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Abstract

The state of Singapore operates a national public housing program, accounting for
over 70% of its residential real estate. Singapore uses its housing allocation pro-
gram to promote ethnic diversity in its neighborhoods; it does so by imposing ethnic
quotas: every ethnic group must not own more than a certain percentage in a hous-
ing project, thus ensuring that every neighborhood contains members from each
group. However, these diversity constraints naturally result in some welfare loss.
Our work studies the tradeoff between diversity and (utilitarian) social welfare from
the perspective of computational economics. We model the problem as an extension
of the classic assignment problem, with additional diversity constraints. While the
classic assignment program is poly-time computable, we show that adding diversity
constraints makes the problem computationally intractable; however, we identify a
1
2
-approximation algorithm, as well as reasonable agent utility models which admit

poly-time algorithms. In addition, we study the price of diversity: this is the loss
in welfare due to the diversity constraints; we provide upper bounds on the price of
diversity as functions of natural problem parameters. Finally, we use recent, public
demographic and real-estate data from Singapore to create a simulated framework
testing the welfare loss due to diversity constraints in realistic large-scale scenarios.

1 Introduction

More than 80% of Singapore citizens and permanent residents live in public housing projects
[26]; these apartments are sold in a large-scale public market centrally managed by a gov-
ernment body called the Housing and Development Board (HDB). In addition to providing
a public good — affordable apartments in a small country with little real estate — HDB
estates serve a role in the social integration of Singapore’s diverse ethnic groups (Chinese,
Malay and Indian/Others). As per the Ethnic Integration Policy introduced in 1989 [36],
every public housing development must hold a certain percentage of every major ethnic
group, which is somewhat proportional to the true percentages of these groups in the gen-
eral Singaporean population; for example, since 5 March 2010, every HDB housing block is
required to hold no more than 87% Chinese, 25% Malay, and 15% Indian/Others [24, 18].
Ethnic quotas ensure a diverse population composition at the block-level, preventing the
de-facto formation of segregated ethnic communities in public housing estates. HDB uses a
lottery mechanism to allocate new developments: all applicants who apply for a particular
development pick their flats in a random order; however, these ethnicity constraints intro-
duce some peculiarities. For example, consider an applicant i of Chinese ethnicity applying
for an apartment block with 100 flats, up to 87 of which may be assigned to ethnically
Chinese applicants, and at most 25 of which can be assigned to ethnically Malay applicants.
Assume that i is 90th in line to select an apartment. If at least 87 Chinese applicants were
allowed to choose a flat before i, the Chinese ethnic quota for the block will have been filled
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and applicant i will no longer be eligible for the block. On the other hand, suppose that i is
105th in line to select an apartment; if 40 Malay applicants end up before i in the lottery,
then 15 of them will be rejected, and i will have a spot1.

As the example above shows, ethnic quotas add another layer of complexity to what
is, at its foundation, a straightforward allocation problem. Indeed, the allocation of public
housing is an economic problem similar to the classic assignment problem: a central planner
(HDB) wishes to allocate goods (apartments) to agents (residents) in a manner satisfying
certain economic criteria. Diversity, on the other hand, is a social goal external to the
underlying economic domain; imposing it may result in reduced social welfare.

1.1 Our Contributions

We study the interplay between diversity and social welfare in the public housing market;
we model this as an assignment problem with additional type-block constraints: agents are of
multiple types and goods are divided into blocks. A limited number of goods in each block can
be allocated to agents of each type; we call these upper bounds type-block capacities. These
restrictions result in several interesting outcomes. While the optimal assignment problem
is well-known to be poly-time solvable [29], we show that imposing type-block constraints
makes it computationally intractable (Section 3). However, we identify a 1

2 -approximation
algorithm (Section 3.1), as well as some agent utility models for which one can find optimal
assignments with type-block constraints in polynomial time (Section 3.2). Next, we show
that the potential utility loss from imposing type-block constraints — which we term the
price of diversity as in [4]– can be bounded by natural problem parameters (Section 4).
Finally, we analyze the empirical price of diversity on simulated instances generated from
real HDB data (Section 5).

1.2 Related work

One can think of public housing allocation as a bipartite matching problem [33] where an
edge from an agent i to an apartment j is weighted with the utility the agent will receive
if she is allocated the apartment. There is a rich literature on weighted bipartite matching
problems (also known as assignment problems [34]), and polynomial-time algorithms for
the unconstrained version have long been known (e.g. [29]). Several generalizations and/or
constrained versions have been studied, e.g. recent work by Lian et al. [2018] who allow each
agent (resp. item) to be matched to multiple items (resp. agents) but within upper and
lower capacities. The assignment problem with subset constraints studied by Bauer [2004]
can be thought of as a special case of our problem, with a single block or a single type.
If all agents of each type have identical utilities for all apartments in each block, and each
type-block capacity is smaller than both the corresponding type and block sizes, then our
problem reduces to a special case of the polynomial-time solvable capacitated b-matching on
a bipartite graph [5].

Singapore’s public housing is our primary motivating domain but type-block constraints
can naturally arise in many other settings [27, 44]. For example, consider the course alloca-
tion problem analyzed by Budish and Cantillon [2012]; one might require that each course
has students from different departments and impose maximal quotas to ensure this. In pub-
lic school allocation [3, 2, 37], one might require that certain schools admit students from
diverse neighborhoods to prevent de-facto segregation. Other examples include matching
medical interns or residents to hospitals [40], allocating subsidized on-campus housing to

1While this example is, of course, stylized, the effects it describes are quite real: one often hears stories
of young couples who arrive at the HDB office to select a flat, only to be notified that their ethnic quota
have just been filled.
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students [1], appointing teachers at public schools in different regions as done by some non-
profit organizations [21], or assigning first year business school students to overseas programs
[21]. This line of work mainly explores the interaction between individual selfish-rational
behavior and allocative efficiency (e.g. Pareto-optimality) of matching mechanisms, under
either ordinal preferences or cardinal utilities, one-sided or two-sided (see, e.g. [12, 11, 7, 6]
and references therein); we, on the other hand, focus on the impact of type-block constraints
on welfare loss, when agents’ utilities are known to a central planner.

