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Abstract

Baumeister et al. [2] introduced scoring allocation correspondences and rules, param-
eterized by an aggregation function ? (such as + and min) and a scoring vector s.
Among the properties they studied is separability, a.k.a. consistency [16], a central
property important in many social decision contexts. Baumeister et al. [2] show
that some common scoring allocation rules fail to be separable and conjecture that
“(perhaps under mild conditions on s and ?), no positional scoring allocation rule is
separable.” We refute this conjecture by showing that (1) the family of sequential
allocation rules—an elicitation-free protocol for allocating indivisible goods based on
picking sequences [9]—is separable for each coherent collection of picking sequences,
and (2) every sequential allocation rule can be expressed as a scoring allocation rule
for a suitable choice of scoring vector and social welfare ordering.

1 Introduction

Fair division, or the task of allocating indivisible goods to a number of agents is one of the
central subjects of study in social choice. This problem has been investigated both from an
economic and a computational perspective, and more recently has found particular relevance
in applications of artificial intelligence. We refer to the book by Moulin [12] and to recent
book chapters and surveys [3, 11, 14] for an overview.

Any allocation procedure takes as its input the preferences of the agents over the goods.
There are many conceivable ways of expressing such preferences, ranging from attractively
simple (but imprecise) approval schemes, where agents merely declare whether or not they
like each good, to very precise (but complex) cardinal preferences, where agents assign an
exact numerical value to each good (or bundle of goods). Ordinal preferences, where agents
rank the items in a linear order, represent a reasonable and frequently employed compromise
between the two extremes.

When it comes to concrete allocation procedures based on ordinal preferences over the
items, two approaches stand out in the literature: The first is based on the simple idea that
agents take turns picking their favorite items among those currently still available, which was
first formalized as the family of sequential allocation rules by Kohler and Chandrasekaran [9]
and studied later on by many authors, e.g., [7, 4, 1, 2]; the second, inspired by scoring rules
from voting theory, was first employed by Brams et al. [6, 5], and then defined and studied
in more generality by Baumeister et al. [2] and Nguyen et al. [13] as the family of scoring
allocation correspondences, parameterized by a scoring vector s (such as Borda, k-approval,
or lexicographic scoring) and a social welfare aggregation function ? (such as, typically,
utilitarian and egalitarian social welfare, expressed by + and (lexi)min).

In both of these families, the most common examples are naturally defined for any
number of agents and goods, raising the question of whether these procedures yield consistent
results when passing to subsets of agents. This is a central property, which can be studied
in the context of many social decision problems (see Thomson [16] for an extensive survey).

1This paper is based on work to be presented at AAMAS 2018 [10].
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Baumeister et al. [2] call this property separability in the context of allocation rules. To
be more precise, an allocation rule is called separable if it satisfies the following property:
Whenever we apply the rule to a set of agents with preferences over a set of items to obtain
an allocation π, and then apply the rule again to some subset of agents and the subset of
items they received, then those items will be allocated in exactly the same way as they were
in π.

Perhaps a bit surprisingly, Baumeister et al. [2] show that many common scoring allo-
cation rules (using, e.g., Borda or lexicographic scoring with utilitarian or egalitarian social
welfare) defy separability, and they conjecture that “(perhaps under mild conditions on s
and ?), no positional scoring allocation rule is separable.” In fact, adding to their examples,
we show that separability fails also for k-approval scoring with utilitarian or egalitarian
social welfare (Proposition 3.5).

Our main results, however, refute the above conjecture of Baumeister et al. [2]. Namely,
we show:

1. Sequential allocation rules commonly do satisfy separability. More precisely, we iden-
tify a natural condition on picking sequences (satisfied by the most commonly em-
ployed sequences), which ensures separability of the corresponding sequential alloca-
tion rule (Theorem 3.11).

2. While this might at first seem to set up a stark dichotomy between the two large
classes of allocation rules, quite the opposite is the case: Sequential allocation rules
form a central, well-studied subclass of scoring allocation rules (Theorem 3.9).

2 Preliminaries

In this section we will properly define the concepts that we sketched in the Introduction.
First we define the basic notions of ordinal preference profiles and the allocation rules

based on them:

Definition 2.1. Let n ≥ 2 be a natural number and set N = {1, . . . , n} (called the set of
agents). Furthermore, let G be a finite set (called the set of goods or items). An allocation
of G to N is a tuple π = (π1, . . . , πn), with πi ⊆ G for i ∈ {1, . . . , n}, such that the πi form
a partition of G, i.e., π1 ∪ · · · ∪πn = G and πi ∩πj = ∅ for i 6= j. The set of such allocations
will be denoted by Π(G,n). By a (singleton-based) preference on G we mean a strict total
order, i.e., a relation > that is transitive (if a > b and b > c then a > c) and trichotomous
(exactly one of a > b, a = b, and b > a holds) on G. The set of preferences on G will be
denoted by P(G).

An n-tuple (>1, . . . , >n) ∈P(G)n of such preferences will be called a (singleton-based)
preference profile of N over G.

A map P(G)n → Π(G,N) assigning to each preference profile of N over G an allocation
of G to N is called a (singleton-based) allocation rule.

More generally, a map P(G)n → 2Π(G,n) \ {∅}, assigning to each preference profile a
nonempty subset of allocations, is called a (singleton-based) allocation correspondence.

The scoring allocation correspondences that we will study proceed in three steps:

(1) Employing a scoring vector, derive from the preferences a utility vector for each pos-
sible allocation π, that specifies each agent’s individual utility for the allocation π.

(2) Aggregate the individual utilities using an aggregation function, yielding a single col-
lective utility (or social welfare) of the outcome π.
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(3) Pick the outcome(s) that maximize(s) collective utility.

As an additional step, we can specify a way to break ties in order to make sure that there
is always a single winning allocation, if needed, which yields a scoring allocation rule.

