.

Results. We considered the following voting rules: AV, CC, seq-CC, PAV, seq-PAV, seq-Phragmén,
Monroe’s rule, as well as the 1.5-, 2-, and 5-Geometric rule. Our results are displayed as boxplots in
Figure 2 for the preflib dataset and in Figure 3 for the uniform dataset. The top and bottom of boxes
represent the first and third quantiles, the middle red bar shows the median. The dashed intervals
(whiskers) show the range of all values, i.e., the minimum and maximum AV- or CC-ratio. The results
for the preflib and random dataset are largely similar; we comment on the differences later on.

The main conclusion from the experiments is that the classification obtained from worst-case
analytical bounds also holds in our (average-case) experiments. PAV, seq-PAV, and seq-Phragmén
perform very well with respect to the AV-ratio, beaten only by 1.5-Geometric and AV itself. This
is mirrored by our theoretical results as only PAV, seq-PAV, and seq-Phragmén achieve a Θ(1/

√
k)

AV-guarantee. For the uniform dataset, however, seq-Phragmén has slightly lower AV-ratios, but still
comparable to PAV and seq-PAV. Also the 2-Geometric rule achieves comparable AV-ratios. Even
better AV-ratios are achieved only by 1.5-Geometric and—by definition—by AV.

Considering the CC-ratio, we see almost optimal performance of seq-CC, Monroe, and 5-
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Figure 3: Results for the uniform dataset (upper boxplot shows AV-ratios, the lower CC-ratios).
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Geometric, and good performance of PAV, seq-PAV, seq-Phragmén, and 2-Geometric. Minor varia-
tions within these groups seem to depend on the chosen dataset. We also observe that 5-Geometric is
better than Monroe’s rule and seq-CC according to both criteria.

When looking at the three Geometric rules considered here, we see the transition from AV to CC
as our theoretical findings predict (cf. Figure 1): 1.5-Geometric is close to AV, whereas 5-Geometric
resembles CC; 2-Geometric performs very similarly to PAV, slightly favoring diversity over IE.

Our results indicate that PAV is the best compromise between AV and CC. Yet, seq-PAV, seq-
Phragmén, and 2-Geometric achieve comparable ratios, and the former two are cheaper to compute.

5 A Pareto Efficiency Axiom
In this section, we provide a complementary axiomatic analysis concerning individual excellence. We
formulate the axiom of efficiency, a form of Pareto efficiency with respect to the number of approved
candidates in a committee. In other words, this axiom dictates that only committees can be chosen
where a further improvement of the total AV-score implies that the AV-score of some individual voter
is reduced. We analyze our rules with respect to this property, and, maybe surprisingly, show that
many rules do not satisfy this basic axiom.

Definition 3. Consider a committee size k ∈ N, two committees W1,W2 ∈ Sk(C) and an approval
profile A ∈ A. We say that W1 dominates W2 in a A if for each voter i ∈ N we have that
|W1 ∩A(i)| ≥ |W2 ∩A(i)|, and if there exists a voter j such that |W1 ∩A(j)| > |W2 ∩A(j)|.

An ABC rule R satisfies efficiency if for each profile A ∈ A and each committee size k there
exists no committee W ∈ Sk(C) that dominates each committee inR(A, k).

We start aith the rather surprising observation that seq-Phragmén does not satisfy efficiency.
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Example 2. Consider the set of 36 voters, and five candidates, c1, . . . , c5. By N(c) we denote the
set of voters who approve c. Assume that:

N(c1) = {1, . . . 20}; N(c2) = {11, . . . 28}; N(c3) = {1, . . . 10, 29, . . . , 36};
N(c4) = {21, . . . 36}; N(c5) = {1, . . . 19}.

The sequential Phragmén’s rule will select c1 first, c4 second, and c5 third, yet committee {c1, c4, c5}
is dominated by {c1, c2, c3}. This example also works for the Open d’Hondt method, which can be
viewed as another variant of the Phragmén’s rule [33].

We note that the violation of efficiency is not an artifact of the rule being sequential (and so, in
some sense “suboptimal”). Indeed, consider the optimal Phragmén’s rule, which is the variant where
the committee members and their associated load distributions are not chosen sequentially, but rather
simultaneously in a single step. Similarly, as in the case of its sequential counterpart, the goal of the
optimal Phragmén’s rule is to find a committee and an associated load distribution that minimizes the
load of the voter with the highest load (for more details on this rule we refer the reader to the work
of Brill et al. [10]). The following example shows that the optimal Phragmén’s rule does not satisfy
efficiency. The same example shows that the Monroe rule does not satisfy efficiency.

