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Abstract

Abstract argumentation frameworks are a well-established formalism to model nonmonotonic
reasoning processes. However, Dung’s model [19] cannot express incomplete or conflicting
knowledge about the state of a given argumentation. In previous work [8, 6, 7] we considered
incomplete argumentation frameworks which allow uncertainty regarding the set of attacks,
the set of arguments, or both. Different semantics are used in order to identify sets of strong
arguments. An important task is to verify whether a given set of arguments fulfills the criteria
for a given semantics. We complement existing results on the complexity of variants of the
verification problem in incomplete argumentation frameworks and provide a full complexity
map covering all three models and all classical semantics.

1 Introduction

Within the field of artificial intelligence, abstract argumentation frameworks have emerged as a
prominent methodology to represent and evaluate nonmonotonic logics. They allow to create a
simple, directed graph from a defeasible knowledge base that consists of only arguments (nodes) and
attacks (directed edges), then to identify sets of “acceptable” arguments in that graph, and finally
to interpret these arguments’ conclusions as models in the knowledge base. In this framework,
when evaluating which arguments are acceptable in the graph, the internal structure of arguments is
neglected, which accounts for the simplicity of the formalism.

Since Dung [19] introduced his seminal model, many model extensions of argumentation frame-
works have been proposed that allow to capture a wider and more fine-grained range of applications.
This paper continues a line of research aimed at expressing unquantified uncertainty about the ex-
istence of elements in an argumentation framework. Such qualitative uncertainty about the state
of an argumentation framework was introduced by Coste-Marquis et al. [16] for the set of attacks.
Baumeister et al. [8] propose an extended model that allows uncertainty about the set of arguments,
or about both attacks and arguments. In applications, such incomplete argumentation frameworks
may arise as intermediate states in an elicitation process, or when merging or aggregating different
beliefs (i.e., the agents’ individual, subjective views) about an argumentation framework’s state, or
in cases where complete information cannot be obtained. The main goal of this paper is to exam-
ine how the complexity of verifying certain semantics (expressing which subsets of the arguments
are acceptable in various ways) changes when asking whether they are satisfied possibly (in some
completion of the incomplete graph) or necessarily (in all its completions). This approach has al-
ready been taken in various areas of computational social choice: in voting by, e.g., Konczak and
Lang [25], Xia and Conitzer [36], Chevaleyre et al. [15], and Baumeister et al. [3, 4]; in fair division
by Bouveret et al. [12] and Baumeister et al. [9]; in algorithmic game theory by Lang et al. [26]; and
in judgment aggregation by Baumeister et al. [5]. However, this approach is new to argumentation
theory: In two of this paper’s predecessors, Baumeister et al. [6, 7] were the first to define and study
possible and necessary verification for certain semantics in incomplete argumentation frameworks,
and they continued this line of research in their recent work [10]. The present paper merges and
extends these preliminary versions.

A large body of previous work in abstract argumentation addresses guantitative uncertainty
about the state of a given argumentation by using probabilities. Fuzzy argumentation frame-
works [24] replace the attack relation with a fuzzy relation, where each individual attack has a



fuzzy value in [0, 1] that represents the degree to which this attack holds. In a fuzzy argumentation
framework, for two sets of arguments, the degree to which they attack each other can be determined.
In probabilistic argumentation frameworks, Li et al. [27] assume that a probability distribution over
both arguments and attacks is given. Other approaches associate a probability with each set of ar-
guments [20, 31] to indicate whether all and only these arguments are active, or with each spanning
subtree of the argument graph [23] to indicate that all and only the attacks contained in that sub-
tree are active. In all these models, an interesting question is to determine the probability for a set
of arguments to be acceptable. A different branch of research on probabilistic argumentation uses
probabilities to represent the epistemic state of arguments, attacks, or sets of arguments, i.e., the
belief in those elements (in terms of acceptance). Although technically similar, this approach has a
completely different purpose than ours, which is the representation of structural uncertainty.

Another field that raises similar questions is that of dynamic change of argumentation frame-
works. Previous work has examined how adding or deleting a set of arguments can alter the set of
acceptable sets of arguments [14, 11], the complexity of computing the acceptability of a single argu-
ment after changing the arguments or attacks [28], or enforcement of a set of arguments [2, 35, 17],
where the question is how much a given argumentation framework needs to be modified to make the
given set of arguments acceptable. Maher [29] studies a strategic version of enforcement, focusing
on resistance to corruption.

In the following, we give the required background in abstract argumentation (Section 2), intro-
duce incomplete argumentation frameworks as a generalization of attack- and argument-incomplete
argumentation frameworks (Section 3), followed by a full complexity analysis of verification in all
three models (Section 4), and we discuss our results and future tasks (Section 5).

2 Preliminaries

We start by defining argumentation frameworks due to Dung [19], mostly following the notation by
Dunne and Wooldridge [22].