Let us describe the first step of constructing a vector of individual utilities for each
possible allocation:

Definition 2.2. A scoring vector is any vector s = (s1, . . . , sm) ∈ Qm≥0 with s1 ≥ s2 ≥ · · · ≥
sm ≥ 0 and s1 > 0. Given a preference > over G and a good g ∈ G, define the rank of g with
respect to > as rank(g,>) = |{g′ ∈ G | g′ > g}|+ 1. Given a scoring vector s = (s1, . . . , sm)
and a total order > over G, we define the utility of a bundle X ⊆ G according to > and s as

u>,s(X) =
∑
g∈X

srank(g,>).

We can now define the utility vector of any given allocation π = (π1, . . . , πn) with respect
to a preference profile P = (>1, . . . , >n) over G and a scoring vector s as follows:

uP,s(π) = (u>1,s(π1), . . . , u>n,s(πn)) ∈ Qn≥0.

It is best to think of the u>i,s(πi) as approximations to the “real utilities” of the agents.
We can imagine that each agent has some private way of rating sets of items, but (for reasons
of economy of data or because we might consider it an undue burden on the agents to come
up with a rating for all sets) we only ask for a ranking of individual items. Then we use the
scoring vector to “reconstruct” some plausible rating on all sets of items. From this point
of view the u>i,s(πi) are a stand-in or a proxy for the unknown actual utilities.

Definition 2.3. For any m ≥ 1, the vectors

borda = (m,m− 1, . . . , 2, 1) and lex = (2m−1, . . . , 21, 20)

are called the Borda scoring vector and the lexicographic scoring vector, respectively. For
any given scoring vector s ∈ Qm≥0 and M >

∑m
i=1 si, we set

(s,M)-qi =
(

1 +
s1

M
, 1 +

s2

M
, . . . , 1 +

sm
M

)
,

and call this the (s,M)-quasi-indifference scoring vector. Often, the particular choice of M
is immaterial and (s,M)-qi is then simply denoted by s-qi.

For k ≥ 1, the vector k-app = (1, . . . , 1, 0, . . . , 0) ∈ Qm≥0 with ones in the first k of m
entries is called the k-approval scoring vector.

Just by varying the scoring vector, the relative evaluation of two allocations using the
utility vectors uP,s(π) can change quite drastically. A detailed example illustrating this
point is given in the Appendix (Example A.1).

To know what a “best” allocation is, we need a way of comparing utility vectors.

Definition 2.4. Let N = {1, . . . , n} be a set of agents, G a set of m goods, and s ∈
Qm≥0 a scoring vector. A weak order (i.e., a transitive, reflexive, and complete relation) %
on Qn≥0 is called a social welfare ordering. Given such an ordering, we define a function

Fs,% : P(G)n → 2Π(G,n) \ {∅} by prescribing that π ∈ Fs,%(P ) if and only if the utility
vector associated to π (with respect to the given preference profile P and scoring vector s)
is maximal under the order %, i.e.,

π ∈ Fs,%(P )⇐⇒ ∀π′ ∈ Π(G,n) : uP,s(π) % uP,s(π
′).
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We sometimes call such a π a winning allocation. For short, we may also write

Fs,%(P ) = arg max
π∈Π(G,n)

% uP,s(π).

The map Fs,% is called a scoring allocation correspondence.

Since the set Π(G,n) of allocations is finite and % is complete in the above definition,
there must be at least one allocation π ∈ Fs,%(P ), though there might be more than one.
The ordering % will often be induced by some function W : Qn≥0 → R (called an aggregation,
collective utility, or social welfare function), by letting

u %W v ⇐⇒ W (u) ≥W (v).

In this case, we write Fs,W instead of Fs,%W
. Hence,

Fs,W (P ) = arg max
π∈Π(G,n)

W (uP,s(π)).

Example 2.5. Two of the most common choices for a social welfare function W : Qn≥0 → R
are utilitarian social welfare function that returns the sum of the agents’ individual utilities
and the egalitarian or Rawlsian social welfare function2, that returns their minimum, hence:

Fs,+(P ) = arg max
π∈Π(G,n)

u>1,s(π1) + · · ·+ u>n,s(πn),

Fs,min(P ) = arg max
π∈Π(G,n)

min{u>1,s(π1), . . . , u>n,s(πn)}.

The min function seems like a natural choice for a social welfare function, but it does
have certain drawbacks: For example, when using the ordering induced by min on Qn≥0, the
utility vector (2, 5, 4, 6) would not be considered preferable to (2, 3, 2, 4), which might seem
odd: If we can increase the utilities of some agents, without making anyone else worse off,
should we not prefer that? In more technical terms, min fails to be monotonic, a property
closely related to Pareto-optimality. This can be fixed by refining min to the leximin social
welfare ordering, first introduced by Sen [15]:

Definition 2.6. For u, v ∈ Qn, define

u %lm v ⇐⇒ u∗ ≥lex v∗,

where u∗ denotes the vector arising from u by sorting the components in ascending order,
and ≥lex denotes the lexicographic ordering on Qn.

We shall denote the scoring allocation correspondences based on this ordering %lm simply
by Fs,leximin.

Note that v %lm u implies min(v) ≥ min(u), so we have

Fs,leximin(P ) ⊆ Fs,min(P )

for all scoring vectors s ∈ Qn≥0 and all P ∈P(G)n.

Example 2.7. The utilitarian social welfare function and leximin social welfare ordering
can be considered as the extreme cases of an entire spectrum of social welfare functions.
Define the maps Wp : Qn>0 → Q for p ≤ 1 by

Wp(u) =


up1 + · · ·+ upn if p > 0,

log(u1) + · · ·+ log(un) if p = 0,

−up1 − · · · − upn if p < 0.

2These terms are also sometimes used for the leximin social welfare ordering, defined below.
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This family plays a very prominent role in the study of social welfare functions. Its mem-
bers can be axiomatically characterized as those increasing, continuous functions on Rn>0

satisfying independence of common scale and the Pigou–Dalton principle; see Section 3.2
in the book by Moulin [12] for details. They are also closely related to the family of power
means, which have long been studied in mathematics; see, e.g., Hardy et al. [8].

