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Abstract

We study the Borda peer reviewing system, where n participants submit one project proposal
each and review m others, with the Borda count selecting k proposals be funded in the end.
This method, used in a recent pilot project by the American National Science Foundation, has
been shown to be manipulable, i.e., there are instances in which a reviewer is better off down-
grading good projects in order to place themselves among the k winners. However, in peer
reviewing settings, where reviewers are typically unaware of submissions other than the ones
they are reviewing, this notion of manipulation is highly unrealistic. When imperfect infor-
mation is part of the decision-making process, attempting manipulation involves a significant
degree of risk, as it might end up downgrading the position of the manipulator in the final
ranking. Estimating in which conditions manipulation is practically infeasible is therefore a
major open issue left in the literature. Here we tackle this problem, establishing a number of
results which combine the use of theoretical and computer-aided analysis. In particular we
use brute-force computation to fully chart the effects of manipulation in committees up to six
members and restricted cases of seven members, discovering novel configurations that resist
strategic manipulation and identifying the parameters which make it a threat in theory but not
in practice.
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1 Introduction
Consider n project proposals simultaneously submitted for funding, each of which receives m re-
views, and only k of which will be funded in the end.

The standard approach is to assign each proposal to m (external) reviewers and decide the rela-
tive ranking of the proposals based on those reviews. While this approach guarantees more indepen-
dent evaluations - e.g., the reviewers are typically not proposers themselves - it increases the number
of participants in the whole process and does not provide any incentive for reviewers to provide high
quality reviews.

A different approach, made famous by an NSF peer reviewing pilot project [11, 10], is to have
the PIs themselves rank their competitors, and aggregate the evaluations using the Borda count, i.e.,
each proposal gets x points each time is ranked in position x+ 1 by some reviewer.

However, whilst the Borda count has the advantage of, e.g., forbidding the reviewers to assign
the score of 0 to all other competitors, such system is still not strategy-proof; in other words, telling
the truth is not always a good strategy, as shown by the following example.

Example 1. Players A,B,C,D,E are evaluating one other. Each of them is assigned 3 different
proposals. If everyone were sincere, they would rank their assigned proposal in alphabetical order.
The reviewing process uses Borda count and only the top ranked gets funded. Table 1 shows an
instance in which player B is better off misrepresenting their preferences and reversing the truthful
ranking.

As in the example, to establish that a peer reviewing system is not strategy-proof it is sufficient
to find a review assignment and a player, such that, when everybody else is ranking their assigned
proposals sincerely, that player has the incentive of not doing so. We note though that this classical
strategy-proofness, when applied to peer reviewing setups, bears a very strong assumption: namely
that the potential manipulator knows their competitors’ ranking. But this can only be the case in

anc15@imperial.ac.uk


A B C D E

A - 3 - 2 1
B 3 - 2 - 1
C 3 - - 2 1
D 3 2 1 - -
E - 3 2 1 -

9 8 5 5 3

A B C D E

A - 3 - 2 1
B 1 - 2 - 3
C 3 - - 2 1
D 3 2 1 - -
E - 3 2 1 -

7 8 5 5 5

Table 1: On the left side, reviewers ranking truthfully. On the right side, player B reversing their
ranking.

highly simplified settings, e.g., everyone is reviewing everyone else, or in rare cases in which a
reviewer knows how proposals are assigned. This assumption is even more restrictive for cases in
which only a few winners are allowed, with PIs having no incentive of sharing their pool.

In peer reviewing and similar settings (e.g., committee members’ internal evaluations) we there-
fore need a notion of manipulation that takes uncertainty into account. Even more so with aggrega-
tion methods such as the Borda count, when the over-ranking of the worse proposals can come at
the expense of the manipulator’s own success.

Our contribution While acknowledging the fact that the Borda peer reviewing system lacks clas-
sical strategy-proofness, we study what happens when we incorporate uncertainty into the reviewers’
decision-making. In particular, when the potential manipulators need to carefully assess the degree
of risk involved in misrepresenting their preferences, as a function of the possible scenarios that
could occur.

In this paper we assume the proposals to be distributed randomly, with a uniform probability
distribution, and common knowledge thereof. To facilitate the analysis we also work with the as-
sumptions that the number of participants, the number of reviews per proposal and the size of the
funded set are common knowledge, together with the fact that reviewers are experts, i.e., everyone
shares the same objective ranking of proposals.