Definition 1. An argumentation framework AF is a pair (<7, %) where <7 is a set of arguments and
% C of x of is a binary attack relation on the arguments. We say that a attacks b if (a,b) € %,
where a is called attacker and b target.

An argumentation framework AF = (&7, %) can be displayed as a directed graph G4r = (V,E)
by identifying arguments with vertices and attacks with directed edges: V = &/ and E = Z%.

Example 2. Figure 1 displays the graph representation of the argumentation framework AF =
(o \ R) with of = {a,b,c} and Z = {(c,a),(c,b)}.

(D)

Figure 1: A simple argumentation framework

The main objective in abstract argumentation is to identify sets of arguments that are simultane-
ously acceptable. Various semantics were defined in the literature that impose different acceptability
conditions for sets of arguments. We cover all semantics that were defined in the seminal paper by
Dung [19]. They are formalized in Definition 3, after introducing some necessary notions.

An argument a € & is defended by S C <7 if, for each b € 7 with (b,a) € %, there is a ¢ € S such
that (c,b) € . For an argumentation framework AF, the characteristic function Fpp : 27 — 2
maps each set S of arguments to the set of arguments that are defended by S, i.e., Fyr(S) = {a € o |
a is defended by S}. The characteristic function always has a least fixed point, since it is monotonic
with respect to set inclusion. Let F’ AkF denote the k-fold composition of Fyr, and let . denote the
infinite composition, which yields the fixed points of Fy.



Definition 3. Let AF = (<7, %) be an argumentation framework. A set S C o is conflict-free if
(a,b) ¢ Z for all a,b € S. A conflict-free set S C 7 is

o admissible if S C Fyp(S),

o complete if S = Fyr(S),

e grounded if S = F;;(0), i.e., § is the least fixed point of FyF,

o preferred if S C Fyp(S) and there is no admissible set ' O S, and
e stable if for every b € o7 \ S there is an a € S with (a,b) € Z.

Among these properties, conflict-freeness and admissibility are typically considered to be basic
requirements while the others are “real” semantics—for the sake of convenience, however, we will
not always distinguish between basic properties and semantics.

It is obvious that the grounded set is unique and complete and that every complete set is ad-
missible. The work of Dung [19] further provides that there always is a conflict-free, admissible,
complete, grounded, and preferred set, but there may be no stable set. Also, every stable set is
preferred, every preferred set is complete, and every admissible set is conflict-free.

Figure 2 displays all relations among the various semantics that we use. If an area labeled
with semantics s is fully included in an area labeled with semantics s, this indicates that in all
argumentation frameworks all sets of arguments that fulfill s also fulfill s'. The converse is not
necessarily true, i.e., all displayed set inclusions are strict. Further, none of the areas are disjoint, so
one and the same set of arguments might fulfill all semantics simultaneously.

conflict-free

admissible
preferred complete
M" grounded

Figure 2: Relations among various semantics for sets of arguments

We assume the reader to be familiar with the complexity classes of the polynomial hierarchy, in
particular, P, NP, coNP, and Zg = NPNP a5 well as the concepts of hardness and completeness. For
an introduction, see, e.g., the books by Papadimitriou [30] and Rothe [32].

Dunne and Wooldridge [22] defined decision problems regarding the existence or status of ac-
ceptable arguments. We focus on the verification problem s- VERIFICATION, which is parameterized
by one of the semantics (denoted s) defined above and asks whether for an argumentation frame-
work (o7, %) a given subset of the arguments is an extension of the argumentation framework with
respect to that semantics, i.e., whether it satisfies the conditions imposed by that semantics. As short-
hands, we may use CF for conflict-free, AD for admissible, CP for complete, GR for grounded, PR
for preferred, and ST for stable semantics. The problem PR-VERIFICATION was shown to be coNP-
complete by Dimopoulos and Torres [18], but Dung [19] established polynomial-time algorithms
for verifying the other semantics from Definition 3.



3 Incomplete Argumentation Frameworks

In our model of incomplete argumentation framework, both the set of arguments and the set of
attacks are split into a definite and a possible set, which represent the elements that are known to
exist, respectively, which may or may not exist.

Definition 4. An incomplete argumentation framework is a quadruple (.o ,.o7° %, %"), where </
and 7" are disjoint sets of arguments and % and %’ are disjoint subsets of (&7 U./?) x (o7 U&Z”).
<7 is the set of arguments that are known to definitely exist, while .7” contains all possible additional
arguments not (yet) known to exist. Similarly, Z is the set of attacks that are known to definitely
exist (as long as both incident arguments turn out to exist), while %’ contains all possible additional

attacks not (yet) known to exist.
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(a) An attack—incomplete AF (b) An argument-incomplete AF (c) An incomplete AF

Figure 3: Some examples of incomplete argumentation frameworks

Example 5. Figure 3 displays graph representations of three incomplete argumentation frameworks,
where definite elements are displayed as usual and possible elements are displayed as dashed circles
or arcs. Elements that are known to not exist are not displayed. The incomplete argumentation
framework in Figure 3a has no uncertainty regarding the arguments, while the one in Figure 3b
has no uncertainty regarding the attacks. The incomplete argumentation framework in Figure 3c
combines the uncertainty of the other two.