Note that W1 is simply the sum function. If we postcompose W0 with the exponential
function, we obtain the more common representation exp(W0(u)) = u1 · . . . · un, which is
called the Nash social welfare function. The leximin ordering can be understood as the limit
of the orders %Wp

as p→ −∞ in the following sense:

u %lm v ⇐⇒ ∃M < 0: ∀p < M : Wp(u) ≥Wp(v).

While the Wp for p > 0 can be extended from Qn>0 to Qn≥0 (the term up1 + · · ·+ upn still
makes sense when one or more of the ui is 0), the given definition of Wp(u) for p ≤ 0 does
not make sense when u contains a zero component. This can pose a problem in the context
of scoring allocation rules, as our utility vectors can contain zero entries. To fix this, one
may define, in the case p ≤ 0, that Wp(u) = −∞ for all u ∈ Qn≥0 such that ui = 0 for some
i ∈ {1, . . . , n}. As a result, all the orderings %Wp

are defined on Qn≥0. For p ≤ 0, they rate
any vector with a zero component worse than all vectors without zero components.

In the Appendix, we provide an example showing how varying the social welfare func-
tion can change the winning allocations under a scoring allocation correspondence (Exam-
ple A.1).

3 Separability

In this section, we provide our main results that refute a conjecture of Baumeister et al. [2]
on separability of scoring allocation rules. We start by recalling the definitions and an
example by Baumeister et al. [2] showing failure of separability for many common scoring
allocation correspondences, then discuss the notion of weak separability, and briefly discuss
two examples where separability fails for trivial reasons. Finally, we refute the conjecture of
Baumeister et al. [2] by showing, first, that all sequential allocation rules are scoring alloca-
tion rules for a suitable choice of scoring vector and social welfare ordering (Theorem 3.9)
and, second, that sequential allocation rules indeed are separable under mild conditions on
the picking sequence (Theorem 3.11).

3.1 Definitions

We have introduced allocation correspondences as being defined for some fixed number
of agents and goods. As we saw in our examples, however, many correspondences can be
defined in a uniform way for any number of agents and goods. We introduce these formally as
correspondence schemes or rule schemes, though we will often de-emphasize the distinction
between a correspondence and a correspondence scheme when it is not particularly relevant.

Definition 3.1. A family of allocation rules F (n,G) : P(G)n → Π(G,n) for all n ≥ 1 and all
nonempty finite sets G is called an allocation rule scheme. Similarly, a family of allocation
correspondences F (n,G) : P(G)n → 2Π(G,n) \ {∅} for all n ≥ 1 and all nonempty finite sets
G is called an allocation correspondence scheme.

In order to define a scoring allocation correspondence scheme, we need a family of scoring
vectors s(m) ∈ Qm≥0 for each m ≥ 1 and a family of social welfare orderings/aggregation
functions on Qn≥0 for each n.
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Definition 3.2. An extended scoring vector is a family s = (s(m))m≥1 of scoring vectors
s(m) ∈ Qm≥0 for each m ≥ 1.

The scoring vectors in Definition 2.3 can indeed be viewed as extended scoring vectors,
which we will often continue to denote simply by borda, lex, k-app, and s-qi. Similarly, our
main examples of social welfare functions/orderings (+, min, leximin, and the social welfare
functions Wp defined in Example 2.7) all actually form families, as they can all be defined
on Qn≥0 for all n ≥ 1. Given an extended scoring vector s = (s(m)) and a family of social

welfare orderings % = (%(n)) (or aggregation functions W = (W (n))), F
(n,G)

s,% = Fs|G|,%(n)

defines an allocation correspondence scheme.
Based on the notion of consistency, that can be studied in many social decision problems

(see, e.g., [16]), Baumeister et al. [2] define separability as follows.

Definition 3.3. Let N = {1, . . . , n} be a set of agents and G a finite set of goods. For
subsets N ′ ⊆ N and G′ ⊆ G and a preference profile P = (>1, . . . , >n) ∈P(G)n, we denote
by P |N ′,G′ the restriction of P to N ′ and G′, i.e., the tuple with components >i ∩ (G′×G′)
for i ∈ N ′. Similarly, for an allocation π ∈ Π(G,n), π|N ′ denotes the restriction of π to N ′,
i.e., the tuple containing only the components πi for i ∈ N ′.

1. An allocation rule scheme F satisfies separability if for any preference profile P with
F (P ) = π and each partition3 N = N1∪̇N2, we have F (P |N1,G1) = π|N1 and
F (P |N2,G2) = π|N2 , where Gj =

⋃
i∈Nj πi for j ∈ {1, 2}.

2. An allocation correspondence scheme F satisfies separability if for every preference pro-
file P , every π ∈ F (P ), and each partition N = N1∪̇N2, we have π|N1 ∈ F (P |N1,G1)
and π|N2 ∈ F (P |N2,G2) with Gj as before.

Separability answers the following question: Imagine we use an allocation rule F to
distribute a set of goods among agents. Now we split the agents into two groups. Each
group holds a subset of the items, allocated in some way among them. Would we have
gotten the same allocations on the subsets if we had asked F to distribute each subset of
items to each subset of agents in the first place?

Crucially, separability is a property that concerns the coherence between the allocation
rules for different numbers of agents and items in an allocation rule scheme. Maybe some-
what surprisingly, Baumeister et al. [2] find that for any strictly decreasing scoring vector s
and ? ∈ {+,min, leximin} the scoring allocation correspondences Fs,? fail to satisfy separa-
bility. For reference, we review their appealing argument in the appendix (Example A.2).

3.2 Weak Separability

In fact, Baumeister et al. [2] prove something slightly stronger than just the failure of
separability for allocation correspondences as defined above. In the definition, it was de-
manded that every π ∈ F (P ) have the relevant coherence property for restrictions. Even
if separability in this sense fails, it is still possible, that for some π ∈ F (P ) it holds that
π|N1 ∈ F (P |N1,G1) and π|N2 ∈ F (P |N2,G2). In this case, there would still be some hope
that there exists a clever tie-breaking procedure, somehow always picking one of the “good”
π ∈ F (P ), and so yielding a separable allocation rule. But in the example by Baumeister et
al. [2] (see Example A.2), the sets of winning allocations in all cases consist of only a single
element, so none of the π ∈ F (P ) have the required property (and so there is no hope that
separability can be salvaged by clever tie-breaking). That is, the example shows that the
treated scoring allocation correspondences fail even the following weaker condition:

3the symbol ∪̇ denoting disjoint union
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Definition 3.4. Let N = {1, . . . , n} be a set of players and G a finite set of goods. An allo-
cation correspondence scheme F satisfies weak separability if for every preference profile P ,
there is some π ∈ F (P ) such that for every partition N = N1∪̇N2 we have

π|N1 ∈ F (P |N1,G1) and π|N2 ∈ F (P |N2,G2)

with Gj =
⋃
i∈Nj πi for j ∈ {1, 2}.