We then lift the notion of strategy-proofness to incorporate imperfect information, and provide
a classification of peer reviewing scenarios accordingly.

Using computer-aided analysis, we chart the effect of manipulation strategies in committees up
to six members and constrained committees of seven members, showing that its expected utility
depends on the number of funded proposals, the number of players involved and the number of
reviews each one gets, and, for a number of configurations, can be unrewarding in expectation. As a
side result, we obtain novel computer-generated proofs of classical strategy-proofness for a number
of setups.

Related approaches The research on strategy-proof, or impartial, peer reviewing systems has
gained increased attention in AI venues, since [9] and the observation that their framework is not
strategy-proof [7]. Alternative methods have been proposed, from different angles, but all relying on
classical strategy-proofness. Here we mention the ones that are most related to ours, other important
references include: [4, 5, 6, 13, 12].

Credible Subset [7] In Credible Subset (CS), reviewers assign bounded scores to their reviews, and
the potentially successful manipulators, i.e., the reviewers that could be within the k funded



ones, are also selected to be funded, with a given probability. While the system is strategy-
proof, it has been shown to yield an empty set of funded proposals in a significant number of
cases [2].

Dollar Raffle [2] The Dollar Raffle method (DR) consists of reviewers distributing a score from 0
to 1 to their reviews, rather than independently allocating them as in (CS). The system has
been shown not to be strategy-proof and to perform significantly worse than other methods,
e.g., CS [2].

Exact Dollar Partition [2] Exact Dollar Partition (EDP) features reviewers that get clustered at
random and rank reviews coming from different clusters, with a Borda-like count. Scores
determine how important a cluster is and the top proposals of each cluster are selected, de-
pending on their clusters’ importance. Dollar Partition has been demonstrated to be the best
available in terms of optimality, and, although suboptimal, it preserves strategy-proofness [2].

As shown experimentally in [2], each of these methods underperforms when compared to truthful
Borda, the outcome of Borda in which reviewers do not misreport their preferences.

This paper explores manipulation under uncertainty, going beyond classical strategy-proofness.
Its take on manipulation relates to the local dominance framework in [8], which studies a general
notion of uncertainty in voting games.

Paper structure In Section “The Borda peer reviewing system” we describe the formal back-
ground of our setup, establishing manipulability results for the basic case of everyone reviewing
everyone else. We then move on to the case in which the review pool is too small, and incorporate
the notion of uncertainty in strategy selection. We analyse the complexity of the problem and set
up a computational framework in which to explore manipulation. We then fully chart the effects of
manipulability in small committees. Finally, we discuss the future research directions.

2 The Borda Peer Reviewing System
LetN = {1, 2, . . . , n} be a finite set of individuals, each submitting a project proposal and compet-
ing to have their own among the k ≤ n funded. Each proposal is randomly assigned tom individuals
which, independently and concurrently, submit their evaluation. The evaluations received are then
aggregated and the top k proposals are funded.

Let 1 ≤ m ≤ n − 1. A (review) assignment is an irreflexive m-regular directed graph over
N . Irreflexivity imposes no individual to review themselves, while m-regularity - meaning that
vertices share the same indegree and outdegree of m - that all individuals review and are reviewed
by an equal number of other individuals. We denote such assignment am and the set of all such
assignments Am, where am(c) is the m sized set of submissions assigned to c. We omit m when
clear from the context. For m ⊆ N , with |m| = m, we let Σm be the set of permutations over m,
i.e., bijections of the form σ : m → m, and denote σ(m)[k] ∈ N the k-th element in the order
induced by σ on m. As by m-regularity the strategy space of the individuals only depends on the
size of the reviewed pool, we dispense with mentioning the specific assignment explicitly whenever
clear from the context, and in some cases, when no ambiguity can arise, also the size of the pool
itself. So, when am is clear from the context, and thus m is understood to be the specific subset of
N provided by am, we shall write σ (resp., Σ) instead of σ(m) (resp., Σ(m)).

An aggregator for a is a function Fa : ΣN → Σ that associates to each profile of evaluations a
final ranking of the individuals, and where the individuals permutations apply to the pool assigned
to them by a.

In other words, an aggregator is a protocol to decide the final ranking out of individual evalua-
tions. While the focus here is on the Borda count, the framework can easily be extended to different
aggregation rules.