An incomplete argumentation framework (.«7,.27”,%,%") can be seen as a representation of
a finite universe of possible worlds, where each world corresponds to a single argumentation
framework (without uncertainty), in which each possible argument in .7” and each possible attack
in %’ is either included or excluded. Such an argumentation framework is called a completion of
(o, ", R, %"). When excluding a possible argument, all its incident attacks are also automatically
excluded: For a set o7* of arguments with o7 C o/* C o/ U.a7”, the restriction of a relation Z to
A8 B ={(a,b) € Z | a,b € F*}.

Definition 6. Let IAF = (o7, .o/", %, %") be an incomplete argumentation framework. An argumen-
tation framework JAF* = (&/*,%*) with & C &/* C o/ U/” and |y C B#* C (BUR") | p+ is
called a completion of IAF.

In general, the number of possible completions is exponential in the size of the incomplete argu-
? ? . . . .
mentation framework—it is at most 21% 1+l put may be slightly lower: Since excluding possible
arguments may implicitly also exclude possible attacks, it may be that some of the completions
coincide.

Example 7. Continuing Example 5, the incomplete argumentation frameworks in Figures 3a and
3b have 2° = 8 and 2? = 4 completions, respectively. The incomplete argumentation framework in
Figure 3c has 24 completions: 2% = 16 that include argument d, and another 23 = 8 that exclude d,
since, in the latter case, the attack (e,d) is not available.



In an incomplete argumentation framework JAF, we say that a property defined for standard
argumentation frameworks (e.g., a semantics) holds possibly if there exists a completion IAF* of
IAF for which the property holds, and a property holds necessarily if it holds for all completions of
IAF. Thus we can define two variants of the verification problem in the incomplete case for each
given semantics s:

s-INC-POSSIBLE-VERIFICATION (s-INCPV)

Given: An incomplete argumentation framework JAF = (o7, o/ ?,%,%?> andasetSC o/ U/,
Question:  Is there a completion JAF* = (o/*, %*) of IAF such that S|+ = SN.<7* is an s extension
of IAF*?

In the s-INC-NECESSARY- VERIFICATION (s-INCNV) problem the input is the same, but the
question is whether for all completions IAF* = (&/*, %*) of IAF, S|+ = SN.&/* is an s extension
of JAF*. Both problems are potentially harder than standard verification, since they add an exis-
tential (respectively, universal) quantifier over a potentially exponential space of solutions. Note
that these definitions of possible and necessary verification allow a subset of S—namely, S| +—to
be an extension. This follows the intuition that for S to be an extension, no element of S may be
unaccepted, but it is not harmful if elements of S are discarded. An alternative definition that strictly
requires S to be an extension could be obtained as a special case by restricting to instances where
SNe’ =0.

Incomplete argumentation frameworks are a generalization of both pure models of incomplete
argumentation frameworks. Fixing .27” = 0 in Definitions 4 and 6 yields exactly the class of attack-
incomplete argumentation frameworks as proposed by Coste-Marquis et al. [16] (and further stud-
ied by Baumeister et al. [6]), and fixing %’ = 0 yields exactly the class of argument-incomplete
argumentation frameworks as proposed by Baumeister et al. [7]. In attack-incomplete argumenta-
tion frameworks, the set of possible arguments can be omitted and it can be written as (<7, %, %").
Likewise, (<77, %) denotes a purely argument-incomplete argumentation framework. Also, there
are distinct possible and necessary variants of the verification problem for both pure models of in-
completeness, which were introduced by Baumeister et al [6, 7]. In the attack-incomplete model,
we write s-ATTINCPV and s-ATTINCNYV for possible and necessary verification, respectively, and
s-ARGINCPYV and s-ARGINCNYV in the argument-incomplete model.

4 Complexity of Possible and Necessary Verification

In this section, we complete the complexity analysis of possible and necessary verification in all
three presented models of incompleteness and for the conflict-free, admissible, stable, complete,
grounded, and preferred semantics. All results are summarized in Table 1 in Section 5. Since
general incomplete argumentation frameworks are a generalization of both individual models of
incompleteness, all upper complexity bounds for the general model carry over to both individual
models, and all lower complexity bounds for any of the individual models carry over to the general
model.

4.1 Upper Bounds
We start by a simple X4 upper bound for PR-INCPV.

Theorem 8. PR-INCPV is in X5.