While Example A.2 demonstrates that, for a strictly decreasing scoring vector s, Fs,+,
Fs,min, and Fs,leximin fail even weak separability, another example given by Baumeister et
al. [2] is not of this kind. In their Example 4, they consider the (extended) scoring vector
plurality = 1-app = (1, 0, . . . , 0) ∈ Qm≥0 and the preference profile P = (>1, >2, >3) with

a >1 b >1 c,

a >2 b >2 c,

c >3 b >3 a.

(Here, and in the sequel, we will also use the abbreviated notation P = (abc, abc, cba)
for this). Then they observe that π = ({a}, ∅, {b, c}) ∈ Fplurality,?(P ) (or π = (a, ∅, bc), for
short) for ? ∈ {+,min, leximin}, but restricting to N1 = {2, 3} and their goods G1 = {b, c}
yields the preference profile P ′ = (bc, cb), with π|N1 = (∅, bc) /∈ {(b, c)} = Fplurality,?(P

′).
This example is somewhat unsatisfying as it relies on a “bad” choice of winning allocation

π. The set of winning allocations Fplurality,?(P ) in this case also contains the allocation
π′ = (a, b, c). As can be easily checked, π′ does satisfy the separability condition: For any
partition N = N1∪̇N2 and G1, G2 as before, we have π′|N1 ∈ Fplurality,?(P

′|N1,G1) and
π′|N2 ∈ Fplurality,?(P

′|N2,G2).
However, by suitably modifying this example, we show that, for ? ∈ {+, leximin},

Fplurality,? fails even weak separability. In fact, we will show something more general.

Proposition 3.5. Let k ≥ 1. For ? ∈ {+, leximin}, Fk-app,? is not even weakly separable.

Proof. Consider the preference profile P for 2k + 2 agents over 2k + 1 goods

G = {a1, . . . , ak, b1, . . . , bk, c}

given as follows: Agents 1, . . . , k + 1 share the preference

>1, . . . , >k+1 : a1 a2 · · · ak c b1 b2 · · · bk,

while agents k + 2, . . . , 2k + 2 share the preference

>k+2, . . . , >2k+2 : b1 b2 · · · bk c a1 a2 · · · ak.

Let us denote A = {1, . . . , k + 1} and B = {k + 2, . . . , 2k + 2}.
Now, Fk-app,+(P ) consists of all allocations that give the goods a1, . . . , ak to agents from

A and the goods b1, . . . , bk to agents from B (and c to any agent).
Note that under any allocation, one of the agents from A and one of the agents from B

will have utility 0 with respect to k-app. By giving the items a1, . . . , ak to distinct agents
from A and the items b1, . . . , bk to distinct agents from B, we can however make sure that all
but two agents have positive utilities, so Fk-app,leximin(P ) contains exactly these allocations.

In particular, Fk-app,leximin(P ) ⊆ Fk-app,+(P ). Let π ∈ Fk-app,+(P ). As noted, at least
one of the agents from A will not receive any of the goods a1, . . . , ak under π, and we
can assume without loss of generality that k + 1 is such an agent (hence πk+1 = ∅ or
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πk+1 = {c}). Similarly, assume without loss of generality that agent 2k+ 2 receives none of
the items b1, . . . , bk.

Let i be the agent with c ∈ πi. Distinguish two cases:

Case 1: i ∈ A. Then consider the subset of agents N1 = A ∪ {2k + 2}. Under π, these
receive the goods G1 = {a1, . . . , ak, c}, with agent 2k + 2 receiving nothing. The induced
preference profile P ′ = P |N1,G1 has k + 1 preferences

>1|G1 , . . . , >k+1|G1 : a1 a2 · · · ak c

and one preference

>2k+2|G1 : c a1 a2 · · · ak.

The restricted allocation π|N1 gives all items from G1 to the first k + 1 agents. Such an
allocation cannot be in Fk-app,?(P

′), since the allocation ρ = (a1, a2, . . . , ak, ∅, c) is superior
to π|N1 , both in the leximin ordering and as measured by utilitarian social welfare.

Case 2: i ∈ B. Consider the subset N1 = {k+ 1} ∪B of agents. Under π these receive the
goods G1 = {b1, . . . , bk, c}. The induced preference profile P ′ = P |N1,G1 has one preference

>k+1|G1 : c b1 b2 · · · bk

and k + 1 preferences

>k+2|G1 , . . . , >2k+2|G1 : b1 b2 · · · bk c.

The restricted allocation π|N1 gives all items from G1 to the latter k + 1 agents. Such an
allocation cannot be in Fk-app,?(P

′), since the allocation ρ = (c, b1, b2, . . . , bk, ∅) is superior
to π|N1 , both in the leximin ordering and as measured by utilitarian social welfare. q

Note that the counterexamples in the proof, maybe atypically, involve instances with
more agents than goods, but they could easily be modified by introducing additional goods
(undesirable to everyone).

3.3 Two Trivial Examples of Separability

Motivated by their examples, which show failure of separability in many common cases,
Baumeister et al. [2] conjecture that “(perhaps under mild conditions on s and ?), no
positional scoring allocation rule is separable”. It is clear that some conditions will indeed
have to be put on s and ?, for it is easy enough to find silly counterexamples to the conjecture
when s and ? are unrestricted.