A relevant body of work is that on the fair allocation of indivisible goods (see, e.g.,
[39, 15, 30, 9, 8]): here, fairness is quantified in terms of agents’ realized utilities or pref-
erences whereas we deal with the proportionate representation of groups in the allocation
with no regard to utilities. Some recent literature [31, 13] addresses diversity in a subset
selection setting; Ahmed et al. [2017] “treat[] diversity as an objective, not a constraint” in
a b-matching context and use a ‘soft’ approach towards encouraging diversity, whereas we
enforce diversity through hard constraints.

Immorlica et al. [2017] study the efficiency of lottery mechanisms such as the ones used
by HDB to allocate apartments; however, their work does not account for ethnicity-block
constraints which, as we show here, have a significantly effect on allocative efficiency.

1.3 The Singapore Public Housing Allocation System

The Singapore public housing system, managed by the HDB, provides low-cost apartments
to Singapore citizens and permanent residents. Public housing is a dominant force in Sin-
gapore: as of 2017, approximately 73.3% of apartments in Singapore are HDB flats [20].
New HDB flats are purchased directly from the government, which offers them at a heavily
subsidized rate. New apartments are typically released at quarterly sales launches; these
would normally consist of plans for several estates at various locations around Singapore: an
estate normally consists of four or five blocks (each apartment block has approximately 100
apartments), sharing some communal facilities (e.g. a playground, a food court, a few shops
etc.). Estates take between 3 to 5 years to complete, during which HDB publicly advertises
calls to ballot for an apartment in the new estate. A household (say, a newly married couple
looking for a new house) would normally ballot for a few estates (balloting is cheap: only
S$10 per application [25]). HDB allocates apartments using a lottery: all applicants to a
certain estate choose their flat in some random order; they are only allowed to select an
apartment in a block such that their ethnic quota is not reached. We mention that there
are a few complications here: first-time applicants and low-income families usually receive
priority numbers in the lottery scheme; moreover, the same estate may have several ballot-
ing rounds in order to ensure that all apartments are allocated by the time of completion.
However, the focus of this work is the welfare effects of using ethnic quotas rather than
the specific intricacies of the HDB lottery mechanism. We must mention here the existing
literature on the documentation of Singapore’s residential desegregation policies [16, 18, 38]
and the empirical evaluation of their impact on various socioeconomic factors [41, 43]; to
the best of our knowledge, ours is the first formal approach towards this problem.

2 Preliminaries

We first describe a formal model for the housing allocation problem with ethnicity quotas.
Throughout the paper, given s ∈ N, we let [s] be the set {1, 2, . . . , s}.

Definition 1 (AssignTC). An instance of the Assignment with Type Constraints
(AssignTC) problem is given by:

(i) a set N of n agents partitioned into k types N1, . . . , Nk,
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(ii) a set M of m items/goods partitioned into l blocks M1, . . . ,Ml,

(iii) a utility u(i, j) ∈ R+ for each agent i ∈ N and each item j ∈M ,

(iv) a capacity λpq∈N for all (p, q)∈ [k]×[l], indicating the upper bound on the number of
agents of type Np allowed in Mq.

We assume here that the inequality λpq ≤ |Mq| holds for all type-block pairs (p, q) ∈ [k]×
[l] without loss of generality since it is not possible to assign more than |Mq| agents of type
Np in block Mq by definition. In the Singapore public allocation problem, tenant households
are the agents and apartments are the items; types correspond to ethnic groups (Chinese,
Malay, Indian/Others) and blocks to actual apartment blocks in a sales launch. In general,
such partitions could be based on any criterion such as gender, profession, geographical
location, or suchlike. For our theoretical analysis, we consider the idealized scenario where
we have a central planner who has access to the utilities of each agent for all items, and
determines an assignment that maximizes social welfare under type-block constraints.

An assignment of items to agents can be represented by a (0, 1)-matrix X = (xij)n×m
where xij=1 if and only if item j is assigned to agent i; a feasible solution is an assignment
in which each item is allocated to at most one agent, and each agent receives at most one
item, respecting the type-block capacities defined in (iv). We define the objective value (or
total utility) as the utilitarian social welfare, i.e. the sum of the utilities of all agents in
an assignment u(X) ,

∑
i∈N

∑
j∈M xiju(i, j). Clearly, this optimization problem can be

formulated as the following integer linear program:

max
∑
i∈N

∑
j∈M

xiju(i, j) (1)

s.t .
∑
i∈Np

∑
j∈Mq

xij ≤ λpq ∀p ∈ [k],∀q ∈ [l] (2)

∑
j∈M

xij ≤ 1 ∀i ∈ N (3)

∑
i∈N

xij ≤ 1 ∀j ∈M (4)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M (5)

where constraints (3-5) jointly ensure that X is a matching of items to agents, and inequal-
ities (2) embody our type-block constraints.

Finally, an instance of the decision version of AssignTC consists of parameters (i) to
(iv) in Definition 1, as well as a positive value U : it is a ‘yes’-instance iff there exists a
feasible assignment, satisfying constraints (2-5), whose objective value is at least U .

3 The Complexity of the Assignment Problem with
Type Constraints

Our first main result is that the decision problem we introduce in Section 2 is NP-complete.
We prove this by describing a polynomial-time reduction from the NP-complete Bounded
Color Matching problem [22], defined as follows:

Definition 2 (BCMatching). An instance of the Bounded Color Matching
(BCMatching) problem is given by (i) a bipartite graph G = (A ∪ B,E), where the set
of edges E is partitioned into r subsets E1, . . . , Er representing the r different edge colors,
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(ii) a capacity wt ∈ N for each color t ∈ [r], (iii) a profit πe ∈ Q+ for each edge e ∈ E, and
(iv) a positive integer P . It is a ‘yes’-instance iff there exists a matching (i.e. a collection
of pairwise non-adjacent edges) E′ ⊆ E such that the sum of the profits of all edges in the
matching is at least P , and there are at most wt edges of color t in it, i.e.

