
Need-Aware College Admissions and the

Stability of Marriage

Max Bender, Kirk Pruhs1, and Alireza Samadian

Abstract

We consider generalizing the classic stable marriage problem to a setting where
each university has a particular value for each student, as well as costs that depend
upon the number of enrolled students, and the stability condition incorporates the
revenue incentive of the universities. We show that the general problem is NP-hard.
In contrast, we show that stable marriages can be found if the costs are convex. We
also consider concave, and almost convex cost functions.

1 Introduction

In 1962, during that brief shining moment that was known as Camelot, Gale and Shapley
published their seminal paper “University Admissions and the Stability of Marriage” in
which they formulated the stable marriage problem, and gave their eponymous algorithm
to find stable marriages[9]. In those halcyon days, public universities were well funded, and
admissions criteria were universally need blind. Now the days of Camelot are but legend.
Public support of public universities has cratered. For example, at the authors’ public
university, the University of Pittsburgh, the portion of the budget coming from state/public
money has decreased from 35% two generations ago to approximately 7% today, and the
university has started to make plans for going private in expectation for further future
decreases in public support[5, 10, 17]. In response, public universities that historically prided
themselves on being incubators of scholars and knowledge, from which ideas flow freely into
the world, now commonly seek to monetize everything from sports slogans to scientific
research[13]. Consistent with this trend, many universities are implementing more need
aware admissions policies [18, 4]. Thus we reformulate the Gale and Shapley formulation of
the university admissions problem to reflect the current profit motive of such universities,
and study the stability properties of our reformulation.

In our Need-Aware Stable Assignment Problem (NASA), as in the Gale and Shapley
formulation, we assume that there is a collection S = {s1, . . . sm} of students that seek
admission to a collection U = {U1, . . . , Un} of universities, and that each student sj has a

strict preference order among the universities U j
1 , ..., U

j
i , ..., U

j
n. However, the formulation

from the university side is more profit oriented. We assume that there is a value vi(sj)
of each student sj to each university Ui. This value may reflect (1) the money that the
university believes they can extract from the student and his/her family in tuition, gifts,
bequeaths, etc., (2) whether the student is an athlete in a revenue generating sport, and
(3) perhaps marginally the academic merit of the student. We assume that the universities
preferences are also strict, that is no university values two students exactly equally. To take
university costs into account, we assume that there is a cost function Fi for each university
Ui, where Fi(k) is the cost that the university incurs if it enrolls k students (note that we
assume that costs depend only on the number of enrolled students, and not on the identity
of these students). The revenue that a university receives from admitting a collection of
students is the aggregate value of those students to that university minus the cost of that

1Supported in part by NSF grants CCF-1421508 and CCF-1535755, and an IBM Faculty Award.

many students. An assignment A : S → {U1, ..., Un} assigns each student to at most one
university (note that not all students have to be assigned). As is usually the case in many-
to-one or many-to-many matching problems [3], there is not a unique natural definition of
a stable assignment. However, after some exploration of the alternatives, we came to the
conclusion that the following definition of stability seems to be the leading candidate for
the title of most natural definition of stability:

• An assignment A to be stable if there does not exist a university Ui and a set of
students T that forms a blocking coalition, which occurs when all students in T are
either assigned to Ui or prefer Ui over their current assignment, and Ui can increase its
revenue by enrolling exactly the students in T (potentially disenrolling some currently
enrolled students).

The original Gale and Shapley formulation was the special case of our formulation where
each university cost function Fi was zero when the enrollment is not more than one students,
and infinite for enrollments of two or more students. Gale and Shapely showed that if the
number of students is equal to the number of universities, then one can efficiently compute
a university optimal stable marriage (in which each university is at least as happy with
its student as it would be in any other stable marriage), and one can efficiently compute
a student optimal stable marriage (in which each student is at least as happy with its
university as it would be in any other stable marriage).

1.1 Our Results

We first observe in Section 2 that if the university cost functions can be arbitrary, then the
problem of determining whether a stable marriage exists is NP-complete. In particular, it is
NP-hard even if the cost functions are convex everywhere but at zero. Thus we consider three
special classes of cost functions: (1) convex, (2) concave, and (3) convex everywhere but at
zero. For each of these settings, we want to determine if a stable assignment always exists,
and if so, we want to find an algorithm to efficiently compute a stable assignment. And if a
stable marriage need not always exist, we want to find an algorithm to efficiently determine
whether stable assignment exists for a particular instance. We also consider the situation
that the number of universities is small, as this seems like a natural type of instance. For
example, such a situation arises when a university system has multiple campuses (which is
common for large public universities) and seeks a stable assignment of students wishing to
enroll in that university system.