Example 3.6. 1. Consider an arbitrary extended scoring vector s with all components
non-zero (e.g., s could be the Borda, lexicographic, or Borda-quasi-indifference scoring
vector) and max as an aggregation function. The resulting scoring allocation corre-
spondence Fs,max will simply assign all goods to a single agent (i.e., π ∈ Fs,max(P )
if and only if π satisfies πi = G for some i). This is obviously a separable allocation
correspondence.

2. Consider the extended scoring vector 1 = (1, 1, . . . , 1) and aggregation function min
(or leximin). The resulting scoring allocation correspondence F1,min (or F1,leximin)
will simply always return all the even-shares allocations under which all agents will
receive the same number of goods up to one good. This allocation correspondence is
also clearly separable (the even-shares condition, stating that the sizes of the sets πi
differ by at most 1 for different i, still holds when we restrict to any subset of agents).
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These two scoring allocation correspondences may not be particularly desirable, but they
still give some hints regarding the conjecture: The first example uses an unusual aggregation
function but works with many reasonable scoring vectors, whereas the second example
employs an unusual scoring vector but eminently reasonable aggregation functions. This
shows that we will have to put conditions on both s and ? to ensure failure of separability
for Fs,?. Furthermore, both examples do enjoy certain desirable properties; e.g., they are
both anonymous and the leximin- and max-aggregation functions are monotonic.

Still, one major criticism that can be levelled at the examples above is that Fs,max(P ) and
F1,min(P ) hardly depend on P at all! That is, the resulting allocations can be determined
without even looking at the preference profile.

3.4 Refuting the Conjecture

While we might consider the rules above pathological examples of separable scoring allo-
cation rules, we will now show (in Theorems 3.9 and 3.11) that there do exist separable
scoring allocation rules that are unquestionably sensible and useful. These are (under mild
conditions) the well-studied sequential allocation rules, introduced by Kohler and Chan-
drasekaran [9].

3.4.1 All Sequential Allocation Rules are Scoring Allocation Rules

Definition 3.7. Let N = {1, . . . , n} with n ≥ 1 be a set of agents and G = {g1, . . . , gm}
a set of m goods. Furthermore, let σ = (σ1, . . . , σm) ∈ Nm. Let P = (>1, . . . , >n) be a
preference profile of N over G. We now inductively define partial allocations π0, . . . , πm

(i.e., allocations of some subset of G to N). π0 is the empty allocation. Assume πj−1 has
been defined. In πj , one additional good will be allocated, namely agent σj will get to

pick one good that is not yet allocated. More precisely, set πji = πj−1
i for all i 6= σj . Set

πjσj
= πj−1

σj
∪
{
gj
}

, where gj is the good ranked highest in the preference >σj
which is not

contained in
⋃n
i=1 π

j−1
i . Finally, set F seq

σ (P ) = πm.
We call F seq

σ : P(G)n → Π(G,n) the sequential allocation rule associated to the picking
sequence σ.

The two most common choices for picking sequences are the sequence

(1, 2, . . . , n, 1, 2, . . . , n, . . . )

and the sequence
(1, 2, . . . , n, n, n− 1, . . . , 1, 1, 2, . . . , n, . . . ).

Example 3.8. Consider three agents with preferences over the nine goods G =
{a, b, c, d, e, f, g, h, i} given by the preference profile P = (beahgcdfi , adcfhgbei , cfabidegh)
and the picking sequence σ = (1, 2, 3, 1, 2, 3, 1, 2, 3). In the first round of picking, agent 1
picks b, then agent 2 picks a, and agent 3 picks c. Then it is agent 1’s turn again and
she picks e, then agent 2 picks d, and agent 3 picks f . Finally, agent 1 picks h (since a
is already gone), agent 2 picks g (since c, f , and h are gone), and agent 3 picks the last
remaining item i. So we get the allocation F seq

σ = (beh, adg , cfi). Note that this allocation
is not in Fs,?(P ) for any strictly decreasing scoring vector s and any ? ∈ {+,min, leximin}
(cf. Example A.2).

At first glance, the definition of sequential allocation rules looks completely different
from the one for scoring allocation rules. The former is described by a simple process of
allocating the goods one-by-one, whereas the latter chooses among all allocations one that
maximizes utility. Our next theorem shows that, contrary to this intuition, the definition
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of scoring allocation rules is in fact general enough to encompass all sequential allocation
rules.

Theorem 3.9. All sequential allocation rules are scoring allocation rules for a suitable
choice of scoring vector and social welfare ordering.

Proof. Let G be a set of m goods and n ≥ 1. We will use the scoring vector s =
lex = (2m−1, . . . , 21, 20). Note that, with this scoring vector, for any preference profile P
and allocation π, we can uniquely determine the ranks of the goods each player received
(according to her preference ranking) from the utility vector uP,s(π) = (u1, . . . , un) ∈ Nn0
alone. That is because

ui = u>i,s(πi) =
∑
g∈πi

srank(g,>i) =
∑
g∈πi

2m−rank(g,>i)

is a sum of distinct powers of 2 and every number can be written in only one way as such a
sum (its binary expansion). So if, e.g., m = 5 and u is such that

u3 = 11 = 23 + 21 + 20 = 25−2 + 25−4 + 25−5,

then we know that agent 3 received the goods ranked second, fourth, and fifth in her
preference ranking.

Hence, given a utility vector u = uP,s(π) ∈ Nn0 , we can define as ri,k(u) the rank of
agent i’s kth-favorite good among the ones she received in πi, or ri,k(u) = m + 1 if agent
i received fewer than k items. Like the notation indicates, we need to know neither P nor
π, but only u, to determine ri,k(u).4 In the example above, where u3 = 11, we would thus
have r3,1(u) = 2, r3,2(u) = 4 and r3,3(u) = 5.

Now let σ ∈ {1, . . . , n}m be a picking sequence. Recall that σj denotes the player
who gets to pick an item in round j of the sequential allocation rule. We will need, for
j ∈ {1, . . . ,m}, the number pj = |{j′ ≤ j | σj′ = σj}|, i.e., pj tells us how many picks
agent σj can make up to round j; e.g., if the picking sequence is σ = (1, 2, 3, 3, 2, 1, 1, 2, 3, 3),
we have p7 = 3 because agent 1 is on her 3rd pick in round 7 (she got to pick before in
rounds 1 and 6). Now set

rσ(u) = (m− rσ1,p1(u), . . . ,m− rσm,pm(u)).