Proof. The result follows directly from the quantifier representation of the problem. The standard
verification problem for the preferred semantics belongs to coNP; hence, it can be written as a
universal quantifier followed by a statement checkable in polynomial time. In the case of PR-INCPV,



this polynomial-time predicate is preceded first by an existential quantifier (guessing a completion)
and then a universal quantifier (verifying preferredness) yielding Zé' membership. O

We turn to proving P membership for the remaining open problems, starting with AD-INCNV
and ST-INCNV.

Theorem 9. AD-INCNYV and ST-INCNYV both are in P.

Proof. Let (IAF,S) with IAF = (o/,o/°,%,%") be an instance of AD-INCNV. Let JAF{" =
(o, " F") with ZL” = % U{(a,b) € Z* | b € S} be the pessimistic argument-incomplete
argumentation framework obtained when eliminating attack incompleteness by including each and
only those attacks that target S (which can clearly be done in polynomial time).

We will prove that (JAF,S) € AD-INCNV <= (IAF(”,S) € AD-ARGINCNV.  Since
AD-ARGINCNV € P and JIAF{” can be created from JAF in polynomial time, this yields that
AD-INCNYV € P. A completely analogous argument applies to the stable semantics and the problem
ST-INCNV.

If (IAF,S) € AD-INCNV, then (IAF{™,S) € AD-ARGINCNYV follows trivially, since the set of
completions of IAF’S’” is a subset of the completions of JAF. We prove the other direction of the
equivalence by contraposition. Assume that (IAF,S) ¢ AD-INCNV. Then there is a completion JAF*
of JAF in which S is not admissible. Create a completion /AF’ ISM* from the argument-incomplete
argumentation framework IAF’S’“ by adding exactly those elements of .7’ to the set of arguments
that are also added in JAF*. By construction, in JAF¢™"" all attacks against arguments in S that exist
in IAF* are included, too, and any attacks against arguments outside of S that are not in JAF* are
not included, either. Since S is not admissible in JAF*, it can clearly not be admissible in JAF{™".
Therefore, we have (IAFY",S) ¢ AD-ARGINCNV. This completes the proof. a

Turning to the complete and grounded semantics, we can successively prove P membership of
CP-INCNV and GR-INCNYV in Theorems 10 and 15, respectively.

Theorem 10. CcP-INCNYV is in P.

Proof. Let (IAF,S) with IAF = (o7, o/",%,%") be an instance of CP-INCNV. Since
AD-INCNV € P, we may assume that S is necessarily admissible in JAF. Then, we clearly have
(IAF,S) ¢ cP-INCNV if and only if there is at least one argument outside of S that is defended by S
in some completion of JAF. It remains to show how to check this criterion.

If all arguments a € (&7 U.</?)\ S are definitely attacked by S, i.e., (bs,a) € Z for each such
argument a and some corresponding b, € S, then S is necessarily stable and therefore necessarily
complete, and we are done. Now assume this is not the case and let a € (&7 U.27?)\ S be any
argument outside of S that is not definitely attacked by S, i.e., (b,a) € Z for all b € SN (if a
were attacked by S, it clearly could not be defended by S in any completion). Let Att(a) = {c €
AU | (c,a) € R} be the set of all arguments with a definite attack against a. Further, let
Ry =R UI{(s,c) € X" | s Sandc € Art(a) \ {a}} be the set of attacks that includes all and only
those possible attacks for which the attacker is in S and the target is an attacker of a.

Consider now the completion C, = (.7, #4|,) Where o7, = o/ U{a}U{d € /" | (d,a) & %a},
i.e., C, uses the attack relation %, and includes a and exactly those possible arguments that do not
attack a (in %Z,). If, for any of these completions, « is defended by S in C,, then S is not complete
in C, and therefore not necessarily complete. If, on the other hand, each argument a is not defended
by S in the respective completion C,, then none of these arguments are possibly defended by S, and
therefore, S is necessarily complete: Assume that a is not defended by S in C,, i.e., there is some
d € o, with (d,a) € X4l and S does not attack d in C,. By construction of C,, we know that d
is a definite argument, i.e., d € <7, and (d,a) is a definite attack, i.e., (d,a) € #, so d attacks a in
any completion that contains a. Also, in all completions S either does not defend a against d, or S



attacks a, since all possible arguments in S either attack a or are already included in C,. So, a is not
possibly defended by S.
All steps taken can clearly be performed in polynomial time. This completes the proof. U

The following upper bound then follows immediately.
Corollary 11. cP-ARGINCNV isinP.

Next, we introduce the notion of ungrounded completion of an incomplete argumentation frame-
work as a tool to prove P membership of GR-INCNV.
Definition 12. Let JAF = (<7 ,.«/° . %, %") be an incomplete argumentation framework and S C .7 U
/" be a set of arguments in JAF. The ungrounded completion IAF™" of IAF for S is the completion
that is obtained by the following algorithm. The algorithm first eliminates attack incompleteness and
then defines a finite sequence (IAF;);>¢ of argument incomplete argumentation frameworks, with
the ungrounded completion being the maximal completion (that includes all remaining possible
arguments) of the sequence’s last element.