∑
e∈E′ πe ≥ P

and |E′ ∩ Et| ≤ wt for all t ∈ [r].

Theorem 1. The AssignTC problem is NP-complete.

Proof. That the problem is in NP is immediate: given an assignment, one can verify in poly-
time that it satisfies the problem constraints and compute total social welfare. Given an
instance 〈G; ~w;~π;P 〉 of BCMatching, we construct an instance of the AssignTC problem
as follows (see Example 2 for an illustration). Each edge e ∈ E is an agent, whose type is
its color. Items in our construction are partitioned into two blocks: M1 and M2. The items
in block M1 correspond to the vertices in B: there is one item jb for each node b ∈ B. For

every a ∈ A, we add deg(a)− 1 items j1a, . . . , j
deg(a)−1
a to M2, for a total of |E| − |A| items.

Thus, there is a total of m = |B| + |E| − |A| items. Block M1 accepts at most wp agents
of type Np, whereas block M2 has unlimited type-block capacity; in other words, λp1 = wp
and λp2 = min{|Np|, |M2|} for all p ∈ [k]. Given e = (a, b), we define the utility function of
agent e as follows:

u(e, j) =


πe if j = jb,

Φ if j = jsa for some s ∈ [deg(a)− 1],

0 otherwise.

Here, Φ is an arbitrarily large constant, e.g., Φ = 1+
∑
e∈E πe. Finally, let U = P +Φ(|E|−

|A|).
We begin by showing that if the original BCMatching instance is a ‘yes’ instance, then

so is our constructed AssignTC instance. Let E′ ⊆ E be a valid matching whose value is
at least P ; let us construct an assignment X of items to agents via E′ as follows. Observe
some node a ∈ A; if (a, b) ∈ E′ then we assign the item jb ∈ M1 to the agent (a, b); the
remaining deg(a)− 1 agents of the form (a, b′), with b′ ∈ B, are arbitrarily assigned to the

items j1a, . . . , j
deg(a)−1
a ∈ M2. If E′ contains no edges incident on a, then we arbitrarily

choose deg(a) − 1 edges incident on a and assign the corresponding agents to the items

j1a, . . . , j
deg(a)−1
a . We now show that this indeed results in a valid assignment satisfying the

type-block constraints.
First, by construction, every agent (a, b) is assigned at most one item. Moreover, since

E′ is a matching, every item jb ∈ M1 is assigned to at most one agent of the form (a, b);
hence, every item in M2 is assigned to at most one agent by construction.

Let E′p = Ep ∩E′ be the edges of color p in E′. Since matching E′ satisfies the capacity
constraints of the BCMatching instance, we have |E′p| ≤ wp for all p ∈ [k]; in particular,
the number of items in M1 assigned to agents of type p is no more than wp = λp1. Thus, the
type-block constraints for M1 are satisfied. On the other hand, the type-block constraints
for M2 are trivially satisfied. We conclude that our constructed assignment is indeed valid,
and satisfies the type-block constraints.

Finally, we want to show that total social welfare exceeds U the prescribed bound. Let
us fix a node a ∈ A. By our construction, if the edge e = (a, b) is in the matching E′, then
agent e is assigned the item jb for a utility of πe. Thus the total welfare of agents in E′

equals
∑
e∈E′ πe, which is at least P by choice of E′. In addition, for every a ∈ A, there

are exactly deg(a) − 1 agents assigned to items in M2 for a total utility of Φ(deg(a) − 1).
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Summing over all a ∈ A, we have that the total utility derived by agents in E \ E′ is

∑
a∈A

Φ(deg(a)− 1) = Φ

(∑
a∈A

deg(a)−
∑
a∈A

1

)
= Φ(|E| − |A|).

Putting it all together, we have that the total utility obtained by our assignment is at least
P + Φ(|E| − |A|) = U .

Next, we assume that our constructed AssignTC instance is a ‘yes’ instance, and show
that the original BCMatching instance must also be a ‘yes’ instance. Let X be a con-
strained assignment whose social welfare is at least U = P + Φ(|E| − |A|). Let E′ be the
set of edges correponding to agents (a, b) assigned to items in M1; we show that E′ is a
valid matching whose value is at least P . First, for any b ∈ B, X must assign the item jb
to at most one agent e ∈ E′. Next, since Φ is greater than the total utility obtainable from

assigning all items in M1, it must be the case that X assigns all items j1a, . . . , j
deg(a)−1
a to

deg(a) − 1 agents of the form (a, b), with b ∈ B, for every node a ∈ A; thus, there can be
one edge in E′ that is incident on a for every a ∈ A. Next, since X satisfies the type-block
constraints, we know that for every p ∈ [k], there are at most λp1 = wp agents from Ep
that are assigned items in M1; thus, E′ satisfies the capacity constraints. Finally, the utility
extracted from the agents assigned to items in M2 is exactly Φ(|E| − |A|); the total utility
of the matching X is at least U = P + Φ(|E| − |A|), thus E′ has a total profit of at least P
in the BCMatching instance.