Example 3. Consider 24 voters, and four candidates, c1, . . . , c4, with the following preferences:

N(c1) = {3, . . . 22}; N(c2) = {1, 2, 23, 24};
N(c3) = {2, . . . 12}; N(c4) = {13, . . . 23}.

The optimal Phragmén’s and the Monroe’s rule would select {c3, c4}, which is dominated by {c1, c2}.

Greedy Monroe, seq-CC, and seq-PAV do not satisfy efficiency either. Intuitively, this is due to
their sequential nature.

Example 4. Consider the following profile with 20 voters and 4 candidates, where:

N(c1) = {2, . . . 10}; N(c2) = {11, . . . 19};
N(c3) = {6, . . . 15}; N(c4) = {2, 3, 4, 16, 17, 18, 19}.

For this profile and for k = 2 the greedy Monroe rule first picks c3, who is approved by 10 voters,
will remove these 10 voters, and will pick c4. However, committee {c3, c4} is dominated by {c1, c2}.
The same example shows that seq-CC and seq-PAV do not satisfy efficiency.

All the remaining rules that we consider satisfy efficiency.

Proposition 8. AV, CC, PAV, and p-geometric satisfy efficiency.

6 Conclusion and Future Work
Our work demonstrates the flow of ideas from theoretical computer science to theoretical economics,
in particular to social choice. We designed new tools that can be used to assess the level of diversity
and individual excellence provided by certain rules. Our results help to understand the landscape of
multiwinner rules, specifically how they behave with respect to two contradictory goals.

Our work can be extended in several directions. First, we have focused on approval-based multi-
winner rules—a natural next step is to perform a similar analysis for multi-winner rules that take
rankings over candidates as input. Second, we have excluded some interesting voting rules from our
analysis, in particular reverse-sequential PAV [37] and Minimax Approval Voting [8]; it is unclear
how they compare to rules considered in this paper. Finally, we have chosen AV and CC as extreme
notions that represent diversity and individual excellence. Another natural approach would be to take
a proportional rule (such as PAV) as a standard and see how well others rules approximate it.
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A Proofs Omitted from the Main Text
Proposition 2. The AV-guarantee of CC and sequential CC is 1/k.

Proof. For an approval profile A let Wcc and Wav be committees winning according to CC and AV,
respectively. We will first prove that scav(A,Wcc) ≥ scav(A,Wav)

k . If it was not the case, then by the
pigeonhole principle, there would exists a candidate c ∈Wav such that scav(A,Wcc) < scav(A, {c}).
However, this means that a committee that consists of c and any k − 1 candidates has a higher
CC-score than Wcc, a contradiction. Thus, the AV-guarantee of CC is at least 1/k. For seq-CC, the
same argument by contradiction applies as this candidate c would have been chosen in the first round.

To see that this guarantee cannot be higher than 1/k consider the following profile: assume
there are x voters (x is a large integer) who approve candidates c1, . . . , ck. Further, for each
candidate ck+1, . . . , c2k there is a single voter who approves only her. The CC-winning committee
is {c1, ck+1 . . . , c2k−1} with the AV-score of x + k − 1. However, the AV-score of committee
{c1, . . . ck} is xk, and for large enough x the ratio x+k−1

xk can be made arbitrarily close to 1/k.

Proposition 4. The CC-guarantee of a rule that satisfies lower quota is at most 3
4 + 3

8k−4 .

Proof. LetR be a rule that satisfies lower quota. Consider a profile A with n = 2kx voters for some
x ≥ 1. Each from the first kx voters approves candidates X = {x1, . . . , xk}. The other voters are
divided into k equal-size groups, each approving a different candidate from the set Y = {y1, . . . , yk}.
Lower quota ensures that at least k/2 candidates need to be chosen from X . Thus, the CC-score of a
committee selected byR is at most equal to kx+ kx

2 . By selecting one candidate from X and k − 1
candidates from Y we get a CC-score of 2kx− x. Thus, the CC-guarantee is at most equal to:

kx+ kx
2

2kx− x
=

3k

4k − 2
=

3

4
+

3

8k − 4
.

Proposition 5. The AV-guarantee of Greedy Monroe and Monroe is 1/k.

