
Random Paths To Popularity In Two-Sided

Matching

Aleksei Yu. Kondratev1 and Alexander S. Nesterov2

1 Higher School of Economics, Kantemirovskaya 3, 194100 St.Petersburg, Russia
akondratev@hse.ru

2 Higher School of Economics, Kantemirovskaya 3, 194100 St.Petersburg, Russia

asnesterov@hse.ru

Abstract

We study practically relevant aspects of popularity in two-sided matching where only

one side has preferences. A matching is called popular if there does not exist another

matching that is preferred by a simple majority. We show that for a matching to

be popular it is necessary and su�cient that no coalition of size up to 3 decides by

simple majority to exchange their houses. We then show that a market where such

coalitions meet at random converges to a popular matching whenever it exists.
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1 Introduction

Various real-life economic situations can be modeled as two-sided matching markets where
agents have preferences over indivisible objects and such that each agent gets at most
one object, also known as the house allocation problem. These situations include housing
markets, assigning students to primary schools, donor organ exchange programs, job
placement and graduates, and so forth.

Among di�erent notions of e�ciency for these matching markets, recent literature
highlights the concept of popularity. A matching is called popular if majority of agents
weakly prefers it over any other matching.1 Popularity has mainly served as a normative
property as it is a natural non-Paretian selection from a (possibly very large) set of e�cient
matchings.

The seminal paper by [1] that introduced popularity for the house allocation problem
proposed a simple characterization of popular matchings. A matching is popular if and only
if (1) each agent gets either his best house among all houses (called his �rst house), or the
best house among all houses that are not someone's best (called his second house), and (2)
all �rst houses are allocated among agents that deem them as the best.

The subsequent literature (see [6, 23] and the subsection below) focused mainly on issues
relevant for centralized markets. In contrast to that, in the current paper we shift the focus
from popularity in centralized markets to decentralized markets.

Our �rst result (Theorem 1) shows that a popular matching only needs to be popular
locally: the matching is popular if and only if no group of up to three agents decides (by
simple majority) to exchange their houses, keeping the matching of other agents untouched.2

The original characterization in [1] directly follows from our result (Corollary 1).

1One can also see popular matchings as weak Condorcet winners in a voting problem where candidates
are all possible matchings.

2This result can also be interpreted from the cooperative standpoint. If for each coalition we take the
majority rule as the solution concept, then for a matching to be in the core it is enough to check coalitions
of size up to three. The analogous result for the marriage market states that the set of pairwise stable
matchings coincides with the core [33].



Our paper also suggests a positive rationale behind popularity: we show that locally
popular improvements lead to globally popular matchings and thus popularity is likely to
be eventually observed in realistic situations. Speci�cally, we consider a decentralized market
where agents at random meet in groups of size up to three and exchange their houses when
this is supported by majority of them. Our second result (Theorem 2) shows that this market
eventually converges to a popular matching whenever it exists.

Our �nding is analogous to the result in [34] about convergence in a marriage market.
There, one matching is modi�ed locally by a blocking pair of a man and woman that prefer
each other over their current matches. As this man and this woman match, their previous
partners become unmatched, and these changes constitute a new matching. Then a new
blocking pair is considered, a new matching is formed, and so forth. [34] show that the
sequence of these matchings lead to a stable matching.

In our case blocking takes a slightly di�erent form: each time the group of agents
exchanges their houses within themselves. This strengthens the analogy with the real estate
market where agents exchange their houses within small groups and no agent leaves without
a house.3

Another closely related paper is [2] that considers the popularity-improvement paths from
an arbitrary matching. The main �nding is that, given a popular matching exists, it can be
attained by at most two steps using an e�cient algorithm. However, a realistic application of
these exchanges even in a centralized market faces two di�culties. First, for exchanges that
large one might need much data about agent's preferences, and this data might be di�cult
to obtain.4 Second, large exchanges are very risky and unstable as everything depends on
each person agreeing to be part of the deal.