In Section 3 we give efficient algorithms to compute a maximum revenue subcollection
of students for a particular university and determine whether an assignment is stable.

In Section 4 we consider cost functions that are (everywhere) convex. Convex cost func-
tions naturally arise in situations where there are scarce resources that must be procured,
and as these scarce resources are depleted, the cost of these resources follows the law of
supply and demand, and increases. A common example, that arises in university settings,
occurs when the number of admitted students exceeds the capacity of the university’s dor-
mitories. As a result the university needs to rent additional housing on the free market,
with the natural result being that the university will pay a higher cost per housing unit
as it consumes the cheaper available rental options. We first give an efficient algorithm to
compute a university optimal stable assignment. An assignment A is university optimal if
the revenue that each university Ui achieves from A is at least as much as Ui would achieve
in any stable assignment. We then give an efficient algorithm to compute a student optimal
stable assignment. An assignment A is student optimal if for each student sj there is not
another stable assignment in which sj is enrolled in a university which sj prefers over the

university sj is assigned to in A. The results don’t break any new ground in terms of algo-
rithmic design and analysis, but we find the results appealing (if nothing, they would make
a nice homework problem for students after they are taught the Gale-Shapely algorithm).

In Section 5 we consider cost functions that are concave. Concave cost functions nat-
urally arise in settings where there is some economy of scale that can be exploited with
more students. A common strategy for public universities to alleviate budget deficits is to
admit more students, while keeping the number of classes and the number of faculty fixed;
as a result, universities get more income, with minimal additional expenses. (Of course
this increases class sizes, probably lowering the quality of education, and further burdens
faculty. But these are secondary concerns.) We first show that there are instances with
three universities where there is no stable assignment. We then give an efficient algorithm
that always finds a stable assignment in instances with at most two universities.

Finally in Section 6 we consider cost functions that are convex everywhere but at zero.
We first show that there are instances with only two universities for which there is no stable
assignment. We then give an efficient algorithm that determines whether an instance with
two universities admits a stable assignment.

1.2 Other Related Results

As far as we are aware, all previous papers that consider stable marriage in two sided match-
ing assume each side specified a preference order (sometimes with ties and/or incomplete).
So as far as we are aware, considering stability based on revenue is novel. But to quote
from [3]: “Since 1962, the study of matching problems involving preferences has grown into
a large and active research area, and numerous contributions have been made by computer
scientists, economists, and mathematicians, among others. Several monographs exclusively
dealing with this class of problems have been published.” So it would not at all be surpris-
ing if there was some paper in the literature, that we are not aware of, that considers such
a revenue based stability condition. Similarly it is infeasible to fully cover even a decent
fraction of the related results in this area, and we confine ourselves to the results that we
are aware of that seem most closely related, which primarily follows from many-to-many
matchings.

The results in [1] consider the case where each man and woman wishes to be matched
to as many acceptable partners as possible, up to his or her specified quota, and gave a
polynomial time algorithm for finding a stable matching that minimizes the sum of partner
ranks across all men and women. [2] showed that when universities have both upper and
lower quotas on their enrollment, it is NP-hard to determine if a stable marriage exists. As
in our formulation of NASA, the assumption in [2] assumes a university would prefer to
close than have an enrollment below its lower quota. Several other NP-hard variants can be
found in [14].

Literature also often studies many to many matchings in the context of firms and mar-
kets. In the setting where every firm has a ranking over the workers and the workers have a
strict ranking over a set of acceptable firms, then [7] and [8] give algorithms under different
optimality objectives for finding stable assignments. In the setting where workers have a
strict ranking function over an acceptable set of subsets of the firms (and vice-versa for the
firms over the workers) [16] showed that pairwise stable solutions always exist if the ranking
functions satisfy substitutability and [15] gives an algorithm for finding all such pairwise
stable solutions. Setwise stable solutions, which more closely resemble the definition for
stability within this work, for the second setting have also been considered in [19], [6], [12],
and [11].

2 NP-hardness

In this section we prove that the problem of determining whether a NASA instance admits
a stable assignment is NP-Complete.

Theorem 2.1. If the universities’ cost functions can be arbitrary, then determining if there
exists a stable matching, is NP-Complete.