1. Eliminate attack incompleteness: Let Zy = ZU {(a,b) € %’ | b € S}, i.e., include only those
possible attacks that attack S.

2. Letinitially Go = 0, &) = /", IAF = (o, o , %) and i = 0.

3. Let Max; be the maximal completion of JAF; and let X; C S be the set of arguments in § that
are defended by G; in Max;, i.e., X;i = Fyay,(Gi) NS. Add the definite arguments in X; to G
and exclude the possible arguments in X; from the framework, i.e., Giy 1 = G;U (X; \ &7°),
%3_1 = "Mi? \X;, and Z;1| = %,’LMU%L .Seti+—i+1.

4. Repeat the previous step until G; = G;_1.

5. The ungrounded completion of IAF for S is IAF§"" = (/" % | omer) with A" = U
oA

1

Intuitively, the ungrounded completion removes all and only those arguments that are in S and
that are possible candidates for membership in the grounded extension (elements of X; in each iter-
ation i)—all other arguments are included. The purpose of that is to make it as unlikely as possible
for S to be grounded in this completion.

Lemma 13 establishes that the ungrounded completion is polynomial-time computable.
Lemma 13. For an incomplete argumentation framework IAF = (ot ,.o/° . R, %") and a set S C
o U/ of arguments, the ungrounded completion IAFS"" can be constructed in polynomial time.
Proof. All individual steps can obviously be carried out in time polynomial in the number of
arguments. Also, the loop in Step 4 runs at most a polynomial number of times, since in each
execution of the loop there is either (at least) one definite argument that is added to G; 1, or no action
is taken in which case the loop terminates. Therefore, the number of times the loop is executed is
bounded by the number of definite arguments in the incomplete argumentation framework AfIAF.
This completes the proof. Q

The ungrounded completion is critical in the following sense: If a necessarily complete set S is
grounded even in the ungrounded completion, then it must be grounded in all completions. This is
formalized in Lemma 14. The proof of Lemma 14 is deferred to the appendix.

Lemma 14. Let IAF = (o7, /" \ %, %’) be an incomplete argumentation framework, S C of U .o/”
be a necessarily complete set of arguments in IAF, and let IAangr be the ungrounded completion
of IAF for S. S is the necessarily grounded extension of IAF if and only if S| s is the grounded

. ungr
extension of IAF ¢ °".



Using the above lemmas, we are now ready to show that for the grounded semantics, necessary
verification in incomplete argumentation frameworks remains efficient.

Theorem 15. GR-INCNYV is in P.

Proof. Let ((«7, /%, %,%"),S) be an instance of GR-INCNV. If S is not necessarily complete
in (o, " %, %"), it is not necessarily grounded in (<7, </" %, %#"), either. By Theorem 10, the
former can be checked in polynomial time. Therefore, we may assume that S is necessarily complete.
Lemma 13 provides polynomial-time constructability for the ungrounded completion. Given
a completion, GR-VERIFICATION can be solved in polynomial time, and Lemma 14 yields that the
answer to GR-INCNYV is the same as that to GR- VERIFICATION for the ungrounded completion. U

The following upper bound then follows immediately.
Corollary 16. GR-ARGINCNYV is in P.

We have completed our proofs for P membership of necessary verification in all three incom-
pleteness models for the admissible, stable, complete, and grounded semantics.

4.2 Lower Bounds

In this section, we prove tight lower bounds for all remaining cases. Our final results show that
the complexity of possible verification for the preferred semantics raises from coNP-hardness to
¥7-completeness in all three models. The reductions used in the proofs of Theorems 17 and 18 are
illustrated in Example 19.

Theorem 17. PR-ATTINCPV is X5 -hard.

Proof. First, we quickly recall some notation from propositional logic. A boolean variable x has
two literals, x and —x. A boolean formula is in conjunctive normal form (CNF) if it is a conjunction
of disjunctions of literals (clauses), and in disjunctive normal form (DNF) if it is a disjunction
of conjunctive clauses of literals. 3-CNF (respectively, 3-DNF) denotes CNF (respectively, DNF)
with at most three literals per clause. A truth assignment T on a set X of variables is a function

T:X — {true,false}. For a formula ¢ and truth assignments 7;,1,..., T on disjoint sets of
variables, @[], T2,..., T] denotes the formula obtained by replacing variables in ¢ with their truth
values in 71, T, ..., T¢.

To prove X4-hardness, we reduce from the quantified satisfiability problem X, SAT, which is
well known to be complete for Zg (see [33]): Given a 3-DNF formula ¢ on two disjoint sets of
variables, X and Y, the question is whether 3ty V1y : @|[Tx, Ty| evaluates to true (where tx and 1y
are truth assignments on X and Y, respectively).