For 1 ≤ k < n, the accepted set, under profile ρ = (σ1, σ2, . . . , σn) ∈ ΣN and assignment a,
is the set of the first k individuals in Fa(ρ). We say that individual i weakly prefers ρ to ρ′ (denoted
ρ �i ρ′) whenever i is in the accepted set under ρ and that i strictly prefers it (denoted ρ �i ρ′ )
when they weakly prefer it and they are not in the accepted set under ρ′.

Given profile ρ, the Borda score of player i is
∑
j∈N,ρj [k]=im − k. In words, we add m − k

to i’s final score, each time some individual has ranked i at the k-th place in their reviews pool. The
Borda ranking following permutation σ (or σ-Borda ranking) is the order on N which follows the
individuals’ Borda scores, from the highest to the lowest, and where ties are broken following σ -
i.e., the weak linear order where each indifference class is resolved with the ranking of σ. Unless
otherwise specified we will use the identity permutation on N and simply omit σ. This, notice,
implicitly assumes that, in case of ties, experts will be able to tell apart the better proposals.

Ground truth and truthful ranking We make the assumption that reviewers are both experts and
committed, i.e., if they were to review all the proposals and truthfully report their evaluation they
would come up with the same ranking N . While aware that this is often a simplifying assumption,
we do claim that it is perfectly reasonable in a number of cases. We refer to this ranking as the
ground truth.

With sufficiently many proposals to be reviewed, reviewers will typically have smaller pool
than n − 1 proposals. For an assignment am, we call a profile σ the truthful ranking, if it is
the Borda ranking generated by permutations on each m that reflect the ground truth ordering.
So if a reviewer were assigned proposals with ground truth ranking {7, 1, 15, 5} then the unique
permutation satisfying this property would be (1, 5, 7, 15). Given a and m we denote σ∗i as the
permutation on the m reviews assigned to i by a which reflectsN , and call it the truthful strategy,
while we call ρ∗ = (σ∗1 , σ

∗
2 , . . . , σ

∗
n, ) the truthful (strategy) profile.

It is important to notice that the truthful ranking may change depending on how reviews are
assigned. So it can very well happen that individual 3 only gets paired with individual 1, while
individual 15 only with lower ranked ones. We observe that, with Borda, if m = n − 1 and n > 2
the truthful ranking coincides with the ground truth. While ideally we would like to fund the best
possible proposals in the ground truth, sometimes we need to be happy with the ones given by the
truthful ranking. Let ρ−i ∈ Πj∈N\{i}ρj . We call a strategy profile ρ a Nash equilibrium if for all
i, and σ ∈ Σi we have that Fa(ρ) �i Fa(σi, ρ−i).

Observe the following property of the ideal but often infeasible case where m = n − 1, which
also demonstrates the importance of how ties are broken.

Proposition 1. Let Fa be the Borda aggregator for assignment a and let m = n − 1. Then, for all
k < n+ 1, ρ∗ is a Nash equilibrium.

Proof. By calculation, we have that in ρ∗ the score of the r-th individual inN is n2−nr−2n+ 2r,
where r is the rank of the individual in the ground truth ordering. To see this, notice that as each
individual is gets n−r−1 by the n−r others who are lower in the ground truth ordering, and n−r
by the r− 1 ones who are higher. Since, once n is set, the only variable is r, the difference between
the score of two neighbouring submissions in the ground truth ordering is constant with respect to n.
By subtracting the formula with r replaced with r − 1 this difference amounts to n− 2 is all cases.
Since a single manipulator cannot withhold more than n − 2 points from the final score of another
paper, they can thus never strictly overtake.

It is important to observe how the validity of Proposition 1 relies on the tie-breaking rule. While
manipulators cannot improve upon their final ranking by misrepresenting their preferences it should
be noted that they might indeed force ties. With all reviewers other than the manipulator acting
‘truthfully’ (not employing a manipulation strategy), these ties can only occur from the best and
worst papers in the ground truth ordering (as only they can lose or gain respectively n− 2 in score).
Thus only the second best and second worst papers can be put into a draw by their own strategy; the



second best by bottom ranking the top paper and the second worst by top ranking the worst paper.
In light of this observation, we can establish a more general result.