Finally, define a total preorder % on Zn by

u % u′ ⇐⇒ rσ(u) ≥lex rσ(u′).

See Example A.3 in the Appendix for an illustration of these definitions.
We claim that the positional scoring allocation rule Flex,% is equal to F seq

σ . By definition,
Flex,%(P ) contains the allocations π for which the vector rσ(uP,s(π)) is maximal with respect
to the lexicographic order. Which allocations have this property?

By definition of the lexicographic order, for an allocation π to be optimal, the first
component of rσ(uP,s(π)) must be maximal among all possible choices for π.

The first component, by definition, is m − rσ1,p1(uP,s(π)), which is maximal if
rσ1,p1(uP,s(π)) is minimal. This is the rank of agent σ1’s favorite item among the ones

4This is crucial: We will use these numbers to define a social welfare ordering. By definition, the social
welfare ordering is defined on Qn

≥0; it does not “see” the preference profile, only the resulting scores. To

explicitly determine ri,k(u) from u alone: Write ui in its binary expansion ui =
∑l

j=0 εj2j , where εj ∈ {0, 1}
for j ∈ {0, . . . , l}. Now determine the index of the kth 1 in this binary expansion, i.e., let jk be such that
εjk = 1 and |{j ≥ jk | εj = 1}| = k− 1, and set ri,k(u) = m− jk. If there aren’t at least k 1s in the binary
expansion of ui then we set ri,k(u) = m + 1.
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she receives in π (note, p1 is always 1). For this to be minimal, agent σ1 has to be assigned
her favorite item in π.

Let π1 be the partial allocation that only assigns this one good. Note that this is precisely
the partial allocation π1 that appears in the definition of the sequential allocation rule F seq

σ

(recall Definition 3.7).
For an induction, assume that the allocations π for which the first i components of

rσ(uP,s(π)) are optimal (according to the lexicographic ordering) are exactly those that
extend the allocation πi from Definition 3.7. To find the allocations for which the first i+ 1
components of rσ(uP,s(π)) are optimal, we need to determine all allocations for which the
(i+1)st component is optimal among all allocations that extend πi. The (i+1)st component
of rσ(uP,s(π)) is m − rσi,pi(uP,s(π)), which is maximal if rσi,pi(uP,s(π)), the rank of agent
σi’s pith favorite good among πσi , is minimal. pi − 1 is exactly the number of goods that
have already been allocated to agent σi in πi. So minimizing this number means assigning
agent σi her favorite good among all those that have not been assigned yet in πi. This yields
precisely the partial allocation πi+1 from Definition 3.7.

Hence, by induction, the allocations for which rσ(uP,s(π)) is maximal in the lexicographic
order are those that extend πm = F seq

σ (P ). Since πm already allocates all goods, there is
only one optimal allocation with respect to the order %, namely F seq

σ (P ). q

3.4.2 Sequential Allocation Rules are Separable

Finally, we need to show that sequential allocation rules, using suitable picking sequences,
are indeed separable. The “suitability” here regards the fact that the picking sequences for
varying numbers of agents and goods have to be chosen in a coherent way. It is easy to
define what “coherent” should mean when varying the number of goods, i.e., the length of
the picking sequence. Here, we simply demand that there be some infinite picking sequence,
e.g., (1, 2, 3, 1, 2, 3, . . . ), and the picking sequence used for m goods simply consists of its
first m terms. Defining when a collection (σn)n≥1 of such infinite sequences for each number
n of agents is coherent, is a little more involved. Essentially, removing t of the agents from
the sequence σn should give σn−t, up to relabeling. This is formalized as follows:

Definition 3.10. A collection of infinite picking sequences is a family σ = (σn)n≥1, where
σn = (σni )i∈N ∈ {1, . . . , n}N for each n ∈ N.

For n ∈ N and N ′ ⊆ {1, . . . , n} with |N ′| = r, let σn|N ′ denote the sequence arising from

σn by deleting all terms σni that are not in N ′. Furthermore, set σr|N ′
= (f(σri )) ∈ (N ′)

N
,

where f : {1, . . . , r} → N ′ is the unique order-preserving bijection between these sets.
The collection σ is called coherent if σn|N ′ = σr|N ′

for all n ∈ N and all subsets
N ′ ⊆ {1, . . . , n} with |N ′| = r.

Example A.4 in the Appendix illustrates the intuition underlying this definition. In
particular, the two most common picking sequences, namely, σ = (σn) and τ = (τn) with

σn = (1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . , n, . . . )

and τn = (1, 2, . . . , n, n, n− 1, . . . , 1, 1, 2, . . . , n, . . . )

are indeed coherent.
Given a collection σ = (σn) of infinite picking sequences, we can define the allocation rule

scheme, consisting of, for each n ∈ N and finite set G with |G| = m, the sequence allocation
rule F seq

σn , using the first m terms of the infinite sequence σn as a picking sequence. As
before, we simply denote all of these functions by F seq

σ .

Theorem 3.11. If σ = (σn)n≥1 is a coherent collection of picking sequences, then F seq
σ is

a separable allocation rule scheme.
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Proof. Let N = {1, . . . , n} be a set of players and G a set of m goods. Let P be a
preference profile of N over G. Let

π = F seq
σn (P )

be the allocation resulting from the sequential allocation rule. Let N1 ⊆ N be a subset of
the agents with |N1| = k and let G1 =

⋃
i∈N1 πi be the set of goods they received. Let

π′ = F seq
σk (P |N1,G1).

By coherence of the family σ, the picking sequence σk arises from σn by deleting all terms
not in N1 and relabeling. This means that the agents from N1 pick in exactly the same order
in the procedure defining F seq

σk as they did in the procedure for F seq
σn . The only difference is

that in F seq
σk they only get to pick from the set G1. But the items that are not in G1 are

exactly the ones these agents did not manage to pick in the original procedure F seq
σn anyway

(because they got picked by some agent from N \ N1 before an agent from N1 had the
chance).