Proof. First, let us consider the greedy Monroe rule. To see the lower bound of 1/k, let A be an
approval profile and let c̄ denote the candidate who is approved by most voters. For the sake of clarity
we assume that k divides n; the proof can be generalized to hold for arbitrary n. Clearly, for any
committee W it holds that scav(A,W ) ≤ k|N(c̄)|. If |N(c̄)| ≤ n

k , then the greedy Monroe rule in
the first step will select c̄. Otherwise, it will select some candidate approved by at least nk voters, and
will remove n

k of them from A. By a similar reasoning we can infer that in the second step the rule
will pick a candidate who is approved by at least min

(
n
k , |N(c̄)| − n

k

)
voters; and in general, that in

the i-th step the rule will pick the candidate who is approved by at least min
(
n
k , |N(c̄)| − n(i−1)

k

)
voters. As a result, we infer that number of voters that have at least one approved candidate in the
chosen committee is at least

k∑
i=1

min

(
n

k
, |N(c̄)| − n(i− 1)

k

)
= |N(c̄)|.

Hence the AV-guarantee of Greedy Monroe is at least 1/k.
To see that the same lower bound holds for the Monroe rule, we distinguish two cases; let W

be a winning committee. If c̄ ∈ W , then scCC(A,W ) ≥ |N(c̄)| and we are done. If c̄ /∈ W and
scCC(A,W ) < |N(c̄)|, then there is a committee with a higher Monroe-score that contains c̄; a
contradiction.

Now, consider the following instance witnessing that the AV-guarantee of Greedy Monroe is at
most 1

k . Let n = k · (x + 1) and let A be a profile with n voters. Let W ⊆ C with |W | = k and
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c1, . . . , ck /∈W . We define profile A as follows: we have x voters that approve W ∪ {c1} and one
voter that approves only {c1}, we have x voters that approve W ∪ {c2} and one voter that approves
only {c2}, etc. This defines in total k · (x+ 1) voters. AV selects the committee W with an AV-score
of xk2; Greedy Monroe selects the committee {c1 . . . , ck} with an AV-score of (x+ 1)k. We have a
ratio of (x+1)

xk , which converges to 1
k for x→∞. The same instance shows that the AV-guarantee of

the Monroe rule is at most 1
k .

Proposition 6. The CC-guarantee of Monroe and greedy Monroe is between 1
2 and 1

2 + 1
k−1 .

Proof. First, for the sake of contradiction let us assume that there exists a profile A where the
CC-guarantee of Greedy Monroe is below 1

2 . Let Wcc and WM be the committees winning in A
according to CC and Greedy Monroe, respectively. Let φ be an assignment of the voters to the
committee members obtained during the construction of WM ; we say that a voter is represented if it
is assigned to a member of WM who she approves of. Since sccc(A,WM ) < 1

2 · sccc(A,Wcc), by
the pigeonhole principle we infer that there exists a candidate c ∈Wcc \WM who is approved by x
unrepresented voters, where:

x ≥ sccc(A,Wcc)− sccc(A,WM )

k
≥ 2sccc(A,WM )− sccc(A,WM )

k
=

sccc(A,WM )

k
.

Similarly, by the pigeonhole principle we can infer that there exists a candidate c′ ∈ WM who is
represented by at most sccc(A,WM )

k voters. Thus, Greedy Monroe would select c rather than c′, a
contradiction. A similar argument can be made to show that the CC-guarantee of the Monroe rule is
≥ 1

2 .
Now, consider the following approval profile. There are 2k+ 1 candidates, c1, . . . , c2k+1, and 2k

disjoint equal-size groups of voters, N1, . . . , N2k. For each i ∈ [2k], candidate ci is approved by all
voters from Ni. Candidate c2k+1 is approved by all voters from N1 ∪ . . . ∪Nk. One of the winning
committees according to the Monroe and Greedy Monroe rule is {c1, . . . , ck−2, ck+1, c2k+1}, which
has a CC-score of nk + (k − 1) n2k . On the other hand, {ck+1, . . . , c2k−1, c2k+1} has a CC-score of
n− n

k . Thus, the CC-guarantee of Monroe and Greedy Monroe is at most:

n
k + n(k−1)

2k

n− n
k

=
k+1
2k
k−1
k

=
k + 1

2k − 2
=

1

2
+

1

k − 1
.

This completes the proof.

Theorem 2. The CC-guarantee of PAV is between 1
2 and 1

2 + 1
4k−2 .