1.1 Background

The assignment game where agents exchange indivisible objects (houses) without money
was �rst introduced in [35], the assignment problem where all houses are social endowments
was �rst studied in [15]. The concept of popularity was �rst introduced by [11] for the two-
sided matching problem [10], where popularity coincides with stability, and was applied to
two-sided matching problem only recently by [1]. In their paper [1] characterized the set of
popular matchings as matchings where each agent gets either his �rst house or his second
house and proposed an e�cient algorithm to �nd a popular matching.5

Existence and multiplicity of popular matchings was studied from several sides. First,
[24] shows that a popular matching is likely to exist whenever preferences are uniformly
random and the number of houses is approximately 1.42 times larger than the number of
agents. For settings where a popular matching does not exist, [22] studied how to minimally
augment the preference pro�le so that the existence is guaranteed; this problem is, in general,
NP-hard.

Another way to ensure popularity is to consider mixed matchings, i.e. lotteries over
matchings, and a straightforward generalization of the popularity property; [18] show that
a popular mixed matching always exists and propose an e�cient algorithm to �nd one.

As an alternative approach, [27] proposes least-unpopularity criteria to �nd the �most�
popular matching; �nding his least-unpopular matchings is, in general, NP-hard.

3For instance, according to [32], in 2017 the secondary housing market in the largest European city,
Moscow, the share of alternative deals, i.e. not house-for-money but house-for-house, was approximately
90%.

4According to [37], in 1990 subsidized housing markets in Beijing where residents exchange their houses
had size of 80 000.

5The result in [1] also allows ties. This setting was further generalized to the case with ties and matroid
constraints by [17] and to the case with two-sided preferences and one-sided ties by [8] (the latter problem
turns out to be NP-hard). The many-to-one matching problem, where each house has a capacity was studied
in [36], and the many-to-many problem was studied by [31].



The problem of counting the number of popular matchings has been addressed in [28]
for the case of strict preferences and in [30] and [3] for the case of weak preferences.

2 The Model

Let A be a set of agents and H be a (larger) set of houses, |H| ≥ |A|. Each agent a ∈
A is endowed with a strict preference relation �a over the set of houses H ∪ {∅} (i.e.
�a is a linear order), and a prefers each house h ∈ H over having no house, h �a ∅.
The collection of individual preferences of all agents �= (�a)a∈A is referred to as the
preference pro�le. The triple (A,H,�) constitutes the two-sided matching problem (aka
house allocation problem), or simply a problem. In what follows we assume that the sets
A and H are �xed and the problem is given by the preference pro�le �.

A solution to the problem is a matching µ � a mapping from A ∪H ∪ ∅ on itself: by
de�nition agent a ∈ A is said to be matched to a house h ∈ H in matching µ if µ(a) = h
and also µ(h) = a. If some agent or house remain unmatched, we say that they are matched
to ∅. LetM denote the set of all possible matchings.

For any two matchings µ, µ′ ∈ M and a subset of agents B ⊂ A de�ne pairwise
comparison PCB(µ, µ

′) as the number of agents in B that strictly prefer their house in µ
over their house in µ′.

A matching µ ∈ M is called popular (among set A) if there does not exist another
matching µ′ ∈ M such that µ′ is preferred over µ by simple majority within entire set of
agents A: PCA(µ

′, µ) > PCA(µ, µ
′).

For each agent a let us call his most preferred house in H as a's �rst house: FH(a) = h
such that for each h′ ∈ H and h′ 6= h it holds that h �a h

′. The set of all �rst houses
is denoted as FH(A) = {FH(a)}a∈A. For each house h let us call agents for whom h is the
�rst house as h's �rst agents: FA(h) = {a ∈ A|h = FH(a)}.

For each agent a let us call his most preferred house among all non-�rst houses as a's
second house: SH(a) = h such that for each h′ ∈ H \ FH(A) and h′ 6= h it holds
that h �a h

′. The set of all second houses is denoted as SH(A) = {SH(a)}a∈A. For
each house h let us call agents for whom h is the second house as h's second agents:
SA(h) = {a ∈ A|h = SH(a)}.