Proposition 2. Let σ be a permutation of N , m = n − 1, and Fa be an aggregator returning the
σ-Borda ranking. Then, for all 2 ≤ k < n+ 1, ρ∗ is a Nash equilibrium.

Proof. Let c be a player ranked at most 3rd best inN . Withm = n−1 we have that {1, 2} ⊆ am(c).
As in σ∗ the score of the r-th individual inN is n2−nr− 2n+ 2r, and the only way c can improve
their position given σ∗c is to withhold n− 2 from 2. But since 1 is also a member of am(c), 2 would
be truthfully ranked second and so receive n − 3 points from c. Thus it is not possible for c to
withhold at least n− 2 points from 2, nor any submission other than 1. As k ≥ 2, this concludes the
proof.

From an inspection of the argument given in the proof one can in fact conclude that in some
situations the second best player inN can, under some tie-breakings, overcome the best one. But as
long as there are at least two funded proposals this is irrelevant, as truth-telling is still a sufficiently
good strategy.

The results we have given establish how a situation in which everyone reviews everyone else is
robust to manipulation. However, even in small committees, this might be an infeasible setup, due
to time constraints and the length of the proposals themselves. The coming sections deal with the
cases in which m is small enough, reintroducing the concrete threat of manipulation.

3 Manipulation Under Uncertainty
In situations in whichm << n, individuals will typically lack access to the proposals’ pool assigned
to their fellow reviewers and will also be unable to have a precise estimate of their final position in
the truthful ranking. So while we can come up with strategy profiles in which individuals can gain
from manipulation (as in Table 1), such profiles assume an underlying knowledge of the review
assignment.

With Borda this is a crucial point. Because of the way points are awarded, it is impossible
to damage each reviewed submission, i.e., it is impossible to give 0 to everyone. Indeed, every
reviewer must award the same total of points distributed across their reviewed submissions. Also,
misrepresenting the score by, e.g., downgrading the submissions that are thought to be best, involves
a degree of risk: giving a high score to submissions that are thought to be of low quality might
actually make them jump to a favourable position in the final ranking, potentially at the expense
of the manipulator themselves. Without being able to damage all submissions assigned, or even
without the ability to give less reward than a truthful reviewer would, there is no clear or universally
successful strategy with which to manipulate. Thus it is paramount for a manipulator to determine
the expected success (or utility) of a manipulation strategy.

To do so, recall that the set Am of review assignments of size m is the set of all m-regular
irreflexive directed graphs over N . When a reviewer i receives their poll am(i), the set of the
possible worlds is the set of all assignments in Am compatible with am(i). We denote this set
[am(i)]. We assume, recall, that reviews are assigned randomly. This induces a natural notion of
expected utility of a manipulation strategy with respect to the truthful profile: the number of times
playing the strategy puts the manipulator from outside the top k into the top k, minus the number
of times that it puts the manipulator out from inside the top k, divided by the number of possible
assignments.

Formally, fixing m,n, k, we denote [σi ↑] the set of assignments for which strategy σi is better
than σ∗i , i.e.,

{x ∈ [am(i)] s.t. Fx(σi, ρ
∗
−i) accepts i and Fx(ρ∗) does not}



Likewise, we denote [σi ↓] the set of assignments for which σi is worse than σ∗i , i.e.,

{x ∈ [am(i)] s.t. Fx(ρ∗) accepts i and Fx(σi, ρ
∗
−i) does not}

The expected utility is obtained combining the two.

E(σi(am(i))) =
|[σi ↑]| − |[σi ↓]|
|[am(i)]|

Again fixing m,n, k, we call a (peer reviewing) system:

very weakly safe if for all σi we have that avgi,am(i) E(σi(am(i))) ≤ 0, i.e., the average expected
utility is at most 0 for all strategies, across all positions, and all received assignments.

weakly safe if there is no i and σi for which avgam(i) E(σi(am(i))) > 0, i.e., no strategy yields a
positive expected utility, at no position, across all received assignments.

strongly safe if there is no i, am(i) and x ∈ [am(i)] such that Fx(σi, ρ
∗
−i) �i Fx(ρ∗), i.e., no

strategy yields a positive expected utility, at no assignment.

unsafe otherwise.

While strongly safe is the counterpart of (classically) strategy-proof in our setting, both very weakly
and weakly safety seem appropriate requirements against which to evaluate a peer reviewing system.