Example 2. In Figure 1, the graph G = (A∪B,E1∪E2), with A = {a1, a2}, B = {b1, b2, b3},
E1 = {(a1, b1), (a2, b2)} and E2 = {(a1, b2), (a2, b1), (a2, b3)}, is an instance of the
BCMatching problem; edge labels are profits. The associated instance of the AssignTC
problem is defined by N = N1 ∪ N2 and M = M1 ∪M2, where N1 = {(a1, b1), (a2, b2)},
N2 = {(a1, b2), (a2, b1), (a2, b3)}, M1 = {jb1 , jb2 , jb3} and M2 = {j1a1 , j

1
a2 , j

2
a2}; the utility of

an agent for an item is equal to 0 if there is no edge between them, to Φ if the edge is dashed,
and to the edge label otherwise.

a1

a2

b1

b2

b3

2

6

3 1

4

jb1

jb2

jb3

(a1, b1)

(a1, b2)

(a2, b1)

(a2, b2)

(a2, b3)

j1a1

j1a2

j2a2

2

3

6

1

4

Figure 1: A reduction from BCMatching to AssignTC.
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3.1 A Polynomial-Time Constant Factor Approximation Algo-
rithm

Having established that the AssignTC problem is computationally intractable in gen-
eral, we next present an efficient constant-factor approximation algorithm: we construct an
approximation-preserving reduction [35] — in fact, an S-reduction [17] – from this problem
to the BCMatching problem (Definition 2), for which a polynomial-time approximation
algorithm is known.

Theorem 3. There exists a poly-time 1
2 -approximation algorithm for AssignTC.

Proof. Given an instance of the AssignTC problem, we define a complete bipartite graph
whose nodes correspond to the sets of agents N and items M , and give the edge joining
agent-node i to item-node j a profit equal to the utility u(i, j) for all i ∈ N , j ∈ M . We
also give all edges joining agents of one type to items in one block the same color, so that
there are kl colors indexed lexicographically by pairs (p, q) ∈ [k] × [l]; let the capacity for
color (p, q) be λpq. This produces, in O(mn) time, an instance of BCMatching; the size
of this instance is obviously polynomial in that of the original, and, by construction, there
is a one-to-one correspondence between the sets of feasible solutions of the original and
reduced instances with each corresponding pair having the same objective value (sum of
edge-profits/utilities), so that the optimal values of the instances are also equal. We can
now apply the polynomial-time 1

2 -approximation algorithm introduced by Stamoulis [2014]
for BCMatching on general weighted graphs.

Theorem 3 offers a 1
2 -approximation to the AssignTC problem; whether a better poly-

time approximation algorithm exists is left for future work.

3.2 Uniformity Breeds Simplicity: Polynomial-Time Special Cases

Our results thus far make no assumptions on agent utilities; as we now show, the AssignTC
problem admits a poly-time algorithm under some assumptions on the utility model.

Definition 3 (Type-uniformity and Block-uniformity). A utility model u is called type-
uniform if all agents of the same type have the same utility for an item, i.e. for all p ∈ [k]
and for all j ∈ M , there exists Upj ∈ R+ such that u(i, j) = Upj for all i ∈ Np. A utility
model u is called block-uniform if all items in the same block offer the same utility to an
agent; that is, for all q ∈ [l] and for all i ∈ N , there exists Uiq ∈ R+ such that u(i, j) = Uiq
for all j ∈Mq.

Type uniformity assumes a strong correlation between agents’ type and utility. In the
context of the HDB allocation problem, type uniformity implies that Singaporeans of the
same ethnicity share the same preferences over apartments (perhaps due to cultural or
socioeconomic factors). Cases that deal with uniform goods satisfy the block-uniformity
assumption: e.g. students applying for spots in public schools or job applicants applying
for multiple (identical) positions; in the HDB domain, block-uniformity captures purely
location-based preferences, i.e. a tenant does not care which apartment she gets as long as
it is in a specific block close to her workplace, family, or favorite public space.

Theorem 4. The AssignTC problem can be solved in poly(n,m) time under either a type-
uniform or a block-uniform utility model.

We prove Theorem 4 for a type-uniform utility model in Appendix A; the result for
block-uniform utilities can be similarly derived. The key idea is that, under type-uniformity,
the problem instance admits a flow network formulation, and we can solve it by solving n
instances of the Minimum-Cost Flow problem, which is known to be solvable in polynomial
time, on this network.
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4 The Price of Diversity

We now turn to the allocative efficiency of the constrained assignment. As before, an instance
of the AssignTC problem is given by a set of n agents N partitioned into types N1, . . . , Nk,
a set of m items M partitioned into M1, . . . ,Ml, a list of capacity values (λpq)k×l, and agent
utilities for items given by u = (u(i, j))n×m. We denote the set of all assignments X of items
to agents satisfying only the matching constraints (3-5) of Section 2 by X , and that of all
assignments additionally satisfying the type-block constraints (2) by XC ; the corresponding
optimal social welfares for any given utility matrix (u(i, j))n×m are:

OPT (u) , max
X∈X

u(X); OPTC(u) , max
X∈XC

u(X).

Clearly, OPTC(u) ≤ OPT (u) since XC ⊆ X ; we define the following natural measure of
this welfare loss that lies in [1,∞]:

Definition 4. For any instance of the AssignTC problem, we define the Price of Diversity
as follows, along the lines of Ahmed et al. [2017] and Bredereck et al. [2018]:

PoD(u) , OPT (u)/OPTC(u).

The main result of this section is to establish an upper bound on PoD(u) that is inde-
pendent of the utility model. Denote the ratio of a type-block capacity to the size of the
corresponding block by:

αpq , λpq/|Mq|.

Theorem 5. For any instance of AssignTC, the tight upper bound on PoD(u) is
1/min(p,q)∈[k]×[l] αpq.

In general, the bound in Theorem 5 grows linearly in m (e.g. if the capacities λpq are fixed
constants). However, type-block capacities are determined by a central planner in our model;
a natural way of setting them is to fix the proportional capacities or quotas αpq in advance,
and then compute λpq = αpq × |Mq| when block sizes become available: by committing to a
fixed minimum type-block quota α∗ (i.e. αpq ≥ α∗ for all (p, q) ∈ [k]× [l]), the planner can
ensure a PoD(u) of at most 1/α∗, regardless of the problem size and utility function. Higher
values of α∗ reduce the upper bound on PoD(u) but also increase the capacity of a block for
every ethnicity, potentially affecting the diversity objective adversely: it thus functions as a
tunable tradeoff parameter between ethnic integration and worst-case welfare loss. In fact, in
the Singapore allocation problem, the Ethnic Integration Policy fixes a universal percentage
cap for each of the three ethnicities in all blocks; these percentages are set slightly higher
than the actual respective population proportions: the current block quotas αpq are 0.87 for
Chinese, 0.25 for Malays and 0.15 for Indian/Others [18]; plugging in these to the bound
in Theorem 5, we have that the Singapore housing system has PoD(u) ≤ 6.67. This bound
makes no assumptions on agent utilities; in other words, it holds under any utility model.