Proof. We first prove a lower bound of 1/2 for the CC-guarantee of PAV. Consider an approval-based
profile A and a PAV winning committee Wpav. Similarly as in the proof of Theorem 1, for each voter
i ∈ N we set wi = |A(i) ∩Wpav|. Let Wcc be a committee winning according to the Chamberlin–
Courant rule For each two candidates, c ∈Wpav and c′ ∈Wcc, let ∆(c′, c) denote the change of the
PAV-score of Wpav due to replacing c with c′. By Inequality (1), we have:

∆(c′, c) ≥
∑

i∈N(c′)

1

wi + 1
−
∑

i∈N(c)

1

wi
.

Let us now consider an arbitrary bijection τ : Wpav → Wcc, matching members of Wpav with the

17



members of Wcc. We compute the sum:∑
c∈Wpav

∆(τ(c), c) ≥
∑

c′∈Wcc

∑
i∈N(c′)

1

wi + 1
−

∑
c∈Wpav

∑
i∈N(c)

1

wi

=
∑

i∈N(Wcc)

∑
c′∈Wcc∩A(i)

1

wi + 1︸ ︷︷ ︸
≥ 1

wi+1

−
∑

i∈N(Wpav)

∑
c∈Wpav∩A(i)

1

wi︸ ︷︷ ︸
=1

≥
∑

i∈N(Wcc)

1

wi + 1
− |N(Wpav)| ≥

∑
i∈N(Wcc)\N(Wpav)

1− |N(Wpav)|

≥ |N(Wcc) \N(Wpav)| − |N(Wpav)|
≥ |N(Wcc)| − |N(Wpav)| − |N(Wpav)|
= |N(Wcc)| − 2|N(Wpav)|.

(3)

SinceWpav is an PAV-optimal committee, we know that for each c ∈Wpav, it holds that ∆(τ(c), c) ≤
0. Consequently,

∑
c∈Wpav

∆(τ(c), c) ≤ 0, and so we get that |NWcc
|−2|NWpav

| ≤ 0, Consequently,

we get that |NWpav
| ≥ |NWcc |

2 , which shows that the CC-guarantee of PAV is at least equal to 1/2.
Now, we will prove the upper bound using the following construction. Let n, the number of voters,

be divisible by 2k. The set of candidates is X ∪ Y with X = {x1, . . . , xk} and Y = {y1, . . . , yk}.
There are n/2 voters who approve X . Further, for each i ∈ [k], there are n

2k voters who approve
candidate yi. All committees that contain at least k − 1 candidates from X are winning according
to PAV, among them X itself. Committee X has a CC-score of n/2. The optimal CC committee
consists of a single candidate from X and (k − 1) candidates from Y—this would give a CC-score
of n2 + (k − 1) · n2k = n · 2k−1

2k . Thus, the CC-guarantee of PAV is at most equal to:

2k

4k − 2
=

1

2
+

1

4k − 2
.

This completes the proof.

Theorem 3. The AV-guarantee of sequential PAV is between 1
2
√
k

and 2
b
√
kc −

1
k .

Proof. Since sequential PAV satisfies lower quota [11], the upper bound of 2
b
√
kc −

1
k follows from

Proposition 1. In the remaining part of the proof we will prove the lower-bound.
For k = 1, seq-PAV is AV and hence the Av-guarantee is 1. For k = 2, in the first step the

AV-winner is chosen and hence we have an AV-guarantee for k = 2 is 3
4 ≥

1
2
√

2
. Now assume that

k ≥ 3. Let W (j)
pav denote the first j candidates selected by sequential PAV; in particular, W (0)

pav = ∅.
Let wj denote the candidate selected by sequential PAV in the jth step, thus wj is the single candidate
in the set W (j)

pav \ W (j−1)
pav . Let xi,j = |W (j)

pav ∩ A(i)|. Next, let Wav be the optimal committee
according to Approval Voting, and let sav = scav(Wav).

If at some step j of the run of sequential PAV, it happens that the AV-score of W (j)
pav, which is∑

i∈N xi,j , is greater or equal than sav
2
√
k

, then our hypothesis is clearly satisfied. Thus, from now on,
we assume that for each j we have that

∑
i∈N xi,j <

sav
2
√
k

. Also, this means that in each step there

exists a candidate c from Wav \Wpav who is approved by nc ≥
sav− sav

2
√

k

k ≥ sav
k (1 − 1

2
√

3
) voters.