Let (¢,X,Y) be an instance of X,SAT, where X = {x1,...,xx|} and ¥ = {y1,...,yy|} are two
disjoint sets of propositional variables and ¢ is a 3-DNF formula over X UY. For ¢ = —¢, the
question in Xy SAT is equivalent to asking whether 3txV1y : §[Tx,Ty] = false, where § = ) A
.-+ A ¢y is a formula in 3-CNF with clauses ¢; through c,,. From now on, we will mostly use this
CNF formulation of the problem.

We create an instance ({7, %,%"),S) of PR-ATTINCPV from (¢, X,Y) as follows (see Figure 4
for an example):



Figure 4: No-instances: Graph representations of (<7, %, %") (top) and (<, .o/", %) (bottom) cre-
ated from clauses ¢; = (—x; Vxp V —yp) and ¢ = (x1 Vy; V —y2), Dashed attacks or arguments
indicate uncertainty and attacks by clause arguments are displayed as dotted arcs to facilitate read-
ability.
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Finally, let S = {s}. We call all arguments x;, X;, y;, and y; literal arguments and arguments
c; clause arguments. Note that S is necessarily admissible in (&7, %,%"), so the verification of
possible preferredness boils down to checking whether all supersets of S are nonadmissible in some
completion of (<7, %Z,%").

We prove that: (¢,X,Y) € 2SAT <= ((«7,%#,%"),S) € PR-ATTINCPV.

Assume that (@,X,Y) € £,SAT, i.e., ItxV1y : @[Tx,Ty] = false. Let Tx be an assignment of
truth values to the variables in X that satisfies V1y : @[1x,Ty] = false. Let (&7, 2™) be the com-
pletion of (<7, %,%") obtained by letting Z% = ZU{(s,%) € %’ | 7x (x;) = true}. In (o7, Z%),
the assignment Ty to the variables in X is translated to a commitment on literal arguments: If, for
x; € X, tx(x;) = true, then the attack by s against argument ¥; is included and X; can no longer be a
member of admissible supersets of S, while argument x; is defended by s and potentially can be such
a member. On the other hand, if Tx (x;) = false, the attack is excluded and the roles are switched:
Argument x; cannot be defended against argument x; by S (or any conflict-free superset of S), so x;



cannot be contained in admissible supersets of S, whereas x; can.
Now let 7y be any truth assignment for Y. We know that @[y, Ty] = false. Transform tx and
Ty to a set S(gy 7,) O S of arguments by letting

Sey) = SU{xi|x(x) = true} U{% | 7x(x;) = false}
U{yi | v (yi) = true} U{yi | tv (i) = false}.

It is easy to see that Sz, ) is conflict-free in (of , ). However, S(zy,1y) cannot defend itself
against all clause arguments cy,...,c, in (&7, %), and therefore is not admissible: Since @ is in
CNF and ¢[tyx, 7y] = false, at least one clause in ¢ is unfulfilled. Let ¢; be any such clause. Since
the clauses of ¢ are disjunctions of literals, all literals in c; are unfulfilled. The only arguments in .o/
that attack the clause argument c; are the literal arguments whose corresponding literals appear in
clause c¢;. However, by construction, none of these arguments are in Sz, ), since all these literals
are false in 7y and 7y. Therefore, no argument in S, ;) attacks argument ¢;. On the other
hand, c; attacks all literal arguments and therefore it attacks S, ), which proves that S(;, ) is not
admissible in (&7, 2™). All other supersets of S are either a subset of S(1y,5y) Or not conflict-free,
and thus can’t be admissible, either. Since Ty was kept generic, this covers all possible supersets of
S and proves that S is preferred in (o7, %%, and we have ((«7,%,%"),S) € PR-ATTINCPV.

For the other direction, assume that (¢,X,Y) & £,SAT, i.e., VTx 31ty : §[Tx, Ty] = true. Let 7x
be any assignment on X and let 7y be an assignment on Y that satisfies ¢[tx,Ty] = true. Create
the completion (7, % ™) and the set Sy, ) as before. Since @[1x,Ty] = true, all clauses in ¢ are
fulfilled, which means that in each clause at least one literal must be fulfilled. Each such literal corre-
sponds to a literal argument in S, 7, ), which attacks the corresponding clause argument. So, Sz, )
is admissible, which shows that S is not preferred in (2, %), and since Ty was generic, S is not
preferred in any completion of (.«7, %, %"), which proves ((.«7,%,%"),S) ¢ PR-ATTINCPV. Q

The same hardness can be proven for the argument-incomplete model.

Theorem 18. PR-ARGINCPYV is Zg—hard.