The proof relies on the following lemma. Given an assignment X ∈ X , let up(X) denote
the total utility of agents in Np under X:

up(X) ,
∑
i∈Np

∑
j∈M xiju(i, j).

Lemma 1. For any instance of AssignTC and any optimal unconstrained assignment
X∗ ∈ X , we have:

PoD(u) ≤ u(X∗)/
[∑

p∈[k] up(X
∗) minq∈[l] αpq

]
.
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Proof. Based on the optimal assignment X∗, we can construct an assignment X ∈ XC
satisfying the type-block constraints, by ‘revoking’ items in Mq from agents in Np whenever
the type-block constraint is violated for (p, q). By revoking from agents with the smallest
utilities, we ensure that at least αpq proportion of the utility remains under X for (p, q).
Summing over blocks, we obtain:

up(X) ≥ up(X∗) minq∈[l] αpq ∀p ∈ [k]. (6)

Hence, since X ∈ XC , we have PoD(u) ≤ u(X∗)/u(X) where u(X) =
∑
p∈[k] up(X). Com-

bining this with inequality (6) gives is the required result.

We can now complete the proof of the theorem.

Proof of Theorem 5. Since min(p,q)∈[k]×[l] αpq ≤ minq∈[l] αp′q for all p′ ∈ [k], Lemma 1 im-
mediately implies that PoD(u) ≤ 1/min(p,q)∈[k]×[l] αpq. Depending on the utility matrix u,
this upper bound can be tight whenever |Np0 | ≥ |Mq0 | for some type-block pair (p0, q0) in
the set argmin(p,q)∈[k]×[l] αpq. We identify a utility matrix for which the bound holds with
equality:

u(i, j) =

{
1 if i ∈ Np0 and j ∈Mq0 ,

0 otherwise.

The optimal assignment without type-block constraints fully allocates the items in block
Mq0 to agents in Np0 for a total utility of |Mq0 |; furthermore, we know that any optimal
constrained assignment allocates exactly λp0q0 items in Mq0 to agents in Np0 for a total
utility of λp0q0 . Since λp0q0 = αp0q0 × |Mq0 |, we have: PoD(u) = |Mq0 |/λp0q0 = 1/αp0q0 =
1/min(p,q)∈[k]×[l] αpq.

4.1 The Impact of Ethnic Disparity

Theorem 5 offers a worst-case tight bound on the price of diversity, making no assumptions
on agent utilities. However, its proof suggests that this upper bound is attained when social
welfare is solely extracted from a single agent type and a single block. Intuitively, we can
obtain a better bound on the price of diversity if a less ‘disparate’ optimal assignment exists.
To formalize this notion, we introduce a new parameter:

Definition 5. For an optimal unconstrained assignment X∗ ∈ X , denote by βp(X
∗) the

ratio of the average utility of agents in Np to the average utility of all agents under X∗. The
inter-type disparity parameter β(X∗) is defined as:

β(X∗) , minp∈[k] βp(X
∗) = minp∈[k]

up(X
∗)/|Np|

u(X∗)/n .

Notice that β(X∗) ∈ (0, 1] can be computed in polynomial time and is fully independent
of the type-block capacities. The closer β(X∗) is to 1, the lower the disparity between
average agents of different types under X∗.

Theorem 6. For any AssignTC instance and any unconstrained optimal assignment X∗ ∈
X , we have:

PoD(u) ≤ 1/
[
β(X∗)

∑
p∈[k]

|Np|
n minq∈[l] αpq

]
.

Proof. By definition of β(X∗), we have, for every p ∈ [k], up(X
∗) ≥ β(X∗)

|Np|
n u(X∗).

Substituting this in Lemma 1, we obtain the desired bound.
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Let us now apply the result to the Singapore public housing domain; we use the ethnic
proportions reported in the 2010 census report [19] to obtain |N1|/n = 0.741 (Chinese),
|N2|/n = 0.134 (Malay), and |N3|/n = 0.125 (Indian/Others). Using the same block quotas
αpq as before and assuming β(X∗) = 1, we have PoD(u) ≤ 1.43. In general, by Theorems 5
and 6, if we plot the PoD(u) against the disparity parameter β(X∗), the point corresponding
to any AssignTC instance with above block quotas and ethnic proportions must lie in the
shaded region of Figure 2.

β(X∗)

PoD(u)

0 |
1

−6.67

−1

1.43/β(X∗)

Figure 2: PoD vs disparity parameter for the HDB problem.

5 Experimental Analysis

We simulate instances of the AssignTC problem using recent Singaporean demographic
and housing allocation statistics. We compare the welfare of three assignment mechanisms:
the optimal unconstrained mechanism, the optimal constrained mechanism, and the lottery-
based mechanism used by HDB.

5.1 Data Collection

In order to create realistic instances of the AssignTC problem within the Singaporean con-
text, we collect data on the location and number of flats in recent HDB housing development
projects advertised over the second and third quarters of 20172. Each of these developments
corresponds to a block in our setup, for a total of m = 1350 flats partitioned into l = 9 blocks
(a detailed map is given in Figure 3). We consider a pool of n = 1350 applicants whose
ethnic composition follows the 2010 Singapore census report [19]: we have |N1| = 1000
(≈ 74.1% Chinese), |N2| = 180 (≈ 13.4% Malay) and |N3| = 170 (≈ 12.5% Indian/Others).
Finally, we use a uniform block capacity using the latest HDB block quotas [18]: for every
block Mq, we have α1q = 0.87, α2q = 0.25 and α3q = 0.15.