Let nc = |N(c)|.
Let ∆pj denote the increase of the PAV-score due to adding wj+1 to W (j)

pav. Using the inequality
between harmonic and arithmetic mean, we have that:

∆pj =
∑

i∈N(c)

1

xi,j + 1
≥ n2

c∑
i∈N(c) xi,j + nc

>
n2
c

sav
2
√
k

+ nc
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≥

(
sav
k (1− 1

2
√

3
)
)2

sav
2
√
k

+ sav
k (1− 1

2
√

3
)
≥

(
sav
k (1− 1

2
√

3
)
)2

sav√
k

( 1
2 + 1√

3
− 1

6 )

=
sav

k
√
k
·

(
1− 1

2
√

3

)2

1
2 + 1√

3
− 1

6︸ ︷︷ ︸
≈0.56

>
sav

2k
√
k

.

Since this must hold in each step of sequential PAV, we get that the total PAV-score of W (k)
pav must

be at least equal to k · sav
2k
√
k

= sav
2
√
k

. Since the AV-score is at least equal to the PAV-score of any

committee, we obtain a contradiction and conclude that scav(A,W
(k)
pav) ≥ sav

2
√
k

.

Proposition 7. The CC-guarantee of sequential PAV is at least equal to 1
log(k)+2 .

Proof. Consider an approval profile A and let Wspav and Wcc denote the winning committees in A
according to seq-PAV and CC, respectively. Let nspav = sccc(A,Wspav) and ncc = sccc(A,Wcc).
The total PAV-score of Wspav is at most equal to nspavH(k) ≤ nspav(log(k) + 1). Thus, at some step
sequential PAV selected a committee member who improved the PAV-score by at most nspav(log(k)+1)

k .
On the other hand, by the pigeonhole principle, we know that at each step of seq-PAV there exists a not-
selected candidate whose selection would improve the PAV-score by at least ncc−nspav

k . Consequently,
we get that

nspav(log(k) + 1)

k
≥ ncc − nspav

k
.

After reformulation we have that nspav ≥ ncc

log(k)+2 , which completes the proof.

Theorem 4. The AV-guarantee of the p-geometric rule is between:

W(k log(p))

k log(p) + W(k log(p))
and

2W(k log(p))

k log(p)
+

1

k
.

Proof. We use the same notation as in the proof of Theorem 1 with a difference that instead of
Wpav (denoting a PAV winning committee) we will use Wp-geom, denoting a committee winning
according to the p-geometric rule. By repeating the reasoning from the proof of Theorem 1 instead of
Inequality (2) we would obtain:

∑
c′∈Wp-geom

∆(c, c′) = k
∑

i∈N(c)

(
1

p

)wi+1

−
∑
i∈N

∑
c′∈Wpav∩A(i)

(
1

p

)wi

= k
∑

i∈N(c)

(
1

p

)wi+1

−
∑
i∈N

wi

(
1

p

)wi

By using Jensen’s inequality we get that
∑
i∈N(c)

1
nc
·
(

1
p

)wi+1

≥
(

1
p

)∑
i∈N(c) wi+nc

nc . Thus:

∑
c′∈Wp-geom

∆(c, c′) = knc

(
1

p

)∑
i∈N wi
nc

+1

−
∑
i∈N

wi

(
1

p

)wi

≥ knc
(

1

p

)∑
i∈N wi
nc

+1

− 1

p

∑
i∈N

wi
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Since we know that
∑
c′∈Wp-geom

∆(c, c′) ≤ 0, we have that:

1

p

∑
i∈N

wi ≥ knc
(

1

p

)∑
i∈N wi
nc

+1

Let us set r = knc∑
i∈N wi

, and observe (similarly as in the proof of Theorem 1) that scav(A,Wav)
scav(A,Wp-geom) ≤

1 + r. We have that p
k
r ≥ r. The equation p

k
r = r has only one solution, r = k log(p)

W(k log(p)) . This gives

r ≤ k log(p)
W(k log(p)) and proves that the AV-guarantee is at least equal to W(k log(p))

k log(p)+W(k log(p)) .

Now, let us prove the upper bound on the AV-guarantee. Let z = k log(p)
W(k log(p)) ; in particular,

by the properties of the Lambert function we have that z = p
k
z . Consider the following instance.