Proof. First, we show that this problem is in NP. Let M be a matching, we can verify if
M is stable by the following steps. For each i, let Qi be the set of students that are either
matched to Ui or prefer Ui to their current position under M . We can sort this set in
decreasing order of vi, and if there is a k such that Ui makes more profit by having the k
most valuable students of Qi, then M is not stable. This can be done in polynomial time
with respect to the number of students and universities.

Furthermore, we need to reduce an NP-hard problem to our problem. The College
Admission problem with lower quotas (CA-LQ) is an NP-complete variation of College
Admission problem [2]. We reduce CA-LQ to the problem of deciding if an instance of the
Need-Aware Stable Assignment problem (NASA) with arbitrary cost function has stable
matching.

Based on [2], CA-LQ is a College Admission problem in which in addition to the upper
quota, each college also has a lower quota and if the number of students matched to a col-
lege is less than the lower quota, then the college automatically closes and disenroll all of its
students. So the input for an instance of CA-LQ is a set of colleges C = {U1, U2, U3, . . . , Un}
and a list of students A = {s1, s2, . . . , sm}. Each of the students has a strict order of pref-
erences over the colleges that he applies to and each college has a strict order of preferences
over its acceptable students. Furthermore, each college also has an upper bound up(Ui) on
the number of students that it can accept. In addition to the upper bound, there is a lower
bound quota low(Ui) that shows the minimum number of students needed to keep a college
open. If the number of students in a college is less than its lower bound, it will automatically
close. An assignment is stable if and only if the following two conditions hold:

1. There is no student who prefers an open university to his current assignment and that
university also prefers to enroll him either by adding him or replacing another less
preferred student.

2. There is no closed university Ui which can get open by enrolling a set of students that
prefer Ui over their current assignment.

Let I be an instance of CA-LQ, in which C = {U1, U2, . . . , Un} is the set of colleges,
A = {s1, s2, . . . , sm} is the set of students, low(Ui) and up(Ui) are lower quota and upper
quota of Ui. We construct I ′, an instance of NASA as follows. The set of universities and
students are the same so we have U = C and S = A. The preference of each student over
the universities remains unchanged. We set the valuation functions of Ui for a student that
is not acceptable by Ui in I to be zero and be vi(sj) = 1 + Kj

i ε otherwise, in which sj is

the (Kj
i)

th
least valuable student in Ui’s preference list in I, and ε is an arbitrary positive

constant less than 1
n2 . By using such a valuation function, if Ui prefers student s over s′ in

I, then there is the same preference in I ′. Furthermore, we set the cost function of Ui to

Fi(k) =

 0 k = 0
low(Ui) + kε 0 < k ≤ up(Ui)

100k up(Ui) < k

We claim that I has a stable matching if and only if I ′ has a stable matching.

A matching in I ′ is stable if and only if the following conditions hold:

1. There is no student matched to Ui that is unacceptable for Ui in I. Because in that
case the value of that student is zero and since the cost functions are strictly increasing,
Ui can make positive profit by disenrolling that student.

2. The number of matched students to each university is between its lower quota and
upper quota in I. Otherwise the university will make negative revenue and prefers to
disenroll everyone and close.

3. There is no subset of students who prefer Ui over their current assignment and Ui

prefers to enroll them or replace some of its students with them.

Based on the definition of stability in I the above conditions are equivalent to the definition
of stability in I ′. So we can conclude the assignment M is stable for I if and only if M is
stable for I ′.

3 General Cost Functions

We first give an efficient algorithm A0 for selecting a subset of students to admit, from a col-
lection of students seeking admission to a particular university, that maximizes the revenue
for that university (the algorithm can be proved correct using a simple exchange argument).
We then give an efficient algorithm A1 to determine whether a particular assignment A
is stable (the algorithm’s correctness follows more or less from the definition of stability).
Finally we give an alternative characterization of stability that will be useful in some of our
proofs.

Algorithm A0: The algorithm takes as input a particular university Ui and a collection
S of students. Let Sk be the collection of the k students in S that Ui most values. The
maximum revenue subset of S is then the set Sk with maximum revenue, namely the Sk

where k = arg maxk

∑
sj∈Sk

vi(sj)− Fi(k).

Algorithm A1: The algorithm takes as input an assignment A. For each university Ui,
let Ci be the students either assigned to Ui in A, or that prefer Ui to their assignment in
A (which can be because the student was assigned to no university in A or prefers Ui to
the university the student was assigned in A). The assignment is then stable if there is
no university Ui where Ui’s maximum revenue subset of Ci is different than the students
assigned to Ui in A. The maximum revenue subset can be computed using algorithm A0.