5.2 Utility Models

All parameters used to generate AssignTC instances in our simulations are based on real
data, except for agent utilities over apartments. Conducting large-scale surveys that elicit
user preferences over apartments is beyond the scope of this work; thus, we base our agent
utility models on simulated utilities. We examine two types of utility models: distance based
(Dist(σ2)) and ethnicity based (Ethn(σ2)). In distance-based utilities, each agent i ∈ N has
a preferred geographic location ~ai ∈ R2 (chosen uniformly at random within the physical

2http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/bto-sbf
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M2

M1

M4

M7

M5
M6

M3

M9 M8

• M1: Sky Vista (128 flats)

• M2: West Scape (162 flats)

• M3: Rivervale Shores (156 flats)

• M4: Marsiling Grove (249 flats)

• M5: Woodlands Spring (108 flats)

• M6: Forest Spring (94 flats)

• M7: Woodleigh Hillside (104 flats)

• M8: Dakota Breeze (190 flats)

• M9: Pine Vista (159 flats)

Figure 3: Block locations and number of flats.

σ2

−1

|
1

|
5

|
10

1.00
1.18

1.49

1.00

1.13

1.48

1.00

1.09

1.47

σ2

−1

|
1

|
5

|
10

1.20
1.26

1.81

1.11
1.20

1.64

1.06

1.16

1.56

Figure 4: Utility losses for Dist(σ2) (left) and Ethn(σ2) (right).

landmass of Singapore) that she would like to live as close as possible to (say, the location
of her parents’ apartment, workplace or preferred school). For every block Mq, the utility
agent i derives from apartments j ∈ Mq is generated according to a normal distribution
N (1/d(~ai, loc(Mq)), σ

2); here, loc(Mq) is the geographical location of block Mq, and d(·)
is the Euclidean distance between ~ai and loc(Mq). For the ethnicity based utility model,
we assume that all persons of the same ethnicity have the same preferred location (i.e.
∀p ∈ [k],∀i, i′ ∈ Np,~ai = ~ai′).

5.3 Evaluation

For both utility models, we vary σ2 in {1, 5, 10}; the results reported in Figure 4 are on
average performance over 100 randomly generated instances. For each treatment, we report
the realized PoD(u) (green), the theoretical upper bound on PoD(u) as per Theorem 6
(blue), and the relative loss of the HDB lottery mechanism averaged over 50 runs (red).

We first observe that the Dist(σ2) exhibits virtually no utility loss due to the imposi-
tion of type-block constraints. This is because utilities generated according to the Dist(σ2)
model are independent of ethnicities, resulting in a very low value for the inter-type disparity
parameter (the blue column) — in fact, for any utility model where utilities are independent
of ethnicities, the expected value of the disparity parameter should be 1. For utilities gen-
erated based on the Ethn(σ2) model, the disparity parameter is somewhat higher (utilities
do strongly depend on ethnicity), resulting in a higher PoD(u). Despite making no attempt
to optimize social welfare under type-block constraints, the HDB lottery mechanism does
surprisingly well, extracting approximately 85% of the optimal unconstrained welfare under
the Dist(σ2) utility model, and at least 79% of the social welfare under the Ethn(σ2) model.
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6 Conclusions and Future Work

Our work constitutes a first step towards a better understanding of the effect that di-
versity constraints have on social welfare. We offer computational insights, providing a
general hardness result, sufficient conditions for tractability, and a 1

2 -approximation algo-
rithm for AssignTC. Our S-reduction essentially shows that AssignTC is a special (still
NP-complete) case of BCMatching and, although the question of a better approximation
remains open, also implies some easy generalizations of our results. For example, there
is a PTAS for BCMatching if one allows (1 + ε)-violations of the color constraints [23];
this immediately implies a PTAS for AssignTC where one allows (1 + ε)-violations of the
type-block constraints.

We derive two upper bounds on the price of diversity defined as the ratio of the optimal
welfare achievable with and without type-block constraints: the first is in terms of block
quotas only, independent of the utility model, hence under the planner’s control; the second
is parametrized in terms of inter-type disparity, which shows that when the disparity is low,
the welfare loss is much closer to its ideal value of 1 than the first bound would suggest.

We analyze our model’s behavior in simulation: the fundamental experimental framework
is based on Singapore census and HDB sales data. Simulating agent utilities is still a
major challenge: ideally, one would elicit applicants’ utilities directly via large-scale national
surveys. Our simulations tested two ‘extreme’ cases: one where there is no correlation
between ethnicity and utility, and one where utility was artificially correlated to ethnicity.
The truth is likely somewhere in between. Ethnic groups in Singapore most likely do have
some correlation between their utility models; this can be due to socioeconomic factors (there
is some correlation between ethnicity and socioeconomic status), the location of cultural or
religious centers, or other unknown factors. Developing a more refined utility model is an
interesting direction for future work.

Obviously, the HDB lottery mechanism cannot offer a better welfare than the allocation
based on constrained optimization under known utilities; but, in our experiments, it does
not perform significantly worse for the utility models we considered.

While our motivating problem is important in its own right, it is by no means an exclu-
sive case where diversity constraints can have an effect on social welfare. Two immediate
application domains are course allocation (with student capacity constraints), and public
school allocation (with neighborhood location constraints).

Finally, our results describe an inevitable tradeoff between diversity and social welfare;
however, we would like to strongly emphasize that this does not constitute a moral judgment
on the authors’ part. Economic considerations are certainly important, but they are by no
means an exclusive nor a first order consideration. That said, understanding the impact of
diversity constraints on social welfare is key if one is to justify their implementation.
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Department of Computer Science, 2004. Supervised by Andreas Weißl.