Note that sets FH(A) and SH(A) are disjoint, i.e. no agent's second house can be a
�rst house for any other agent.

3 Characterization of Popular Matching

Note that a matching cannot be popular if at least one agent is unmatched. Therefore
throughout the paper we can focus only on full matchings, µ(A) ⊂ H.

Our �rst main result characterizes the popular matching as a matching that is popular
among each triple of agents.

For a pro�le �, we say that a matching µ is popular among each three agents if for each
three agents a, b, c ∈ A there does not exist a matching µ′ ∈ M same as µ for each other
agent a′ /∈ {a, b, c} µ′(a′) = µ(a′) and such that it wins µ in pairwise comparison within this
triple of agents PC{a,b,c}(µ

′, µ) > PC{a,b,c}(µ, µ
′).

Theorem 1. A matching is popular if and only if it is popular among each three agents.

Proof. The �only if� part is straightforward: each popular matching µ is popular among
each triple of agents. For a contradiction, assume that there is a triple of agents a, b, c ∈ A
and another matching µ′ same as µ for all other agents and such that it is preferred over
µ: PC{a,b,c}(µ

′, µ) > PC{a,b,c}(µ, µ
′). Then µ cannot be popular among all agents since



all other agents are indi�erent and thus: PCA(µ
′, µ) − PCA(µ, µ

′) = PC{a,b,c}(µ
′, µ) −

PC{a,b,c}(µ, µ
′) > 0.

The �if� part we also prove by contradiction. For a contradiction, assume that there is a
matching µ that is popular among each triple of agents, but it loses in pairwise comparison
to some other matching µ′: PCA(µ

′, µ) > PCA(µ, µ
′). Consider all agents that have di�erent

houses in these two matchings, denote the set of these agents as A1 = {a ∈ A : µ(a) 6= µ′(a)}.
(In what follows we will change the notation of these agents for convenience).

We partition all agents into those who participate in a trading cycle, i.e. exchange their
matched houses among themselves, and trading chains, i.e. those that are matched in µ′ to
a previously empty house or whose house in µ becomes empty in µ′.

We �rst deal with chains. Consider an arbitrary agent b1 ∈ A1 that received a previously
empty house µ′(b1) /∈ µ(A), µ(µ′(b1)) = ∅. If b1's house is empty in µ′, µ′(µ(b1)) = ∅, then
we get a chain of size 1. Otherwise there is some agent b2 such that µ′(b2) = µ(b1). If b2's
house is empty in µ′, µ′(µ(b2)) = ∅, then we get a chain of size 2. Otherwise, we continue in
the same way until we �nd the last agent in the chain. Similarly, determine chains for each
agent that receives a previously empty house. Denote the set of agents participating in a
chain as B1.

We then deal with cycles. Consider an arbitrary agent not from any chain a1 ∈ A1 \B1,
µ(a1) 6= µ′(a1). Consider agent a2 that owns house µ′(a1), a2 = µ(µ′(a1)). Agent a2 also
does not belong to any chain, a1 ∈ A1 \ B1 and as µ(a2) = µ′(a1), then a2 6= a1. If
the two agents just exchanged their houses, µ′(a2) = µ(a1), then we get a trading cycle
(µ(a1), a1, µ

′(a1), a2) of length 2. Otherwise, if µ′(a2) 6= µ(a1), then consider agent a3 =
µ(µ′(a2)). Since µ(a3) = µ′(a2) 6= µ(a1), then a2 6= a3, a1 6= a3 è a3 ∈ A1.

And so forth until we get a cycle of length at least 2 and at most |A1 \B1|. In the same
way we �nd all trading cycles among all other agents.

Thus, the set A1 and the set of corresponding houses µ(A1) ∪ µ′(A1) is partitioned into
trading chains of size at least 1 and cycles of size at least 2.