An assignment A is stable if and only if all of the following three conditions hold:

1. For each university Ui, there is no subset S of students that prefer Ui over their current
assignment in A, and such Ui can increase its revenue by additionally enrolling the
students in S.

2. No university can increase its revenue by disenrolling some of its enrolled students.

3. There is no single student sj that prefers a university Ui over the university it is
assigned in A and Ui would increases its revenue if it replaces one of its current
students with sj .

This is true because if any of the above conditions do not hold, then there is a subset of
students S′ willing to join Ui that Ui can make more profit by taking S′ rather than its
current assigned students. Furthermore, if the students assigned to Ui are not the most
valuable students willing to join Ui then Ui can replace some of them or disenroll or add
some other good students to its current assigned students.

4 Convex Cost Functions

We consider instances where all university costs functions are convex. For such instances,
we give an algorithm A2 that produces a student optimal stable assignment, and then give
an algorithm A3 that produces a university optimal stable assignment.

Algorithm A2: The algorithm consists of rounds. The algorithm maintains a set Qk
i

containing the students tentatively enrolled in university Ui after k − 1 rounds. Initially
each Q1

i is empty. In round k, each student sj that is not tentatively enrolled in some
university, proposes to their top ranked university among those universities to which they
have not proposed to in a previous round. Let P k

i be the students that propose to university
Ui in round k. The set of students Qk+1

i tentatively enrolled at the end of round k is then set
to be the subset of students that either were previously enrolled or are seeking enrollment,
the subset of Qk

i ∪P k
i , that maximizes Ui’s revenue. This can be computed using algorithm

A0. The other students, namely the students in Qk
i ∪ P k

i \Q
k+1
i are permanently rejected.

The algorithm terminates when all students have either been assigned to some university or
rejected by every university.

Lemma 4.1. When the A2 algorithm terminates, there exists no pair (sj , Ui) such that sj
prefers Ui to its assignment and Ui could increase its revenue by enrolling sj.

Proof. Suppose for the sake of contradiction that there exists some student sj who prefers
university Ui to their current assignment (which may be no university) where Ui would be
willing to enroll sj by letting go of some collection T of students. Because the cost function
is assumed convex, it follows that T is either empty or at most one student s′. Since |T | ≤ 1
it follows that the number of students assigned to Ui is never decreasing. By construction of
the algorithm, sj must have applied to Ui at some point before termination of the algorithm.
Student sj was then either rejected at this moment or enrolled only to be replaced later by
some student s. In either case, at that moment every student assigned to Ui had higher
value than vi(sj) and vi(sj) was lower than the marginal cost of adding a new student. Since
the total valuation of Ui over all of its students is monotonically increasing, it follows that
vi(sj) was still lower than the marginal cost of adding a new student at the termination of
the algorithm. Thus T must be some student s′ such that vi(s

′) < vi(sj). Thus s′ could
not have been in Ui’s assignment at the time of sj ’s rejection, since s′ would have been
rejected instead. Thus s′ must have been added after sj was rejected. But this is also a
contradiction, as vi(s

′) must also have been lower than the marginal cost at the time it was
added, so it must have replaced another student whom sj could also have replaced instead.
Thus sj and Ui cannot exist.

Theorem 4.2. The A2 algorithm gives a stable assignment which is student optimal.

Proof. By Lemma 4.1 the solution returned by the SP algorithm must be a stable assign-
ment, since every university would drop students if it could make revenue by doing so, and
would have enrolled any students it could make revenue from who would prefer to change
universities. Further, this solution is student optimal - that is, each student is assigned to
their maximally ranked school over all possible stable assignments. To see this, suppose
there is an instance where a student does not get their best possible university. Let s be
the first student to get rejected by their best possible university U and let T be the set of
students assigned to U at the time s is rejected. Since U is a possible university for s, then
there is an assignment A′ where s is assigned to U . Note that not every student in T can
be assigned to U in A′, because otherwise U could remove s to make more profit. Thus
there exists some s′ ∈ T such that s′ is not assigned to U in A′ and is instead assigned to
U ′. Since s was the first student to be rejected by their best possible university, it follows

that s′ prefers U to U ′. Since U preferred all of the students in T to s, it also follows that
U prefers s′ to s. Thus A′ is not a stable assignment, since U would make more profit by
swapping s′ with s.