Hence, each agent from N1 picks exactly the same items (in the same order) in the
procedure F seq

σk as in F seq
σn , meaning π′ is exactly π|N1 . q

An example illustrating the proof of Theorem 3.11 can be found in the Appendix (Ex-
ample A.5).

4 Conclusions and Future Work

We exhibited scoring allocation rules Flex,%, based on lexicographic scoring vectors and
specially constructed social welfare orderings, which are equal to sequential allocation rules
F seq
σ and we showed these to be separable under certain reasonable conditions on the picking

sequence σ, thus disproving a conjecture from Baumeister et al. [2]. In view of this, the con-
jecture that separability might fail for “all” aggregation functions was overly optimistic (or
pessimistic, if you will).Though the social welfare ordering used in the proof of Theorem 3.9
was described in an algorithmic manner, it is in fact induced by an aggregation function,
which could be written down in an explicit, closed form (though such an expression would
hardly be enlightening).

Still, the social welfare ordering used in the proof of Theorem 3.9 was tailor-made to
imitate sequential allocation rules. So while the conjecture fails in the stated generality,
it is still worthwhile considering the question for the well-studied social welfare functions
from Example 2.7. Let us then suggest a more realistic, and presumably quite challenging,
question:

Does separability fail for all scoring allocation rules of the form Fs,Wp
, where s is

a strictly decreasing extended scoring vector and Wp is one of the social welfare
functions introduced in Example 2.7?

For any particular choice of p and s, it is usually easy to find counterexamples for
separability experimentally. But it seems much harder to prove general statements covering
a whole range of scoring vectors or a whole range of values for p.
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A Appendix

Scoring allocation rules This example illustrates the definitions surrounding scoring
allocation rules and correspondences from Section 2.

Example A.1. Consider three preferences over a set of nine goods, G =
{a, b, c, d, e, f, g, h, i}, given by:

a >1 b >1 c >1 d >1 e >1 f >1 g >1 h >1 i,

b >2 a >2 f >2 i >2 g >2 d >2 c >2 h >2 e,

d >3 a >3 b >3 f >3 e >3 i >3 h >3 c >3 g.

Then P = (>1, >2, >3) ∈ P(G)3 is a preference profile of three agents over G. For con-
ciseness and legibility, such concrete examples will usually be written in the following short
form:

P = (abcdefghi , bafigdche, dabfeihcg).

Now consider the bundle X = {b, h, i}. The ranks of these three items with respect to the
first agent’s preference are

rank(b,>1) = 2, rank(h,>1) = 8, and rank(i, >1) = 9.

For a scoring vector s, we can then compute the utility of X with respect to >1 as

u>1,s(X) = s2 + s8 + s9.

Consider these four scoring vectors:

borda = (9, 8, 7, 6, 5, 4, 3, 2, 1),

lex = (256, 128, 64, 32, 16, 8, 4, 2, 1),

borda-qi = (1.09, 1.08, 1.07, 1.06, 1.05, 1.04, 1.03, 1.02, 1.01),

3-app = (1, 1, 1, 0, 0, 0, 0, 0, 0).

We then have u>1,borda(X) = 8 + 2 + 1 = 11, u>1,lex(X) = 128 + 2 + 1 = 131,
u>1,borda-qi(X) = 1.08 + 1.02 + 1.01 = 3.11, and u>1,3-app(X) = 1 + 0 + 0 = 1.

Consider the allocation

π = ({b, h, i}, {a, c, f, }, {d, e, g}) (or π = (bhi , acf , deg), for short)
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of G to N . Just like the utility of π1 = X for >1, we can calculate that of π2 = {a, c, f} for
>2 and of π3 = {d, e, g} for >3, obtaining the utility vector of π with respect to P and our
four scoring vectors:

uP,borda(π) = (11, 18, 15),

uP,lex(π) = (131, 196, 273),

uP,borda-qi(π) = (3.11, 3.18, 3.15),

uP,3-app(π) = (1, 2, 1).

A good allocation rule should choose a “best” allocation in some sense. Consider a
second allocation

π′ = (ce, dfgi , abh).

We then have

uP,borda(π′) = (12, 22, 18),

uP,lex(π′) = (80, 120, 196),

uP,borda-qi(π
′) = (2.12, 4.22, 3.18),

uP,3-app(π′) = (1, 1, 2).

Comparing the utility vectors for π and π′, note that different choices of scoring vectors can
give completely opposite assessments: Judging by the utilities derived from Borda scoring,
all agents would seem to prefer π′ to π, whereas lexicographic scoring suggests that all
agents should prefer π to π′. Finally, for Borda-quasi-indifference and 3-approval scoring
there is no clear-cut winner among these two utility vectors.

Unsurprisingly, all social welfare orderings defined in Section 2 rate uP,borda(π′) better
than uP,borda(π) and uP,lex(π) better than uP,lex(π′). For borda-qi-scoring and utilitarian
social welfare, we have

3∑
i=1

uP,borda-qi(π)i = 9.44 < 9.52 =

3∑
i=1

uP,borda-qi(π
′)i,

but
min(uP,borda-qi(π)) = 3.11 > 2.12 = min(uP,borda-qi(π

′)),

and thus also
uP,borda-qi(π) �lm uP,borda-qi(π

′),

using egalitarian social welfare. So, in this case, the two notions disagree about which
allocation is preferable. Note that neither π nor π′ is optimal with respect to any of our
scoring vectors and social welfare functions. In fact,

Fborda,+(P ) = Flex,+(P ) = Fborda-qi,+(P ) = {(ace, bfgi , dh), (ac, bfgi , deh)}.

The winner set F3-app,+(P ) consists of 729 distinct allocations, which is typical of scoring
vectors with few distinct entries. Finally,

Fborda,leximin(P ) = Fborda-qi,leximin(P ) = {(ace, bgi , dfh)},

while
Flex,leximin(P ) = {(ac, bgi , defh)}

and
Flex,min(P ) = {(ac, bgi , defh), (ac, bghi , def ), (ach, bgi , def )}.
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An example for failure of separability For the convenience of the reader, we review
Example 3 by Baumeister et al. [2].