By assumption PCA(µ
′, µ) > PCA(µ, µ

′), there is at least one trading chain or one
trading cycle such that more than half of its agents prefer µ′ over µ. Formally, if ATC

denotes the set of agents in this chain or cycle, PCATC
(µ′, µ) > PCATC

(µ, µ′).
If ATC form a cycle, then we can �nd two neighbouring agents i, j ∈ ATC , j = µ(µ′(i)),

that both prefer µ′ over µ. If this trading cycle is of length 2, then consider a new matching
µ′′ that is identical to µ for each agent except a = {i, j} and same as µ′ for these pair
µ′′(a) = µ′(a). Then by adding one other arbitrary agent we get a triple of agents that
prefer µ′′ over µ by majority � contrary to our premise. If this trading cycle is of length
more than 2, then consider the next neighbouring agent l = µ(µ′(j)). Consider now a new
matching µ′′ that is identical to µ for each agent except a = {i, j, l} and µ′′(i) = µ′(i),
µ′′(j) = µ′(j), and µ′′(l) = µ(i). The triple of agents i, j, l prefers µ′′ over µ by majority:
PC{i,j,l}(µ

′′, µ) > PC{i,j,l}(µ, µ
′′), contrary to our premise.

If ATC forms a chain of length 1, ATC = {a1}, then consider a new matching µ′′

constructed as before: µ′′ is identical to µ for each agent except for a1, µ
′′(a1) = µ′(a1). A

triple of agents a1 and two arbitrary agents a2, a3 prefers µ′′ over the original matching µ:
PC{a1,a2,a3}(µ

′′, µ) > PC{a1,a2,a3}(µ, µ
′′), contrary to our premise.

If ATC forms a chain of length 2, then both agents in ATC are better o� in µ′ compared
to µ. By adding one other arbitrary agent we get a triple of agents that prefers a similarly
constructed µ′′ over µ by majority, contrary to our premise.

If the length of the chain is above 2, then either (1) we can �nd two neighbouring agents
i, j ∈ ATC , j = µ(µ′(i)), that both prefer µ′ over µ, or (2) the chain begins and ends with
agents that are better o� in µ′ compared to µ (and agents in between interchange). In case (1)
we take the triple of these agents i, j and the previous owner of j's house l = µ(µ′(j)) (if j's
house was empty, then take an arbitrary l). This triple i, j, l prefers a similarly constructed
µ′′ over µ by majority, contrary to our premise.



In case (2) we take the triple of agents as the �rst agent in the chain a1, µ(µ
′(a1)) = ∅,

the last agent ak, µ
′(µ(ak)) = ∅, and the one before the last ak−1. The triple a1, ak−1, ak

prefers a similarly constructed µ′′ over µ by majority, contrary to our premise. �

As an immediate corollary we get the characterization of popular matchings from [1].
Corollary 1 [1] A matching is popular if and only if (1) each agent gets either his �rst
house or his second house, and (2) each �rst house is matched with one of its �rst agents.

Proof. The �if� part is straightforward since it is enough to check only triples of agents.
In each such triple only an agent a with a second house can become better o�, but each
better house f �a SH(a) is already matched to one of its �rst agents b = µ(f) ∈ FA(f),
making a better o� requires making b worse o�, which cannot be supported by majority.

We prove the �only if� part by contradiction. Let condition (2) be violated: some �rst
house f is not allocated to one of its �rst agents. Then each f 's �rst agent a ∈ FA(f), the
owner of f b = µ(f) and the owner of b's �rst house c = µ(FH(b)) form a triple for which
µ is not popular.

Hence, in any popular matching, each agent gets his �rst house, second house, or a bad
house.