[11] Anand Bhalgat, Deeparnab Chakrabarty, and Sanjeev Khanna. Social welfare in one-
sided matching markets without money. In Proceedings of the 14th International Work-
shop and 15th International Conference on Approximation, Randomization, and Com-
binatorial Optimization: Algorithms and Techniques (APPROX/RANDOM), pages 87–
98. 2011.
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Appendix A Proof of Theorem 4

For a utility matrix satisfying type-uniformity (see Definition 3), we propose a polynomial
time algorithm based on the Minimum-Cost Flow problem which is known to be solvable
in polynomial time. Recall that a flow network is a directed graph G = (V,E) with a
source node s ∈ V and a sink node t ∈ V , where each arc (a, b) ∈ E has a cost γ(a, b) ∈ R
and a capacity ψ(a, b) > 0 representing the maximum amount that can flow on the arc;
for convenience, we set γ(a, b) = 0 and ψ(a, b) = 0 for all a, b ∈ V such that (a, b) 6∈ E.
Let us denote by Γ and Ψ the matrices of costs and capacities respectively defined by Γ =
(γ(a, b))|V |×|V | and Ψ = (ψ(a, b))|V |×|V |. A flow in the network is a function f : V ×V → R+

satisfying:

(i) f(a, b) ≤ ψ(a, b) for all a, b ∈ V (capacity constraints),

(ii) f(a, b) = −f(b, a) for all a, b ∈ V (skew symmetry), and

(iii)
∑
b∈V f(a, b) = 0 for all a ∈ V \{s, t} (flow conservation).

The value v(f) of a flow f is defined by v(f) =
∑
a∈V f(s, a) =

∑
a∈V f(a, t) and its cost

γ(f) is equal to
∑

(a,b)∈E f(a, b)γ(a, b). The optimization problem can be formulated as

follows. Given a value F , find a flow f that minimizes the cost γ(f) subject to v(f) = F .
This optimization problem that takes as input the graph G = (V,E), the matrices Γ and Ψ,
and the value F , will be denoted by MinCostFlow hereafter; given an instance 〈G; Γ; Ψ;F 〉
of the MinCostFlow problem, we let γ(G,Γ,Ψ, F ) be the cost of the optimal flow for that
instance.

Given an instance I of AssignTC, we construct a flow network GI(V,E) and matrices
ΓI and ΨI as follows (see Figure 5 for an illustration). The node set V is partitioned into
layers: V = {s}∪A∪B∪C∪{t}. A is the agent type layer: there is one node ap ∈ A for each
agent type Np, p ∈ [k]. B is the type-block layer: it has a node bpq ∈ B for every type-block
pair (p, q) ∈ [k] × [l]. Finally, C is the item layer: there is one node cj ∈ C for all items
j ∈ M . The arcs in E are as follows: for every ap in A, there is an arc from s to ap whose
capacity ψ(s, ap) is |Np|. Fixing p ∈ [k], there is an arc from ap ∈ A to every bpq ∈ B, where
the capacity of (ap, bpq) is the quota for type Np in block Mq (i.e. ψ(ap, bpq) = λpq). Finally,
given q ∈ [l], there is an arc from bpq to cj iff j ∈ Mq; in that case, we have ψ(bpq, cj) = 1.
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The costs associated with arcs from B to C (i.e. arcs of the form (bpq, cj) where j ∈Mq) are
−Upj ; recall that Upj is the utility that every agent of type Np assigns to item j. All other
arc costs are set to 0. We begin by proving a few technical lemmas on the above network.

Given a positive integer F , there exists an optimal flow that is integer-valued since
〈GI ; ΓI ; ΨI ;F 〉 is integer-valued as well. Let f∗ be an integer-valued optimal flow, taken
over all possible values of F ; that is:

f∗ ∈ argmin
F∈[n]

γ(GI ,ΓI ,ΨI , F ) (7)

Finding the flow f∗ involves solving n instances of MinCostFlow by definition; thus, one
can find f∗ in polynomial time. Given f∗ as defined in (7), let X∗ = (x∗ij)n×m be defined
as follows: for every item j ∈ Mq, if f∗(bpq, cj) = 1 for some p ∈ [k], then we choose an
arbitrary unassigned agent i ∈ Np and set x∗ij = 1.

Lemma 2. X∗ is a feasible solution of the AssignTC instance I.

Proof. First, we assign at most one item to every agent by construction; next, let us show
that each item j ∈ Mq is assigned to at most one agent. Since f∗ is a flow, we have∑k
p=1 f

∗(bpq, cj) = f∗(cj , t) due to flow conservation; note that the capacity of the arc
(cj , t) is 1, thus at most one arc (bpq, cj) has f∗(bpq, cj) = 1. Finally, since item j is assigned
to an agent in Np iff f∗(bpq, cj) = 1, we conclude that item j is assigned to at most one of
the agents in N .

Next, let us prove that assignment X∗ satisfies the type-block constraints; in other words,
we need to show that: ∑

i∈Np

∑
j∈Mq

x∗ij ≤ λpq, ∀p ∈ [k],∀q ∈ [l] (8)

Since f∗ is a flow, we have f∗(ap, bpq) =
∑
j∈Mq

f∗(bpq, cj) for every pair (p, q) ∈ [k] × [l]

due to flow conservation; moreover, we have f∗(ap, bpq) ≤ ψ(bpq, cj) = λpq by construction.
Therefore, we necessarily have

∑
j∈Mq

f∗(bpq, cj) ≤ λpq for all p ∈ [k]. Since an item j ∈Mq

is matched with some agent i ∈ Np if and only if we have f∗(bpq, cj) = 1, we conclude that
(8) indeed holds.

Now, let us establish a relation between the cost of f∗ and the utility of the feasible
assignment X∗.

Lemma 3. The cost of the flow f∗ satisfies γ(f∗) = −u(X∗).