Algorithm A3: The algorithm consists of rounds. The algorithm maintains a set Qk
i

containing the students tentatively enrolled in university Ui after k − 1 rounds. Initially
each Q1

i is empty. In round k, let Ck
i be the collection of candidate students for university

Ui, which are those students that have not rejected university Ui in a previous round. Let Iki
be the students in Ck

i that would maximize university Ui’s revenue, which can be computed
by algorithm A0. Each university Ui then sends invitations to each student in Iki . Each
student then permanently rejects every university that is not the student’s top choice from
among the universities from which the student received an invitation. Then Qk+1

i is the
students in Iki that did not reject Ui’s invitation. The algorithm terminates in the first
round k for which it is the case that no university had an invitation rejected.

Lemma 4.3. When A3 terminates no university would prefer to drop students to increase
revenue.

Proof. For the sake of contradiction suppose there exists some university Ui and collection
of students T such that the revenue Ui makes with its assignment at the termination of the
algorithm is greater than the assignment where it drops all students T from its assignment.
First, note that by construction of the assignment no students are ever being disenrolled
and hence their options are only getting better and better. Because of this, if a student
chooses not to go to Ui the moment they are accepted, they will never choose to go to Ui

later. If such a group of students T exists, then each of these students has a lower value
than their marginal utility. However, consider that at each moment the university sent
invitations to these students, their value was higher than the marginal cost of adding them.
Thus the only way their value could become lower than the marginal cost of adding them is
if higher-valued students came to the university after them. However, this is a contradiction,
since the university must have invited higher valued students to the university no later than
the students in T , and as noted students who do not come at the time of invitation to a
university will never join later.

Theorem 4.4. The algorithm A3 gives a stable assignment which is university optimal.

Proof. The stability of the assignment follows from lemma 4.3 and the observation that each
student has been given an invitation to attend any university that could make profit from
them - therefore there cannot be any pair (Ui, sj) such that sj prefers Ui to their current
assignment and Ui can make more revenue by accepting sj . The university-optimality of the
solutions follows similarly to the student-optimality of A2. That is, suppose that it is not
university optimal. Then there is an instance where some university doesn’t get its maximal
possible profit from students by A3. Let U be the first university that gets rejected by a
student s ∈ T ⊂ S where T would give U its maximal profit over all stable assignments and
let A′ be the assignment where U gets assigned exactly the students T . Since s rejects U
in A3, it follows that s is assigned to some university U ′ in A3 that it ranks higher than U .
Since s is assigned to U ′ and there have been no rejections before this moment, it follows
that U ′ will always prefer to have s in its assignment. Thus in A′ we have that s is assigned
to U , s prefers U to U , and U would enroll s if given the opportunity. Thus A′ is not
stable.

5 Concave Cost Functions

In this section we assume that the university cost functions are concave. We first show in
Theorem 5.1 that there is an instance with three universities in which there is no stable
assignment. We also provide an Algorithm A4 which can always finds a stable assignment
in instances with at most 2 universities.

Theorem 5.1. For all n > 2 there exists an instance with n universities with concave cost
functions that does not have a stable assignment.

Proof. First we show there is an instance I with 3 universities that does not have any stable
assignment. Assume the cost function for all the universities is the following

F (k) =


0 k = 0

100 k = 1
150 k = 2
200 k > 2

The valuation function of the universities are v1 = {(s1, 101), (s2, 51), (s3, 1)}, v2 =
{(s2, 101), (s3, 51), (s1, 1)}, and v3 = {(s3, 101), (s1, 51), (s2, 1)}. Furthermore, let the S1’s
ordered preference lists be (U2, U3, U1), S2’s list be (U3, U1, U2), and S3’s be (U1, U2, U3). We
can verify there is no stable assignment by checking the following categories of assignments:
(1) An assignment with one unassigned student. (2) An assignment with each university
having one student. (3) An assignment with two students assigned to one university and one
student assigned to some other university. (4) Assignment in which all of them are assigned
to one university.

In all of the above categories of assignment there is a university that is making negative
revenue or there is a student sj who is willing to join another university Ui and Ui makes
more profit by enrolling sj .

For any instance with n > 3 universities, we can just add n− 3 universities that are not
willing to accept any student to instance I.

Algorithm A4: The algorithm consists of rounds. The algorithm maintains a set Qk
i

containing the students tentatively enrolled in university Ui after k − 1 rounds. Initially
Q1

1 consists of the unique stable assignment if university U2 did not exist, which can be
computed by algorithm A0, and Q1

2 is empty. In round k let the candidate students Ck
2 for

university U2 be the collection of students that either prefer university U2 to university U1,
or who are not tentatively enrolled at university U1 (that is, they aren’t in Qk

1). Qk+1
2 is set

to be the subset of Ck
2 that maximizes university U2’s revenue, which can be computed by

algorithm A0. Qk+1
1 is set to be the subset of students remaining at U1, namely, Qk

1−Qk+1
2 ,

that maximizes U1’s revenue, which can be computed by algorithm A0. The algorithm
terminates in the first round when there is no change in enrollment; that is, when Qk

1 = Qk+1
1

and Qk
2 = Qk+1

2 .