Let condition (1) be violated: some agent a1 gets a bad house t in matching µ, there is
a triple of agents a1, the owner of a1's second house a2 = µ(SH(a1)), and the owner of a2's
�rst house a3 = µ(FH(a2)) for whom µ is not popular. �

4 Random Paths to Popularity

A popular market is a �nite Markov chain. The set space is the set of matchings M. The
transition probabilities between the states are not symmetric and depend on how many
agents become better o� in one state compared to the other. For each matching µ ∈M we
consider all �neighbouring� matchings µ′ ∈M that is matchings where at most three agents
are matched to di�erent house than in µ. If k = 1, 2, 3 agents are matched di�erently in µ
and µ′, then we say that µ and µ′ are connected by a k-way exchange. If the k-way exchange
makes more than half of these k agents better o�, then the transition probability is positive,
otherwise the transition probability is zero. Then the set of absorbing states coincides with
the set of popular matchings.

Next we present our second main result.

Theorem 2. A popular market with groups of size up to 3 converges to a popular matching
whenever it exists.

Sketch of the proof. According to the theory of Markov chains it is su�cient to show
that a popular matching � given it exists � can be reached in a �nite number of allowed
exchanges. We propose a simple �nite algorithm that does it only by using one-,two- and
three-way exchanges.

The algorithm has two stages. In the �rst stage it matches each �rst house to some of
its �rst agents. This is done in a greedy serial dictatorship fashion. According to a �xed
order each agent a takes his �rst house f unless this house is already matched to one of its
other �rst agents (in this case no exchange takes place and we proceed to the next agent in
the order). In the same time, the agent owning house f takes his own �rst house g and the
owner of this house µ(g) takes the house of agent a. This three-way exchange is supported
by at least two agents a and µ(f), and, possibly, also by agent µ(g).

In the second stage of the algorithm we use another simple greedy procedure where
owners of bad houses are forcibly given their second houses. Each agent a owning some bad
house t takes his second house s, while the owner of s takes his �rst house f ,6 and house t

6Note that s cannot be owned by his �rst agent, otherwise s does not qualify as a second house for agent
a.



goes to the owner of f . This three-way exchange is supported by at least two agents a and
µ(s), but the exchange also might be �bad� if t is a bad house for both agents µ(s) and µ(f).
A bad exchange like that leads to the same situation: out of three agents one owns his �rst
house, one owns his second house and one owns a bad house. It remains to show that the
sequence of the bad exchanges is �nite.

The �niteness follows from that the sequence of bad exchanges eventually arrives to a
house that was in the sequence earlier (due to �niteness of A). At this step k of the sequence
we have k − 2 agents that have the same bk−22 c as their �rst and second houses. By the
Hall's theorem (applied to the characterization in Corollary 3) these houses can only be
matched to these agents. Thus agent k that gets house t after a series of bad exchanges can
only start a new sequence of bad exchanges but the other k − 1 agents remain untouched
with their matched houses until the end of the algorithm. Thus the procedure converges to
some matching and, by Theorem 1, this matching is popular. �

The restriction to the groups of three agents is not compulsory as the same algorithm
works when groups of larger size are also allowed.

Corollary 2. A popular market with groups of arbitrary size converges to a popular
matching whenever it exists.

5 Conclusions

In the current paper we propose a novel characterization of �global� popularity via �local�
popularity, and also show that locally popular exchanges lead to a globally popular matching.

One important open question is about the convergence speed of popular markets. To
answer this question one may need to design a more e�cient algorithm: our greedy algorithm
does many unnecessary steps, for instance when it repeatedly runs the same chains. We
cannot simply avoid these steps as then we cannot build a triple that blocks the current
matching. However, it might be possible if we use alternative algorithms.

Another open question is about popular markets in situations when popular matchings
do not exist. Perhaps, these markets converge to some stationary probabilistic distribution
over the set of matchings, and it is reasonable to deem the more probable matchings as more
popular. Both questions are interesting but hard.



APPENDIX

Proof of convergence of popular markets.