Let x be a large integer so that bx · zc ≈ xz. (Formally, we choose an increasing sequence x̄ so
that zx̄ − bzx̄c → 0.) Assume there are bx · zc voters who approve candidates B = {c1, . . . , ck}.
Additionally, for each candidate c ∈ D = {ck+1, . . . , c2k} there are x distinct voters who approve c.
For this instance the p-geometric rule selects at most

⌈
k
z

⌉
members from B: if more candidates from

B were selected, then replacing one candidate from B with a candidate from D would increase the
p-geometric-score by more than

x

p
− bx · zc ·

(
1

p

)d k
z e+1

>
x

p
− x

p
· z ·

(
1

p

) k
z

=
x

p
− x

p
· z ·

(
1

z

)
= 0,

a contradiction. Thus, the AV-score of the committee selected by the p-geometric rule would be
smaller than x · z ·

(
1 + k

z

)
+ kx = xz+ 2kx. Thus, we get that the AV-guarantee of the p-geometric

rule is at most equal to:

2kx+ xz

xzk
=

1

k
+

2

z
=

1

k
+

2W(k log(p))

k log(p)
.

Theorem 5. The CC-guarantee of the p-geometric rule is between p−1
p and p

p+ k
k+2

.

Proof. Let A be an approval profile and let Wcc and Wp-geom be two committees winning according
to the Chamberlin–Courant and p-geometric rule, respectively. Let np-geom = sccc(A,Wp-geom) and
ncc = sccc(A,Wcc). We observe that:

scp-geom(A,Wp-geom) ≤ np-geom

(
1

p
+

1

p2
+ . . .

)
≤ np-geom ·

1

p
· 1

1− 1
p

and that:

scp-geom(A,Wcc) ≥ ncc ·
1

p
.

Consequently, from scp-geom(A,Wp-geom) ≥ scp-geom(A,Wcc) we get that:

np-geom ·
1

1− 1
p

≥ p · scp-geom(A,Wp-geom) ≥ p · scp-geom(A,Wcc) ≥ ncc,

which gives the lower bound on the CC-guarantee.
Now, let us prove the upper bound. Fix a rational number p and some large integer x such that px

is integer. First, let k be even with k = 2k′. Let the set of candidates be {x1, . . . , xk}∪{y1, . . . , yk′}.
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There are k′ groups of voters who consists of px voters; in each group voters approve some two
distinct candidates from {x1, . . . , xk}. Additionally, there are k′ groups consisting of x voters who
approve some distinct candidate from {y1, . . . , yk′}. It is easy to see that for such instances the
CC-guarantee is at most equal to k′px

k′px+k′x = p
1+p .

Now, let k be odd with k = 2k′ + 1; the set of candidates is {x1, . . . , x2k′+2} ∪ {y1, . . . , yk′}.
There are k′ + 1 groups of voters who consists of px voters; in each group voters approve some two
distinct candidates from {x1, . . . , x2k′+2}. Additionally, there are k′ groups consisting of x voters
who approve some distinct candidate from {y1, . . . , yk′}. Now, we see that the for such instances the
CC-guarantee is at most equal to

(k′ + 1)px

(k′ + 1)px+ k′x
=

p

p+ 1− 1
k′+1

=
p

p+ 1− 2
k+2

=
p

p+ k
k+2

.

The upper bound for the odd case is larger and hence prevails.

Theorem 6. The AV-guarantee of seq-Phragmén is between 1
5
√
k+1

and 2
b
√
kc −

1
k .

Proof. First, we will prove the lower bound of 1
5
√
k+1

. Consider an approval profile A, and let
Wphrag and Wav be committees winning according to seq-Phragmén and AV, respectively. W.l.o.g.,
we assume that Wphrag 6= Wav. For each iteration t we will use the following notation:

(1) Let w(t)
phrag be the candidate selected by seq-Phragmén in the t-th iteration. Further, let w(t)

av be a

candidate with the highest AV-score in Wav \ {w(1)
phrag, . . . , w

(t−1)
phrag}.

(2) Let n(t)
phrag = |N(w

(t)
phrag)|, and n(t)

av = |N(w
(t)
av )|.

(3) Let `j(t) denote the total load assigned to voter j until t. The maximum load in iteration t is
maxj∈N `j(t).

(4) Let `(t)av denote the total load distributed to the voters from N(w
(t)
av ) until iteration t, and

let m(t)
av denote the maximum load assigned to a voter from N(w

(t)
av ) until t, i.e., m(t)

av =
max

j∈N(w
(t)
av )

`j(t).