We can for instance rely on a very weakly safe system when individuals do not know their rela-
tive position in the ground truth ordering nor their fellow reviewers’ assignments, and on a weakly
safe when they do not know their fellow reviewers’ assignments. On the contrary, manipulating in a
strongly safe system can never be profitable, even knowing the assignment.

3.1 Computing the odds for manipulation
As stated, the concern with manipulable peer reviewing systems is that reviewers can potentially
increase their chances of being admitted into the top k by misrepresenting their evaluation. How-
ever, if we think of manipulators as rational agents, they would manipulate only if they expect it to
improve their chances of being admitted into the top k, and therefore would factor the probability,
not the the possibility, of successfully manipulating.

While the notion of expected utility of a strategy defined previously seems the natural one when
reviews are assigned randomly, its concrete estimation is problematic, for two reasons: first, the
problem of estimating the size of am remains unsolved to this day, even for undirected graphs
(compare [3], which gives asymptotic estimates); second, a worst-case complexity analysis shows
that the number grows rapidly with m and n. To see this notice how for each individual there are
at most

(
n−1
m

)
choices. So the obvious upper bound is

(
n−1
m

)n
. If m << n and assignments are

random, there is a small (exponentially small but nontrivial) chance that we end up being m-regular,
and the above upper bound is a relatively good estimate. 1

What we do in the next section is to go around the complexity estimates and force-compute the
expected utility for all strategies, all potential manipulators and all assignments, for all n up to 6,
and for each of these with all 2 ≤ m ≤ n, as well as the cases of m = 2 and m = 6 for n = 7. This
allows us to give a precise estimate on the effects of manipulability in such committees.

1Generally,
(n
m

)
approximates exp(nh(m/n)±E), where h(p) = −p log(p)− (1− p) log(1− p) and the error term

E O(logn)/2.
(n
k

)
is always at least (n/m)m and at most (ne/m)m.



4 Computer-Aided Analysis
To determine the expected utility of manipulation strategies two main procedures were created, to
map out the results of all possible strategies, for each player i with 3 ≤ n ≤ 6, for each assignment
m with 2 ≤ m < n and each size 1 ≤ k < n of the accepted set. In the case of n = 7 we have only
limited the analysis to m = 2 and m = 6, quantifying over the rest.

The first procedure takes as input an array of all the PIs, and the number m of reviews each PI is
assigned to and then finds all possible assignments via a recursive depth-first search method (being
fairly standard it has not been detailed for space reasons). Once all submissions have been assigned
m valid reviews, i.e., satisfying the required constraints, we generate a valid assignment am for all
PIs.

The next step is to calculate the expected utility of each strategy. In the TestStrat strategy
testing algorithm (see algorithm 1), we generate all possible strategies a potential manipulator could
employ. We refer to a strategy as a list of natural numbers inclusively between 1 and m, with 1
representing the best submission in the reviewer’s true opinion (i.e. the PI with the best ground
truth ranking), 2 representing the second best and so on, and m the worst. This list is then ordered
according to how the reviewer plans to rank them, with the first position in the list denoting the PI
to be given the top rank to the last position for the lowest rank.

To compare the results of manipulation, we first need the results of all reviewers ranking truth-
fully (i.e., the truthful ranking, which, it is important to recall, may well differ from the ground truth
ranking, and indeed can differ for each assignment). After each reviewer has ranked their reviewed
submissions truthfully, the submissions are ranked in a descending order based on their objective
score. Then they are stably sorted by the Borda score they have received from their review rankings.
The result is that they are sorted primarily by their total Borda review reward, and then ties are
broken using the identity permutation.

With the truthful ranking created, we then iterate through each reviewer. Each reviewer in turn
iterates through every untruthful strategy, updating the scores of those they reviewed, and the ranking
is recalculated based upon this manipulation in the same manner. The reviewer then records the
change in rank they achieved by employing the untruthful strategy, and attempts the next untruthful
strategy. Once all untruthful strategies have been tested, the reviewer is reset to rank truthfully and
the next reviewer tests the untruthful strategies, until all reviewers have tested all strategies. This is
done for all compatible assignments.

Since we record each PI’s truthful ranking and the rank change for each strategy, we can de-
termine if a strategy was either successful (the strategy achieved rank ≤ k and truthful rank > k),
neutral (the achieved rank and truthful rank were both ≤ k or they were both > k) or a failure (the
truthful rank ≤ k but the achieved rank > k) by comparing these recorded values to a given k. The
expected utility is then calculated aggregating the figures obtained.