Proof. Again, we reduce from X,SAT using a very similar construction. Given an instance
(¢,X,Y) of ,SAT, we create an instance ((.<7,</",%),S) of PR-ARGINCPV by setting S = 0
and:

( l)yl)’(ylvyl) fOT)’zEY
(xi,%7), forx; € X
(ciyci), for ¢; in @
Yis Vi fOI'inY (Clayj)a(clayj) for ¢; in ¢7ijY
A =< X forx;eX », A=< (ci,x),(ci,x), forc;in @,x; € X
ci, for ¢; in @ (vj,ci), ifyjin¢;
42%?:{ x, forx eX }7 ("j ci), if —yj in ¢
(xk,ci), if x; in ¢;
(‘k,c,), if —xy in ¢;

For an assignment Tx on X, define the corresponding completion of (&7,</? %) by
(A ™ R\ e ) With /™ = o7/ U{x; € &° | x(x;) = true}. This construction differs from that
in the proof of Theorem 17 only in the implementation of the choice gadgets for the variables in
X, which use possible arguments instead of possible attacks but which have the same effect: If, for
x; € X, 1x(x;) = true, then argument x; is included in /™ and has an attack against argument x;
which S cannot defend, so x; is a candidate for membership in admissible supersets of S and ¥; is not.
If 7x (x;) = false, then x; is excluded and does not attack ¥;, so X; could be in admissible supersets
of S. The remainder of the proof is completely analogous. d



Figure 5: Yes-instances: Graph representations of (.«7,%,%") (top) and (<7 ,.</, %) (bottom) cre-
ated from clauses ¢| = (—x; Vx2) and ¢, = (x1 Vy1 V —y2). Dashed attacks or arguments indicate
uncertainty and attacks by clause arguments are displayed as dotted arcs to facilitate readability.

Example 19. Consider a £, SAT instance (¢,X,Y) with X = {x;,x2}, Y = {y1,y2} and ¢ = (x; A
0 Ay1)V (—x1 Ay Aya). Wehave ¢ = =@ =c Acy with ey = (- Vaa V—yp) and ¢ = (x) Vy V
—y2). We have (¢,X,Y) & X,SAT, because for all assignments Ty on X and the assignment 7y with
Ty (y1) = false, Ty (y2) = false we have @[y, Ty] = false, or, equivalently, @[Ty, Ty] = true.

Figure 4 shows the graph representations of the incomplete argumentation frameworks in the
instances ((«7, %, %"),{s}) and ((<7, </, %#),0) that are created from (¢,X,Y) according to the
constructions in the proofs of Theorems 17 and 18. Attacks by clause arguments are displayed
as dotted arcs to facilitate readability. Both instances are no-instances for PR-ATTINCPV and PR-
ARGINCPV, respectively. The set {s,yi,y»} (corresponding to 7y from above) is an admissible
superset of {s} in all completions of (<7, %,%"), while the set {yi,y>} is an admissible superset of
0 in all completions of (o7, 27" ).

To create a yes-instance, we slightly modify this £, SAT instance by setting ¢’ = (x; A —xp) V
(=x1 A=y1 Ay2), i.e., —y; is omitted in the first clause. We now have @' = =@’ = ¢} A ¢z, where
¢ = (—x1 V), and ¢ = (x; Vy; V —y2) is unchanged. (¢’,X,Y) is a yes-instance of £, SAT,
because for the assignment Ty on X with Ty (x]) = true, Tx(x;) = false and for all assignments
Ty on Y, we have @[y, Ty] = true, or, equivalently, p[tx,Ty] = false.

Figure 5 shows the graph representations of the incomplete argumentation frameworks created
from this modified ¥, SAT instance. Both are yes-instances for PR-ATTINCPV and PR-ARGINCPV,
respectively. The completions that correspond to the assignment Ty as defined above include the
possible attack (s,x7) (respectively, the possible argument x;) and exclude the possible attack (s,x3)
(respectively, the possible argument x;). In these completions, there are no admissible supersets of
S that attack ¢/, so S is preferred.

Both previous results also provide 212’ -hardness for the problem PR-INCPYV in the general model,
which completes our complexity analysis.

Corollary 20. PR-INCPV is X5-hard.



5 Conclusion and Future Work

We extended prior research for three specific models of incompleteness in argumentation frame-
works, i.e., attack incompleteness alone, argument incompleteness alone, and the combination of
these two models so as to provide a general model of incompleteness. We studied, with respect to
six common semantics of argumentation frameworks, the computational complexity of the possible
and necessary verification problems, and filled gaps that have been left open by prior work.