Lemma 5.2. Let T be a subset of students that U1 disenrolls in some iteration of algorithm
A4. Disenrolling any subset others than T will make less profit for U1.

Proof. Any subset that makes U1 the most profit by disenrolling should contain the least
valuable students of U1. If that is not the case then we can replace some of the students in
that subset with students that have less value. The algorithm disenrolls the k least valuable
students and selects k to be a number that maximizes the profit. This means that U1 cannot
make more profit by disenrolling another subset.

Lemma 5.3. Let T be a subset of students that U1 disenrolls in some iteration of algorithm
A4. U1 cannot enroll any subset of T if the number of students assigned to U1 does not
increase.

Proof. If U1 could make positive profit by adding a subset of T then T would not be the
best subset for U1 to disenroll and U1 could make more profit by disenrolling a subset of T .

Furthermore, since the cost function is concave, for all positive integers a and b and x
such that a < b we know

F (a+ x)− F (a) > F (b+ x)− F (b). (1)

So we can conclude that if the number of students assigned to U1 does not increase, then
U1 cannot make profit later by enrolling any subset of T .

Lemma 5.4. Let T be the set of students U1 disenrolls during the execution of A4. In the
assignment A4 produces, U1 cannot make more profit by enrolling any subset of T .

Proof. Let Q be the best set of students that U1 can enroll and make the most possible
profit. Let Ti be the set of students who are disenrolled in the ith iteration of A4. We
can show Q ∩ T1 = ∅. Because, if the intersection is not empty, we can add Q − T1 to the
students of U1 and U1 should prefer after that to enroll Q∩T1 to make more profit. However,
even if U1 enrolls all the students who have been disenrolled before T1, it cannot have more
students than after disenrolling in the first iteration; therefore, as a result of Lemma 5.3 it
follows that U1 cannot enroll any subset of T1 after enrolling Q − T1 to make more profit,
so we can conclude Q ∩ T1 = ∅.

Similarly we can conclude that for all i it follows that Q∩Ti = ∅. That means Q = ∅.

Lemma 5.5. During the iterations of algorithm A4, U2 cannot make any profit by disen-
rolling a subset of its students.

Proof. Let Q be a set that U2 can disenroll and make the most profit. Let T1 be the set
of students that U2 enrolled in the first iteration. Note that even if U2 disenrolls all of its
students it cannot have fewer students than what it had in the first iteration. So based on
equation 1, if Q ∩ T1 6= ∅, then U2 can enroll Q ∩ T1 again and make profit. So we can
conclude Q ∩ T1 = ∅.

Similarly, we can show that for all i it follows that Q∩Ti = ∅. Therefore, we can conclude
Q = ∅.

Theorem 5.6. Algorithm A4 always produces a stable assignment.

Proof. The only set of students that might be willing to join U1 are those who have been
disenrolled. The other students either left U1 to join U2 or they are assigned to U1. So
based on Lemma 5.4, it follows that U1 cannot make any profit by enrolling any subset
of students. We also know U1 does not want to disenroll anyone because otherwise the
algorithm A4 would not stop.

Furthermore, U2 does not want to enroll any subset of students because if it could enroll
more, the algorithm A4 would not finish. We also know, based on Lemma 5.5, U2 cannot
disenroll any subset of its students to make more profit.

So we can reach the conclusion that the resulting assignment from A4 is a stable assign-
ment.

6 Convex Everywhere But 0

In this variation of the problem the cost function is convex everywhere except for 0. We
first show in Theorem 6.1 that there are instances with only two universities where there is
no stable assignment. We then give an efficient algorithm A5 that can determine whether
an instance with two universities has a stable assignment.

Theorem 6.1. There are instances with two universities with cost functions that are convex
everywhere but 0 in which there is no stable assignment for them.

Proof. We can make the instance I with two universities and to make any example with
more than two we can just add some universities with extremely high initial cost to our
instance I.