5 Results
We present, as representative cases, samples of the tables of the utilities for each strategy. Each table
presents how changing the values for n, m and k alters the utilities of strategies and so the safety of
the system. We then present overview tables, which summarise the results as a function of n,m and
k.

Strategies are formatted as an ordered list, with the number corresponding to the submissions’
actual rank among the m submissions. Note that in these tables, A refers to the paper with the first
position in the ground truth ordering of all n papers, B the second position and so on.

The entries in the matrix, relative to each strategy, determine their expected gain with respect
to the truthful strategy, i.e., the difference in expected utility between the the strategy and ranking
truthfully aggregated across all individual assignments: a positive gain indicates the strategy will



Algorithm 1 Procedure TestStrat is given a set of PIs that all have valid assignments and tests
each strategy for each PI. PIs is an array of PI that each have a preset objectiveScore and other
PI instances assigned for them to review. They store their reviewScore and truthfulRank, and
can review PIs assigned to them with a given strategy

1: procedure TESTSTRAT(PIs,m)
2: honStrat← N from 1 to m
3: untruthfulStrats← PERMUTATIONS(honStrat)
4: . Get array of strategies by generating all permutations of honStrat
5: REMOVE(dishonStrats, honStrat)
6: for all PI in PIs do
7: REVIEW(PI, honStrat)
8: . Initially all PIs review and reward according to truthful strategy
9: end for

10: truthfulRanking ← SORT(PI in PIs by PI.objectiveScore descending)
11: truthfulRanking ← SORT(PI in truthfulRanking by PI.reviewScore descending)
12: . Sort is stable, so submissions sorted first by total review reward, then by their true score
13: for all PI, rank in ENUMERATE(PIs) do
14: PI.truthfulRank ← rank
15: . Each PI records their truthful ranking
16: end for
17: for all PI in PIs do
18: for all strat in dishonStrats do
19: REVIEW(PI, strat)
20: . Each PI tries reviewing according to each untruthful strategy
21: manipulatedRanking ← SORT(PI in PIs by PI.objectiveScore descending)
22: manipulatedRanking ← SORT(s inmanipulatedRanking by PI.reviewScore

descending)
23: rank ← INDEX(PI,manipulatedRanking)
24: . Record in database the rank achieved with each strategy
25: end for
26: REVIEW(PI, honStrat)
27: . Reset PI to have reviewed and rewarded truthfully before testing next
28: end for
29: end procedure



n = 6, m = 4, k = 2
Strategies A B C D E F
(4; 3; 1; 2) 0 0 0.2151 0 0 0
(2; 4; 3; 1) 0 0 0.034 0 0 0
(3; 4; 1; 2) 0 0 0.2151 0 0 0
(3; 1; 4; 2) 0 0 0.2151 0 0 0
(4; 2; 3; 1) 0 0 0.034 0 0 0
(4; 1; 3; 2) 0 0 0.2151 0 0 0
(1; 4; 3; 2) 0 0 0.2151 0 0 0
(3; 2; 4; 1) 0 0 0.034 0 0 0
(3; 4; 2; 1) 0 0 0.0679 0 0 0
(4; 3; 2; 1) 0 0 0.0679 0 0 0
(1; 3; 4; 2) 0 0 0.2151 0 0 0
(1; 4; 2; 3) 0 0 0.034 0 0 0
(2; 3; 4; 1) 0 0 0.034 0 0 0
(4; 1; 2; 3) 0 0 0.034 0 0 0
(3; 1; 2; 4) 0 0 0.034 0 0 0
(1; 3; 2; 4) 0 0 0.034 0 0 0

Table 2: n = 6,m = 4, k = 2 is an unsafe setup. Indeed no untruthful strategy is strictly worse than
the truthful one, while many others are strictly better. Notice how player C is the only one able to
successfully manipulate.

put the reviewer in the top k more than being truthful, whilst a negative utility indicates it will result
in the reviewer being in the top k less than if they were truthful. A utility of 0 indicates that the
strategy results in the reviewer being in the top k the same number of times compared to the truthful
strategy. Only the strategies with non-zero utility at some position have been included; i.e, strategies
that do not appear in these tables had the exact same utility and no change from the truthful strategy
for all positions.