The �rst part of the algorithm.
Let µ be the arbitrary initial matching where each agent is endowed with some house:

for each a ∈ A µ(a) 6= ∅. Let us �x some ordering of agents A = {a1, . . . , an}.
For steps k = 1, . . . , n we make the following exchanges.
If in step k house µ(ak) is the best house for agent ak, then proceed to step k + 1

without changing the current matching µ. Otherwise, consider house h 6= µ(ak) that is the
best house of agent ak. If this house h is empty, µ(h) = ∅, then we give it to agent ak in the
new matching µ′(ak) = h. Otherwise, consider the owner of h, µ(h).

If h is the best for its owner µ(h), then proceed to the next step k+1 without changing the
current matching µ. Otherwise, consider the best house for agent µ(h): h′ 6= h. If h′ = µ(ak)
or µ(h′) = ∅ then make the mutually bene�cial two-way exchange: µ′(ak) = h, µ′(µ(h)) = h′.
Otherwise, if µ(h′) /∈ {ak, µ(h), ∅} we make the three-way exchange: µ′(ak) = h, µ′(µ(h)) =
h′, µ′(µ(h′)) = µ(ak). This exchange is bene�cial for at least two of the three agents.

After each of the above exchanges the number of agents that own their best houses goes
up, and each agent gets his best house unless it is taken by some other agent. Thus after
x ≤ n exchanges we get a new matching µ where each agent gets either his �rst house, his
second house, or a bad house.

Denote the number of agents who get a bad house by β(µ). At least x ≥ 1 agents get
their �rst house, therefore β(µ) ≤ n−x ≤ n− 1. Note that n−β(µ) agents get either a �rst
house or a second house.

The second part of the algorithm.
We will make exchanges that weakly decrease the number of agents with a bad house

β(µ).
Consider some agent µ(t) that gets a bad house t. If his second house s is free, we give

him s: µ′(µ(t)) = s and decrease β(µ) by one. Otherwise there is some agent µ(s) that
owns s, and s might be his bad house or his second house (but not his �rst house from the
de�nition of second house). We now study these two cases.

1. Let s be a bad house for µ(s). Denote the second house of µ(s) as h. If h = t or empty,
then make the two-way exchange decreasing β(µ) by 2. Otherwise, make the three-way
exchange µ′(µ(t)) = s, µ′(µ(s)) = h, µ′(µ(h)) = t, decreasing β(µ) by 1, 2 or 3 depending
on how the owner of h ranks t.

2. Let s be the second house for µ(s). Let f be the �rst house for agent µ(s). From the
�rst part of the algorithm we know that f is also the �rst house of his owner µ(f). Make
the following three-way exchange: µ′(µ(t)) = s, µ′(µ(s)) = f, µ′(µ(f)) = t. If t is the second
house for agent µ(f), then β(µ) decreases by one.

Thus β(µ) is only constant if house s is the second house for both µ(t) and µ(s), house f
is the �rst house for both µ(s) and µ(f), and house t is a bad house for both agents µ(t) and
µ(f). Denote such exchange as bad. We show now that a sequence of these bad exchanges
in which β(µ) remains constant is �nite.

Current matching µ before and after a bad three-way exchange which keeps β(µ) a constant.

µ(t) µ(s) µ(f)

f f

s s

t t

µ(t) µ(s) µ(f)

f f

s s

t t

2.1 Let f be the �rst house also for agent µ(t). For convenience denote f = f1, s =
s1, µ(t) = 1, µ(s) = 2, µ(f) = 3. By Hall's theorem the second house for agent 3 cannot be
the same as s1, s3 6= s1 (otherwise three agents have the same �rst house and the same



second house, and thus a popular matching does not exist). After the bad exchange among
agents 1,2,3 the bad house t is matched to agent 3. Consider another chain of three agents
that starts with the bad house t. Denote µ(s3) = 4. Note that f4 6= f1 (otherwise four agents
have the same �rst house, two of them have the same second house, and the other two of
them also have the same second house, and thus a popular matching does not exist). Denote
µ(f4) = 5. By Hall's theorem s5 /∈ {s1, s3} (otherwise, similar to the previous arguments
the popular matching does not exist). After the bad exchange between agents 3,4,5 the bad
house is matched with agent 5, and so forth.