Assume we have two universities and three students. Both of the universities have the
following cost function:

F (k) =


0 k = 0

100 k = 1
110 k = 2
200k k > 2

The valuation functions of the universities are v1 = (s1, 101), (s2, 15), (s3, 11) and v2 =
(s3, 101), (s2, 15), (s1, 11). Furthermore S1 and S2 prefer U2 over U1 and S3 prefers U1 over
U2. We can verify there is no stable assignment by checking the following categories of
possible assignments: (1) any assignment with one unassigned student, (2) all the students
assigned to one university, and (3) two of the students are assigned to one university and
one student to another university.

In all of the above categories either a university is making negative revenue or a university
can enroll a student who is willing to join.

Algorithm A5: The algorithm first checks whether both universities being closed is a
stable assignment using algorithm A1. The algorithm then checks whether there is a stable
assignment where only university U1 is open (which means it has a positive number of
students assigned to it). If there is such a stable assignment then U1 is assigned its maximum
revenue subset of all the students, which can be computed using algorithm A0. Whether this
assignment is stable can be computed using algorithm A1. Similarly the algorithm can check
whether there is a stable assignment where only university U2 is open. Then the algorithm
checks if there is a stable assignment where both universities are open. To accomplish this,
the algorithm changes the cost functions of the universities to be F ′(0) = 0 and for k ≥ 1,
F ′
i (k) = Fi(k)−Fi(1). Note that the new cost function is everywhere convex. The algorithm

then finds university optimal stable assignment for the new cost function using algorithm
A3. If this assignment is stable for the original cost function, then the algorithm outputs
this assignment, otherwise the algorithm declares that no stable assignment exists.

Lemma 6.2. There is only one possible stable assignment with Ui being open and Uj being
closed and that assignment is the one returned by algorithm A0 for Ui.

Proof. If we do not choose the best subset for Ui then Ui will prefer to make more profit by
adding, replacing, or disenrolling a subset of students. So there is no other possible stable
assignment with Ui open and Uj closed.

Lemma 6.3. Let I be an instance of the problem that has 2 universities with cost functions
that are convex everywhere except for 0. Let I ′ be an instance resulting from changing the
cost functions to be F ′

i (k) = Fi(k)− Fi(1). Then I has stable assignment if and only if the
university optimal stable assignment of I ′ is stable for I.

Proof. The proof has two sections: first, we prove that any stable assignment in I is also
stable in I ′. Then, we prove that if M is a stable assignment in I and I ′ then any stable
assignment in I ′ that has more profit for both universities is a stable assignment in I. Note
that in I ′, since the cost functions are convex everywhere except for 0, if a university prefers
to disenroll a subset of students that are not all of its students, then it also prefers to
disenroll any individual student from that subset.

Let M be a stable assignment in I and let Qi be the list of students enrolled to Ui in
M . We can show that if we use the same assignment for I ′, then no university wants to
disenroll any subset of their students and no university can make more profit by adding a
student or replacing one of its students. Then we know Ui does not want to disenroll any of
the students and does not want to shut down the university, which means ∀s ∈ Qi : vi(s) >
Fi(|Qi|)− Fi(|Qi − 1|) and

∑
s∈Qi

vi(s) > Fi(|Qi|). We can show the same inequalities are
correct for I. Note that

F ′
i (|Qi|)− F ′

i (|Qi − 1|)
=Fi(|Qi|)− Fi(1)− Fi(|Qi − 1|) + Fi(1)

=Fi(|Qi|)− Fi(|Qi − 1|).
(2)

Therefore, ∀s ∈ Qi : vi(s) > F ′
i (|Qi|)− F ′

i (|Qi − 1|) and
∑

s∈Qi
vi(s) > Fi(|Qi|) > F ′

i (|Qi|).
We also know that no university can add a student to make profit. Based on Equation 2, we
know if none of the students who are willing to join Ui have value more than Fi(|Qi|+ 1)−
Fi(|Qi|), then none of them can have more value than F ′

i (|Qi|+ 1)−F ′
i (|Qi|). Furthermore,

if Ui is not willing to replace one of its students in I, then it is not willing to replace any of
its students in I ′ because Ui has the same set of students. Therefore, we can conclude that
M is stable on I ′.

Now we need to show that any other stable assignment M ′ on I ′ that makes more profit
than M for all the universities is also stable on I. We know in M ′ on I ′ no universities
prefer to get a new student or disenroll a single student. Because of Equation 2 we can
conclude the assignment M ′ on I guarantees that no university prefers to get a new student
or disenroll a single student. The only condition that can possibly make instability for M ′

on I is the case that a university prefers to disenroll all of its students. This is impossible
because M was stable on I and in M ′ all the universities are making more profit.