In Table 2, which presents the utilities for n = 6, m = 4 and k = 2 we can an example of an
unsafe system; not only do there exist untruthful strategies that expect at least as much utility as the
truthful strategy, but in fact there are no untruthful strategies that are strictly worse, at any position.
No matter what their position may be, a potential manipulator can choose a risk-free strategy such
as (4; 3; 1; 2).

Table 3 shows that by increasing k to 3 there do now exist untruthful strategies that offer a worse
expected utility than being truthful. However, this is still unsafe, as strategies such as (1; 2; 4; 3)
exist which offer at least as much utility as the truthful strategy and are strictly better in some cases.
Again, they are risk-free manipulation strategies.

But with k increased again to 4, Table 4 shows a weakly safe configuration, as no strategy offers
a better utility than the truthful strategy for any position. In fact this case is also strongly safe: there
is no possible way for a manipulator to enter the accepted set by employing an untruthful strategy,
for each possible assignment. This is an instance of a computer-generated classically strategy-proof
configuration which was previously unknown.

The case of m = 2 is extremely instructive. This is a case for which each reviewer is asked to
‘nominate’ one of their two proposals assigned. With m = 2 we can see an example of a system
that is weakly safe (Table 5), as without the knowledge of how PIs have been assigned the only
strategy available has a strictly worse expected utility to being truthful. Note however that unlike
when m = 4, this case is not also strongly safe; being untruthful can potentially result in success,
but without knowledge of assignment it will more likely hinder than help, so would not rationally



n = 6,m = 4, k = 3
Strategies A B C D E F
(4; 3; 1; 2) 0 0 0 0.0302 0 0
(2; 4; 3; 1) 0 0 -0.0755 0 0 0
(3; 4; 1; 2) 0 0 -0.0302 0.0302 0 0
(1; 2; 4; 3) 0 0 0 0.0755 0 0
(3; 1; 4; 2) 0 0 -0.0302 0.0302 0 0
(4; 1; 3; 2) 0 0 0 0.0302 0 0
(1; 4; 3; 2) 0 0 0 0.0302 0 0
(3; 2; 4; 1) 0 0 -0.0302 0 0 0
(3; 4; 2; 1) 0 0 -0.0302 0 0 0
(1; 3; 4; 2) 0 0 0 0.0302 0 0
(2; 4; 1; 3) 0 0 -0.0755 0.0755 0 0
(1; 4; 2; 3) 0 0 0 0.0755 0 0
(2; 3; 4; 1) 0 0 -0.0755 0 0 0
(3; 2; 1; 4) 0 0 -0.0302 0 0 0
(2; 1; 3; 4) 0 0 -0.0755 0 0 0
(4; 1; 2; 3) 0 0 0 0.0755 0 0
(2; 3; 1; 4) 0 0 -0.0755 0 0 0
(3; 1; 2; 4) 0 0 -0.0302 0 0 0
(4; 2; 1; 3) 0 0 0 0.0755 0 0
(2; 1; 4; 3) 0 0 -0.0755 0.0755 0 0

Table 3: An instructive unsafe configuration. Although the average expected utility for employing
an untruthful strategy is 0, there exist strategies that yield a higher expected utility than the truthful
one.

n = 6,m = 4, k = 4
Strategies A B C D E F
(4; 3; 1; 2) 0 0 0 -0.0679 0 0
(3; 4; 1; 2) 0 0 0 -0.2151 0 0
(3; 1; 4; 2) 0 0 0 -0.2151 0 0
(4; 2; 3; 1) 0 0 0 -0.034 0 0
(4; 1; 3; 2) 0 0 0 -0.034 0 0
(3; 2; 4; 1) 0 0 0 -0.2151 0 0
(3; 4; 2; 1) 0 0 0 -0.2151 0 0
(4; 3; 2; 1) 0 0 0 -0.0679 0 0
(1; 3; 4; 2) 0 0 0 -0.034 0 0
(2; 3; 4; 1) 0 0 0 -0.034 0 0
(3; 2; 1; 4) 0 0 0 -0.2151 0 0
(4; 1; 2; 3) 0 0 0 -0.034 0 0
(2; 3; 1; 4) 0 0 0 -0.034 0 0
(3; 1; 2; 4) 0 0 0 -0.2151 0 0
(4; 2; 1; 3) 0 0 0 -0.034 0 0
(1; 3; 2; 4) 0 0 0 -0.034 0 0