Current matching µ before and after two bad three-way exchanges.

1 2 3 4 5

f1 f1 f1 f4 f4
s1 s1 s3 s3 s5
t t t

1 2 3 4 5

f1 f1 f1 f4 f4
s1 s1 s3 s3 s5
t t t

In each such bad exchange two new agents enter the chain, these agents own their �rst
and second houses. Then, we need not more than (n+2− β(µ))/2 bad exchanges to reduce
β(µ).

2.2 Let the �rst house f1 for agent µ(t) be di�erent from house f . Denote f = f2, s =
s1, µ(t) = 1, µ(s) = 2, µ(f) = 3. After one bad exchange agent 3 would be matched to house
t.

Assume that the second house for agent 3 s3 6= s1 � we did not meet s3 earlier in the
chain.7 Consider agent 4 that owns his second house s3. Assume that agent 4's �rst house
f4 was note previously in the chain: f4 6= f1, f2.

8

Consider the next agent 5 and so on: we get a chain of agents such that each two
neighbours have either the same �rst house or the same second house. Eventually we arrive
to some agent k that has the same �rst or second house as earlier in the chain.

Let agent k be the �rst agent in the chain such that his �rst house is f1. Then after (k
mod 2) exchanges he gets f1 and each other agent among 1, . . . , k receives either his second
or �rst house and, by Hall's theorem, for this pro�le this is the unique possibility in each
popular matching.

Now let agent k be the �rst agent in the chain such that his �rst house has already
appeared in the chain (twice � since two neighbouring agents have the same �rst house)
and is di�erent from f1. Initially he owns his second house µ(k) = sk, and after (k mod 2)
he gets his �rst house and starts a series of bad exchanges along the same chain but in the
opposite direction. Each agent that received his second house in the �rst series of exchanges
now gets his �rst house, and vice versa. Thus agent 1 that started the chain now gets his �rst
house f1 (and house t is matched to µ(f1)). Each agent among 1, . . . , k receives either his
second or �rst house and, by Hall's theorem, this is the unique possibility in each popular
matching.

Similarly, let agent k be the �rst agent in the chain such that his second house has
already appeared in the chain. Then after (k mod 2) bad exchanges in one direction or
agent k gets the bad house t and then again reverses the direction of bad exchanges such
that agent 1 gets house f1, which happens after less than k exchanges.

7If house s3 � was earlier in the chain (i.e. if s3 = s1), then we do not need to implement the bad
exchange since by Hall's theorem in any popular matching houses f2, s1 must be matched to agents 2,3. In
this case in any popular matching agent 1 cannot get his second house and has to get his �rst house. Yet,
if we implement the �rst bad exchange and t is matched to agent 3, the next bad exchange matches s1 to
agent 3 and f1 to agent 1, which is exactly what is prescribed by the Hall's theorem.

8Speci�cally, if f4 = f1 then by Hall's theorem in any popular matching agents 1,2,3,4 share houses
f1, f2, s1, s3 and we need two bad exchanges to do that. If f4 = f2, then by Hall's theorem in each popular
matching agents 3,4 are matched to f2, s3, thus agent 2 is matched to s1 and agent 1 is matched to f1. This
is exactly what we get after three bad exchanges.



Eventually, after at most k exchanges we decrease β(µ). In each bad exchange we have
one agent with a bad house, others have a �rst or a second house. In the worst case all agents
have a bad house, and each agents that gets his �rst or his second house participates in each
subsequent chain. Thus for the �rst agent with a bad house (β = n) we get 1 exchange, for
the second agent with a bad house (β = n− 1) we get 1 exchange, for the third agent with
a bad house (β = n − 2 we get 2 exchanges, and so forth. Therefore, the upper bound is
1 + 1 + 2 + ...+ (n− 1) = (n2 − n+ 2)/2. �
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