Example A.2. Consider the preference profile

P = (adcfhgbei , beahgcdfi , cfabidegh).

For any choice of strictly decreasing scoring vector s, Fs,+ simply assigns each good to
an agent who ranks it highest (possibly yielding more than one winning allocation, if a
good is ranked equally by several agents). Hence, Fs,+(P ) consists of only the allocation
π = (ad , begh, cfi). Restricting P to the subset N1 = {1, 2} of agents and the goods
G1 = {a, b, d, e, g, h} they received under π, we obtain the preference profile P ′ = P |N1,G1 =
(adhgbe, beahgd). But Fs′,+(P ′) = (adgh, be) 6= π|N1,G1 , for any strictly decreasing scoring
vector s′.

For ? ∈ {min, leximin} and any strictly decreasing scoring vector s, we have that Fs,?(P )
consists of the unique allocation π′ = (adh, beg , cfi), because any allocation ρ in order to
satisfy min(uP,s(ρ)) ≥ s1 + s2 + s5 = min(uP,s(π

′)) must give each agent three goods, two
of which must be her favorite and second-favorite and the third at least her fifth-favorite,
or better. It is now easy to check that the only way to satisfy this is by having ρ = π′.
Restricting to the subset N1 = {1, 2} of agents and their goods G1 = {a, b, d, e, g, h} once
again yields the preference profile P ′ from above. Now, Fs′,leximin(P ′), for any strictly
decreasing scoring vector s′, consists of only the allocation (adg , beh) 6= π′|N1,G1 .

Sequential allocations and separability The following example illustrates the defini-
tions in the proof of Theorem 3.9.

Example A.3. Consider three agents who want to divide up eight goods G =
{a, b, c, d, e, f, g, h}. Their preference rankings are as follows:

P = (gafebcdh, afbechgd , aehgdcbf ).

We use the picking sequence σ = (1, 2, 3, 1, 2, 3, 1, 2). The resulting allocation for the se-
quential allocation rule is

F seq
σ (P ) = (gfc, abd , eh).

To see how our scoring allocation rule above works, consider some allocation, say π =
(gde, abfh, c). The utilities according to the scoring vector s = lex = (27, . . . , 21, 20) are

u = uP,s(π) = (274, 356, 4).

In binary, u = (100100102, 111001002, 000001002). By taking the resulting utility vector and
considering the binary expansions of each component, we can recover (without needing to
know π or P ) the information that agent 1 received her 1st-, 4th-, and 7th-favorite goods,
agent 2 received her 1st-, 2nd-, 3rd-, and 6th-favorite goods, and agent 3 merely received
her 6th-favorite good in π. Hence, we have

r1,1(u) = 1 r2,1(u) = 1 r3,1(u) = 6

r1,2(u) = 4 r2,2(u) = 2

r1,3(u) = 7 r2,3(u) = 3

r2,4(u) = 6
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For all other i, j, we have ri,j(u) = 9, by definition. Now our definition of rσ yields

rσ(uP,s(π)) = (8− r1,1(u), 8− r2,1(u), 8− r3,1(u),

8− r1,2(u), 8− r2,2(u), 8− r3,2(u),

8− r1,3(u), 8− r2,3(u))

= (8− 1, 8− 1, 8− 6,

8− 4, 8− 2, 8− 9,

8− 7, 8− 3)

= (7, 7, 2, 4, 6,−1, 1, 5).

Meanwhile, for the winning allocation under the sequential rule, we can compute

rσ(uP,s(F
seq
σ (P ))) = (7, 7, 6, 5, 5, 5, 2, 0),

so indeed,
rσ(uP,s(F

seq
σ (P ))) ≥lex rσ(uP,s(π)),

i.e., uP,s(F
seq
σ (P )) % uP,s(π).

The next example explains the definition of a coherent picking sequence (Definition 3.10).

Example A.4. For each n ∈ N, we can define the infinite picking sequence

σn = (1, 2, . . . , n, n, n− 1, . . . , 1, 1, 2, . . . , n, n, n− 1, . . . , 1, . . . ).

So, for example,

σ5 = (1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, . . . ).

Now let M = {2, 4, 5} ⊆ {1, 2, 3, 4, 5}, so m = |M | = 3. Then we get σ5|M by simply
deleting all 1s and 3s from σ5:

σ5|M = (2, 4, 5, 5, 4, 2, 2, 4, 5, 5, 4, 2, . . . ).

The unique increasing bijection f : {1, 2, 3} → M sends f(1) = 2, f(2) = 4, and f(3) = 5.
Now

σ3 = (1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, . . . ).

Applying f to all the terms yields

σ3|M = (2, 4, 5, 5, 4, 2, 2, 4, 5, 5, 4, 2, . . . ).

So, in this case we see that, indeed, σ5|M = σ3|M .
It is now easy to convince oneself that for the picking sequences σn, this holds for

arbitrary n ≥ 1 and M ⊆ {1, . . . , n}. Hence, they form a coherent collection of infinite
picking sequences.

The following example illustrates the proof of Theorem 3.11.

Example A.5. In Example 3.8, we considered the preference profile

P = (beahgcdfi , adcfhgbei , cfabidegh)

and the standard picking sequence

σ3 = (1, 2, 3, 1, 2, 3, 1, 2, 3).
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We obtained
F seq
σ3 = (beh, adg , cfi).

Now consider the subset N1 = {2, 3} of agents and the subset G1 = {a, c, d, f, g, i} of goods
they received. The restricted preference profile is

P |N1,G1 = (adcfgi , cfaidg).

Restricting the picking sequence and relabeling gives the standard picking sequence

σ2 = (1, 2, 1, 2, 1, 2).

Indeed, if we now carry out the procedure to compute F seq
σ2 (P |N1,G1), we find that the agents

pick exactly the same items in the same order as before (agent 1 picks a, agent 2 picks c,
agent 1 picks d, agent 2 picks f , agent 1 picks g, agent 2 picks i), so

F seq
σ2 (P |N1,G1) = (adg , cfi) = π|N1 .
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