Table 4: A configuration in which no strategy is ever strictly better than the truthful strategy, making
it at least weakly safe. This case also happens to be strongly safe.



n = 6,m = 2, k = 4
Strategy A B C D E F
(2; 1) 0 -0.008 -0.048 -0.122 -0.067 0

Table 5: This case is weakly safe as, even with knowledge of position, the average expected utility
for the untruthful strategy is 0.

n = 7,m = 2, k = 4
Strategy A B C D E F G
(2; 1) 0 0 -0.003 -0.036 0.031 -0.005 0

Table 6: This case is very weakly safe as, without knowledge of position, the average expected
utility for the untruthful strategy is 0.

be taken.
With n = 7, m = 2 and k = 4, as shown in Table 6, we have an example of a setup that is very

weakly safe; on average across all positions, the only untruthful strategy available offers a worse
expected utility than the truthful strategy. It is however not weakly safe, in that should a manipulator
determine their likely position in the ground truth ordering to be fifth (position E), the untruthful
strategy would offer a positive expected utility relative to the honest.

As can be observed, in some of the above tables there is a clear symmetry in the expected utilities
(compare utilities between Tables 2 and 4, or between the utilities for positions C and D in Table 3).
Our conjecture is that main factor determining such symmetry is the fact players’ strategy spaces
are permutations (see e.g., [1]).

What is key in determining systems’ safety is that PIs are unaware of the full assignment and
ground truth ordering. Without knowledge of this, as long as a system is weakly safe, they cannot
ensure if a given strategy will be beneficial compared to being truthful. Even more so if they could
also be kept unaware of k, n or if n, m and k were large enough values, making the system more
complex and utility harder to predict.

In Table 7 we can see how the different values for m and k affect how safe we can consider a
system when n = 6. As previously stated, when m = n− 1, no matter the value of k it will always
be strongly safe. For other values of m the safety rating depends on k, though note in some cases,
such as for m ≥ 3, strongly, weakly and very weakly safe conditions may exactly coincide.

We also include similar findings for n = 7 for the completed cases of m = 2 and m = 6 in
Table 8.

Table 7: Safety ratings of k for different m where n = 6
Safety m = 2 m = 3 m = 4 m = 5

Strongly Safe k ≥ 5 k ≥ 5 k ≥ 4 k ≥ 1

Weakly Safe k ≥ 4 k ≥ 5 k ≥ 4 k ≥ 1

Very Weakly Safe k ≥ 3 k ≥ 5 k ≥ 4 k ≥ 1

Unsafe k ≤ 2 k ≤ 4 k ≤ 3 None



Table 8: Safety ratings of k where n = 7
Safety m = 2 m = 6

Strongly Safe k ≥ 6 k ≥ 0

Weakly Safe k ≥ 5 k ≥ 0

Very Weakly Safe k ≥ 4 k ≥ 0

Unsafe k ≤ 3 None

6 Conclusion
We have studied the effect of manipulation in the Borda peer reviewing settings, taking the uncer-
tainty of the potential manipulators into account. We have used computer-aided analysis to show
novel cases of strategy proof configurations, but also gone beyond the classical approach and shown
that in a number of cases manipulation can be a threat in theory but not in practice.

As our results show, which strategy is effective for a potential manipulator depends hugely on
the system’s chosen configuration, including the number of participants, how many each review,
how many will be accepted, the distribution of submissions’ quality and the potential manipulator’s
position in this distribution.

A number of further research directions are worth considering. First, the programme is expected
to resolve the n = 7 case fully. With these results, we can further fine-grain the systems’ classifica-
tion and increase our understanding of manipulation in small committees. Second, generalisations
of our findings can be used to construct safe peer reviewing systems beyond small committees. This
can be obtained by clustering larger populations into small subgroups, for which safety properties
have been already discovered. Third, the findings can be an input for formal analysis, in particular
the mathematical understanding of the symmetry in some tables and link it to the use permutations
in the players’ strategy space ([1]). Finally, the research can be directed towards the analysis of
more complex cases, such as the presence of multiple manipulators, or of potential collusion, and of
peer reviewing with partial knowledge, e.g., manipulation over specific assignments or the effect of
probabilistic beliefs rather than uniform distributions.
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