We will use an argument based on a potential function Φ: [0, t]→ R, which we maintain during
each iteration of seq-Phragmén. Let Φ(0) = 0. In iteration t, we increase the potential function by(
5
√
k + 1

)
· n(t)

phrag and decrease it by n(t)
av , i.e.,

Φ(t) = Φ(t− 1) +
(
5
√
k + 1

)
· n(t)

phrag − n
(t)
av .

Our goal is to show that Φ(k) ≥ 0. If we know that Φ(k) > 0, we can infer that

k∑
t=1

(
5
√
k + 1

)
· n(t)

phrag −
∑
c∈Wav

|N(c)| ≥
k∑
t=1

(
5
√
k + 1

)
· n(t)

phrag −
k∑
t=1

n(t)
av = Φ(k) ≥ 0.

and hence the AV-guarantee of seq-Phragmén is lower-bounded by 1
5
√
k+1

.

Let s be the first iteration where `(s)av > 3
√
k; if `(t)av ≤ 3

√
k for all t ∈ [k] then we set s = k + 1.

First, let us consider iterations t < s and show that Φ(t) ≥ Φ(t − 1) + n
(t)
phrag · 2

√
k. If

w
(t)
phrag = w

(t)
av , then Φ(t) = Φ(t − 1) +

(
5
√
k
)
· n(t)

phrag. Let us assume w(t)
phrag 6= w

(t)
av . We first

show that m(t)
av ≤ `(t)av +1

n
(t)
av

. For the sake of contradiction assume that t is the first iteration after

which m(t)
av >

`(t)av +1

n
(t)
av

. First note that this is only possible if indeed w(t)
av 6= w

(t)
phrag. However, by
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selecting w(t)
av instead of w(t)

phrag, it can be ensured that the load does not increase above `(t)av +1

n
(t)
av

, so

seq-Phragmén would have chosen w(t)
av , a contradiction. Next, observe that after w(t)

phrag has been

selected, the largest load assigned in total to a voter is at least equal to 1/n(t)
phrag. Yet, if w(t)

av were

selected, then the largest total load assigned to a voter would be at most equal to `(t)av +1

n
(t)
av

. Thus, it

must hold that `
(t)
av +1

n
(t)
av

≥ 1/n(t)
phrag, which is equivalent to n(t)

av ≤ n
(t)
phrag(`

(t)
av + 1). It follows that

n
(t)
av ≤ n(t)

phrag(3
√
k + 1). Consequently, we have that

Φ(t) ≥ Φ(t− 1) +
(

5
√
k + 1

)
· n(t)

phrag − n
(t)
av (4)

≥
(

5
√
k + 1

)
· n(t)

phrag −
(

3
√
k + 1

)
· n(t)

phrag = n
(t)
phrag · 2

√
k. (5)

Now, we bound Φ(s− 1). Let w = w
(s+1)
av , i.e., let w be a candidate with the highest AV-score

contained in Wav \ {w(1)
phrag, . . . , w

(s)
phrag}; let nw = |N(w)|. Here, we divide our reasoning into the

following sequence of claims:

(1) Observe that in step s, a candidate other than w is selected by seq-Phragmén and selecting
candidate w would increase the maximum load by at most 1/nw. As a consequence, in each
iteration t ≤ s, the maximum load increased by at most 1/nw.

(2) We will show that the following holds: if the maximum load in N(w) increases by at least 2/nw

between two iterations t1 and t2 ≤ s, then the AV-score from voters in N(w) increased between
these two iterations by at least nw

2 . Towards a contradiction, assume that this is not the case, i.e.,
that between t1 and t2 the maximum load from voter in N(w) increases by at least 2/nw, and the
load of more than nw/2 voters in N(w) does not increase. Without loss of generality, assume
that t2 is the first iteration for which our assumption holds. Then, if in t2 we selected w and
distributed its load among these more than nw/2 voters whose load has not yet increased, then the
maximum load would increase by less than 2/nw. This contradicts the fact that seq-Phragmén
does not choose w (by definition of w).