Proof. By construction, the cost of f∗ can only be induced by arcs from nodes in B to nodes
in C, where the cost of all arcs of the form (bpq, cj), with j ∈ Mq, is equal to −Upj (the
negative of the uniform utility derived from item j by members of Np). In other words, the
cost of f∗ can be written as follows:

γ(f∗) = −
k∑
p=1

l∑
q=1

∑
j∈Mq

f∗(bpq, cj)Upj

As previously argued, we have that f∗(bpq, cj) ∈ {0, 1} for all arcs (bpq, cj); moreover,
f∗(bpq, cj) = 1 iff item j is assigned to some agent in Np. Therefore, we obtain:

γ(f∗) = −
k∑
p=1

∑
i∈Np

∑
j∈M

x∗ijUpj = −
∑
i∈N

∑
j∈M

x∗iju(i, j) = −u(X∗)

where the second equality holds since all agents in Np have the same utility by assumption.
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Figure 5: Network flow constructed for the proof of Theorem 4; in this case, we have 2 types
and 2 blocks: M1 = {1, 2} and M2 = {3, 4, 5}. Arc capacities are given in red. All arcs have
a cost of 0, except those between bpq ∈ B and cj ∈ C whose cost equals −Upj .

Finally, we show that for every feasible solution to the AssignTC instance I, there
exists a flow with a matching cost.

Lemma 4. Let X be a feasible assignment for the AssignTC instance I; there exists some
feasible flow f such that γ(f) = −u(X). Moreover, we have v(f) = |{i ∈ N :

∑
j∈M xij =

1}|.

Proof. Given a feasible assignment X = (xij)n×m, we define f : V × V → R+ as follows:

f(s, ap) =
∑
i∈Np

∑
j∈M xij ∀ap ∈ A

f(ap, bpq) =
∑
i∈Np

∑
j∈Mq

xij ∀(ap, bpq) ∈ E
f(bpq, cj) =

∑
i∈Np

xij ∀(bpq, cj) ∈ E
f(cj , t) =

∑
i∈N xij ∀cj ∈ C

f(a, b) = −f(b, a) ∀(a, b) ∈ E
f(a, b) = 0 ∀(a, b) /∈ E

The function f is indeed a flow: f trivially verifies the skew symmetry condition by con-
struction; next, we show that f satisfies flow conservation. For all ap ∈ A, the incoming flow
to node ap from node s is f(s, ap) =

∑
i∈Np

∑
j∈M xij , and the outgoing flow to every bpq

is
∑l
q=1 f(ap, bpq) =

∑
i∈Np

∑
j∈M xij since M is partitioned into M1, . . . ,Ml; hence flow is

conserved. For a node bpq ∈ B, the incoming flow equals f(ap, bpq) =
∑
i∈Np

∑
j∈Mq

xij
and an amount of f(bpq, cj) =

∑
i∈Np

xij flows to every node cj such that j ∈ Mq,
thus flow is conserved. For a node cj ∈ C such that j ∈ Mq, its incoming flow equals

f(bpq, cj) =
∑
i∈Np

xij from every bpq, for a total flow of
∑k
p=1

∑
i∈Np

xij , which equals its
outgoing flow to t. To conclude, f satisfies flow conservation.

Now let us prove that f satisfies the capacity constraints (i.e. f(a, b) ≤ ψ(a, b) for all
arcs (a, b) ∈ E). For all (s, ap) ∈ E, we have f(s, ap) =

∑
i∈Np

∑
j∈M xij ≤ |Np| = ψ(s, ap)

since every agent i ∈ Np is matched with at most one item. For all (ap, bpq) ∈ E, we
have f(ap, bpq) =

∑
i∈Np

∑
j∈Ml

xij ≤ λpq = ψ(ap, bpq) since X satisfies the type-block

constraints. For all arcs (bpq, cj) ∈ E, we have f(bpq, cj) =
∑
i∈Np

xij ≤ 1 = ψ(bpq, cj)

since item j is matched with at most one of the agents in Np. For all (cj , t) ∈ E, we have
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f(cj , t) =
∑
i∈N xij ≤ 1 = ψ(cj , t) since item j is matched with at most one of the agents

in N . Hence, f satisfies the capacity constraints and is a valid flow. Note that we have:

v(f) =
∑
a∈V

f(s, a) =

k∑
p=1

f(s, ap) =

k∑
p=1

∑
i∈Np

∑
j∈M

xij =
∑
i∈N

∑
j∈M

xij

Then, since X is a feasible assignment of the AssignTC instance I, we conclude that
we have v(f) = |{i ∈ N :

∑
j∈M xij = 1}|. We just need to prove that we have

γ(f) = −u(X), and we are done. By definition of the flow network, only arcs of
the form (bpq, cj) contribute to the cost γ(f) and we have γ(bpq, cj) = −Upj ; there-
fore, γ(f) = −

∑
(bpq,cj)∈E f(bpq, cj)Upj . Since f(bpq, cj) =

∑
i∈Np

xij (by definition of

f) and u(i, j) = Upj for all agents i ∈ Np (by hypothesis), we finally obtain γ(f) =

−
∑
j∈M

∑k
p=1

∑
i∈Np

xiju(i, j)=−
∑
j∈M

∑
i∈N xiju(i, j) = −u(X).

We are now ready to prove Theorem 4.

Proof of Theorem 4. We begin by observing the flow f∗ as defined in (7), and the assignment
X∗ derived from it. First, according to Lemma 2, X∗ is a feasible assignment of the
AssignTC instance I. Moreover, we have u(X∗) = −γ(f∗) according to Lemma 3. Finally,
for any feasible assignment X of the AssignTC instance I, there exists a flow f such that
γ(f) = −u(X); furthermore, since v(f) = |{i ∈ N :

∑
j∈M xij = 1}| ∈ [n], flow f is a feasible

solution of the MinCostFlow instance 〈GI ; ΓI ; ΨI ;F 〉 for some F ∈ [n]. Therefore, we
have:

u(X) = −γ(f) ≤ −γ(GI ,ΓI ,ΨI , v(f)) ≤ −γ(f∗) = u(X∗)

Thus, X∗ is an optimal solution of the AssignTC instance I; since X∗ can be computed
in poly-time, this completes the proof for type-uniformity. Due to the symmetry of the
problem, the proof for block-uniformity is analogous, hence omitted.
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