Note that the cost functions in I ′ are convex everywhere which means we can find a
university optimal assignment for it. If there is any stable assignment on I with both the
universities open, then the university optimal assignment which results from running the
proposed algorithm in the second section on I ′ will be a stable assignment.

Theorem 6.4. For instances with two universities with cost functions convex everywhere
but 0, A5 returns a stable assignment if and only if there exists one.

Proof. The algorithm A5 first tries to find a stable assignment with zero universities open.
Based on Lemma 6.2 A5 will find a stable assignment with one university being open if
and only if there exists one. By Lemma 6.3 A5 will find a stable assignment with both the
universities open if and only if there exists one.

7 Conclusion

There are many natural follow-up questions in this for-profit admissions model. Perhaps
the most prominent algorithmic ones are:

• Determine if there is a polynomial time algorithm to determine whether an instance
admits a stable assignment if the cost functions are concave.

• Determine if there is a fixed parameter tractable algorithm for cost functions that are
convex everywhere but zero, where the parameter is the number of universities.

Acknowledgments: Our interest in this problem arose out of discussions with Claire Math-
ieu about the revision of the French university assignment mechanism, and the differences
in university motives between France and the United States. We also thank Amos Fiat, Adi
Rosén, and Vincent Cohen-Addad for helpful discussions.

References

[1] V. Bansal, A. Agrawal, and V. S. Malhotra. Polynomial time algorithm for an optimal
stable assignment with multiple partners. Theor. Comput. Sci., 379(3):317–328, July
2007.

[2] P. Biró, T. Fleiner, R. W. Irving, and D. F. Manlove. The college admissions problem
with lower and common quotas. Theor. Comput. Sci., 411(34-36):3136–3153, July 2010.

[3] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Handbook of Compu-
tational Social Choice. Cambridge University Press, New York, NY, USA, 1st edition,
2016.

[4] S. Brint. Amid recession, some college admissions policies look at students’ wealth.
Washington Post, January 10, 2010.

[5] B. Bumsted. Pennsylvania’s state-related colleges prepare for worst as budget impasse
drags. TribLive, March 2, 2016.

[6] F. Echenique and J. Oviedo. A theory of stability in many-to-many matching markets.
Theoretical Economics, 1(2):233–273, 2006.

[7] P. Eirinakis, D. Magos, I. Mourtos, and P. Miliotis. Finding all stable pairs and solutions
to the many-to-many stable matching problem. INFORMS Journal on Computing,
24(2):245–259, 2012.

[8] P. Eirinakis, D. Magos, I. Mourtos, and P. Miliotis. Finding a minimum-regret many-
to-many stable matching. Optimization, 62(8):1007–1018, 2013.

[9] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[10] P. Gallager. University of Pittsburgh Budget Presentation to the General Assembly of
the Commonwealth of Pennsylvania, 2016.

[11] B. Klaus and M. Walzl. Stable many-to-many matchings with contracts. Journal of
Mathematical Economics, 45(7):422 – 434, 2009.

[12] H. Konishi and M. U. nver. Credible group stability in many-to-many matching prob-
lems. Journal of Economic Theory, 129(1):57 – 80, 2006.

[13] R. Lord. The branding of the american mind’: How colleges and universities turn
student researchers into profit. Pittsburgh Post-Gazette, March 5, 2017.

[14] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Theor. Comput. Sci., 276(1-2):261–279, Apr. 2002.

[15] R. Martinez, J. Masso, A. Neme, and J. Oviedo. An algorithm to compute the full set
of many-to-many stable matchings. Mathematical Social Sciences, 47(2):187–210, 2004.

[16] A. E. Roth. Stability and polarization of interests in job matching. Econometrica,
52(1):47–57, 1984.

[17] B. Schackner. What if pitt were to go private? some ponder the unthinkable as dwin-
dling state aid becomes less certain. Pittsburgh Post-Gazette, February 23, 2018.

[18] A. Sostek. Need-blind admissions may be reconsidered by colleges. Pittsburgh Post-
Gazette, February 14, 2013.

[19] M. Sotomayor. Three remarks on the many-to-many stable matching problem. Math-
ematical Social Sciences, 38(1):55 – 70, 1999.

Max Bender
University of Pittsburgh
Pittsburgh, PA
Email: mcb121@pitt.edu

Kirk Pruhs
University of Pittsburgh
Pittsburgh, PA
Email: kirk@cs.pitt.edu

Alireza Samadian
University of Pittsburgh
Pittsburgh, PA
Email: samadian@cs.pitt.edu