(3) Let us group the iterations of seq-Phragmén before s into blocks. The i-th block starts after the
(i− 1)-th block ends (the first block starts with the first iteration). Further, each block ends right
after the first iteration which increases the maximum load assigned to a voter from N(w) by
at least 2/nw since the moment the block has started (thus, the last iterations may not be part
of a block). Thus, in each block the maximum load assigned to a voter from N(w) increases
by at least 2/nw. Since in one step the load can increase by no more than 1/nw, in each block
the maximum load assigned to a voter from N(w) increases by at most 2/nw + 1/nw = 3/nw.
Consequently, since `(s)av > 3

√
k (and so, by the pigeonhole principle, some voter from N(w)

is assigned the load at least equal to 3
√
k

nw
), until s there are at least

√
k blocks. By the previous

point, the total AV-score of voters increases in each block by at least nw/2. Since there are at least√
k blocks, we have that

s−1∑
t=1

n
(t)
phrag ≥

√
k · nw/2.

By Equation (5), we have that

Φ(s− 1) ≥
√
k · nw/2 · 2

√
k = knw.

By choice of w, candidates not contained in Wphrag are approved by at most nw voters and hence
Φ(k)− Φ(s− 1) ≥ −knw. Hence Φ(k) ≥ 0. This concludes the lower bound proof.
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For the upper bound we observe that seq-Phragmén satisfies the lower quota property [11] and
use Proposition 3. This completes the proof.

Theorem 7. The CC-guarantee of seq-Phragmén is between 1
2 and 1

2 + 1
4k−2 .

Proof. We first prove the lower bound on the CC-guarantee of seq-Phragmén. Consider an approval
profile A, and let Wphrag be a committee selected by seq-Phragmén for A; let Wcc be a committee
maximizing the CC-score for A. Further, for each i, 1 ≤ i ≤ k, by W (i)

phrag we denote the first i

candidates selected by seq-Phragmén. We set ncc = |N(Wcc)| and n(i)
phrag = |N(W

(i)
phrag)|.

We will show by induction that for each i it holds that n(i)
phrag ≥

i·ncc

k+i . For i = 0, the base step

of the induction is trivially satisfied. Now, assume that for some i we have n(i)
phrag ≥

i·ncc

k+i , and we
consider the (i+ 1)-th step of seq-Phragmén. Observe that there exists a not-yet selected candidate

c who is supported by at least
ncc−n(i)

phrag

k voters who do not have yet a representative in W (i)
phrag.

Consider the following two cases:

Case 1: c is not selected in the (i+ 1)-th step. After this step the maximum load assigned to a voter
is at least equal to i+1

n
(i+1)
phrag

, which is the number of chosen candidates divided by the number of

voters that share their load. By selecting c the load would increase to no more than k

ncc−n(i+1)
phrag

.

Consequently, we have that k

ncc−n(i+1)
phrag

≥ i+1

n
(i+1)
phrag

. This is equivalent to n(i+1)
phrag ≥

(i+1)ncc

k+i+1 .

Case 2: c is selected in the (i+1)-th step. Then, n(i+1)
phrag ≥ n

(i)
phrag +

ncc−n(i)
phrag

k . After reformulating:

ncc − n(i+1)
phrag ≤ ncc − n(i)

phrag −
ncc − n(i)

phrag

k
= (ncc − n(i)

phrag) · k − 1

k
.

By the inductive assumption we have ncc − n(i)
phrag ≤ ncc − ncci

k+i = ncck
k+i and

ncc − n(i+1)
phrag ≤

ncck

k + i
· k − 1

k
=
ncc(k − 1)

k + i
.

Consequently,

n
(i+1)
phrag ≥ ncc −

ncc(k − 1)

k + i
=
ncc(i+ 1)

k + i
≥ ncc(i+ 1)

k + i+ 1
.

In both cases the inductive step is satisfied, which shows that our hypothesis holds. In particular,
for i = k, we have that n(k)

phrag ≥
kncc

k+k = ncc

2 . This proves the lower bound on the CC-guarantee of
seq-Phragmén.

For the upper bound we use the same construction and argument as in the proof of Theorem 2.

Proposition 8. AV, CC, PAV, and p-geometric satisfy efficiency.

Proof. LetR ∈ {AV,CC,PAV, p-geometric}. For the sake of contradiction let us assume that there
exists k ∈ N, profile A ∈ A, and a committee W ∈ Sk(C) such that W dominates each committee
from R(A, k). In particular, this means that W has strictly lower score than some committee
Wopt ∈ R(A, k). Thus, there exists a voter i ∈ N that assigns to Wopt a higher score than to W .
However, this is not possible since for each of the considered rules the score that i assigns to a
committee W ′ is an increasing function of |W ′ ∩A(i)|, a contradiction.
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