Table 1: Overview of complexity results for various semantics (first column) in the standard
model (second column), in the attack-incomplete model (third and sixth column), in the argument-
incomplete model (fourth and seventh column), and in the combined model (fifth and eighth col-
umn). Results marked by ® are due to Dung [19], by * due to Dimopoulos and Torres [18], by *
due to Coste-Marquis et al. [16], by 4 due to Baumeister et al. [6], by ¥ due to Baumeister et al. [7],
and by * due to Baumeister et al. [8]. For a complexity class €, €-c. stands for %-completeness.

s | VERIFICATION | ATTINCNV ARGINCNV INCNV | ATTINCPV ARGINCPV INCPV

CF inP® inpP* inPY inp* inP* inPY inP*
AD inP® inP* inP* inP inpA NP-c.Y NP-c.*
ST inP# inPpA inp* inP inpA NP-c.Y NP-.*
Cp inP® inPA inP inP inPA NP-c.Y NP-c.*
GR inP# inpA inP inP inPpA NP-c.Y NP-.*
PR coNP-c. % CONP-c. 4 coNP-c.Y  coNP-c.* ¥h-c. ¥h-c. -c.

Table 1 gives an overview of the complexity results for the verification problem in the standard
model and in the three incompleteness models considered in this paper. The results show a pattern
in how incompleteness affects the complexity of the verification problem in abstract argumentation
frameworks. We observe that there are only two triggers for an increase of complexity: the pre-
ferred semantics for possible verification in all three models, and the admissible semantics (along
with all other semantics that entail admissibility) for possible verification in the model of argument
incompleteness (and, therefore, also in the general incompleteness model). In all other cases—in
particular, for all variants of necessary verification—introducing incomplete information does not
make the verification problem computationally harder. Note that each of our hardness results for
verification problems carries over to any more general model; so our approach is potentially useful
in other frameworks as well. We further note that the £4-completeness results for possible verifi-
cation in the preferred semantics are significantly more severe than the NP- or coNP-completeness
results for possible verification in the other semantics entailing admissibility and for standard or
necessary verification in the preferred semantics: While there are known methods to circumvent
NP- or coNP-hardness in practice (e.g., by using fast SAT-solvers), no such methods are effective to
tame Zg -hardness in practice (even though there are also QBF-solvers, these are much less efficient
in general). A task for future work is to analyze the complexity of possible and necessary variants of
other decision problems than verification, e.g., credulous or skeptical acceptance of individual argu-
ments. Also, the range of classical semantics considered here could be extended by including other,
more recently proposed semantics like the stage semantics [34], the semi-stable semantics [13], the
ideal semantics [21], or the CF2 semantics [1].
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A Deferred Proof of Lemma 14
ungr

Proof of Lemma 14. If S |(Q¢Sungr is not the grounded extension of JAF¢ ™", it immediately follows
that S is not necessarily grounded in JAF. We now prove the other direction of the equivalence: Let
ungr

S |Ws“"gr be the grounded extension of JAF ¢ . We prove that, then, § is necessarily grounded in IAF.

First, we observe that whenever § Lds“"gr is the grounded extension of JAF§"" (which we know by

assumption), then S| uer = Gy for the set Gy in the last iteration i’ of the algorithm: Gy C S| uner
A i i i g

holds because, by construction, G; consists only of definite arguments, and S| s C Gy holds

because ] juer is grounded in IAF"™" and no argument outside of Gy could be defended by Gy

in the ungrounded completion. Since Gy consists only of definite arguments, we know that S| s
consists only of definite arguments under the given assumptions.

Now, let IAF* = (a/* %|.s+) be any completion of (o7 ,.o/", #,%") (different from the un-
grounded completion) and let G* be its grounded extension. Since we know by assumption that S|«
is complete in JAF™, with the fact (proven by Dung [19]) that the grounded extension is contained in
all complete extensions of the same argumentation framework, we can conclude that G* C S| ;/«.

However, we also have S|+ C G*: Since SMS"”W contains only definite arguments, these must
be in G*, too. Now assume that S|+ Z G*. Then there is a possible (nondefinite) argument a €
(S|« \ G*). We know that a is not included in the ungrounded completion. We also know that a



is not defended by G* in IAF*, because otherwise it would need to be included in the grounded set
G*. Also, since S |,9/S”"g’ C G*, a is not defended by S |dsungr either (remember that S is necessarily
complete and, in particular, necessarily conflict-free in JAF, so any attackers must be outside of §).
So, there must be an attacker b ¢ S of a which is not attacked by G* (and, therefore, not attacked

by S| uer) in IAF*. Since the ungrounded completion includes all arguments that are not in S, b
%S

is also included in </"¢". Further, since the ungrounded completion includes all and only those

possible attacks that target S, the attack (b, a) is included and any possible defending attacks are not
included in the ungrounded completion. However, this means that the attack (b,a) is not defended
by § |-‘7fsungr in the ungrounded completion, which, by its construction, would mean that a would be

included in 7" (a could only be excluded in Step 3 if it is defended by a subset of S |’Q/§m}zr, which
a is not, due to the attack by b). This contradicts the fact that a is not included in the ungrounded
completion. Therefore, such an argument a cannot exist and we can conclude S|+ C G* and, in
total, S|+ = G*. So, S|+ is grounded in JAF* and, since JAF* was kept generic, S is necessarily
grounded in JAF. 0 Lemma 14



