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Abstract

We study hedonic games under friends appreciation, where each agent considers other agents
friends, enemies, or neutrals. Although existing work assumed that neutrals have no impact on
an agent’s preference, it may be that her preference depends on the number of neutrals in her
coalition. We extend the existing preference by allowing an agent to take into consideration
the number of neutrals in her coalition. Even though the impact of neutrals on preference
is negligible compared to the impact of friends and enemies, it does affect the stability of
coalition structures. When each agent prefers coalitions with more neutrals, we show that
both core stable outcomes and individually stable outcomes might not exist. We also prove
that deciding the existence of the core is NPT -complete, whereas deciding the existence of an
individual stable coalition is NP-complete.

1 Introduction

In many real-life examples, ranging from sports clubs to political parties, individuals (agents) carry
out activities in groups (coalitions) to achieve common goals. In coalition formation with hedonic
preferences, or hedonic games, each agent’s payoff only depends on the coalition that she joins. A
natural question is then whether a stable partition of the set of agents (coalition structure) exists.
Various stability concepts have been studied in the literature; among the most prominent of them are
core and individual stability (see handbook chapter [Aziz and Savani, 2016]).

Since the number of coalitions that an agent can join is exponential, several compact prefer-
ence representations of hedonic games have been proposed. In particular, Dimitrov et al. [2006]
developed simple hedonic games where an agent divides the other agents into friends or enemies.
They studied a preference called friends appreciation where each agent prefers coalitions with more
friends and, in case of a tie, with fewer enemies. More recently, Ohta et al. [2017] proposed a slight
extension of this model by introducing the existence of neutrals who do not impact the preference.
Under friends appreciation, in the former model, an individual stable coalition structure always ex-
ists [Dimitrov and Sung, 2004], whereas, in the latter, the question has yet to be studied. In both
models under friends appreciation, there always exists a core stable coalition structure, which can
be found in polynomial time.!

We propose a natural extension of friends appreciation when friends, enemies, and neutrals ex-
ist. In our new model, each agent takes into account the number of neutrals in her coalition, i.e., the
existence of neutrals can be either slightly positive or negative. In this paper, we assume a sociable
agent slightly prefers coalitions with more neutrals, while an introverted agent slightly prefers coali-
tions with fewer neutrals. In this model, the impact of neutrals on an agent’s preference is almost

! There exists an alternative preference called enemies aversion, where each agent prefers coalitions with fewer enemies
and in case of a tie, with more friends. Under enemies aversion, without neutrals, there always exists a core outcome, but
with neutrals, the core can be empty [Ohta et al., 2017].



negligible compared to that of a friend or an enemy. From a theoretical viewpoint, analyzing how
neutral agents affect stability concepts more precisely is meaningful. Since in a more general model
with additively separable preferences, a core/individual stable outcome may not exist, we hope to
clarify a boundary case where core/individual stability is guaranteed.

Our results show that the number of neutral agents impacts the existence of the core and its com-

putational complexity. The existence of a core stable coalition structure is not guaranteed anymore
for sociable agents. We also study individual stability under the original friends appreciation and
our extended preference, showing that an individual stable coalition structure may not exist. Further-
more, for both stability notions, under friends appreciation with sociable agents, we investigate the
complexity of (VERIF) to verify whether a given coalition structure is stable and (EXIST) to decide
the existence of a stable coalition structure. In particular, we show that deciding whether the core is
empty is NPNP-complete, whereas deciding whether an individual stable coalition structure exists is
NP-complete.
Related work In hedonic games, initiated by Banerjee et al. [2001] and Bogomolnaia and Jackson
[2002], a fundamental question is to identify the necessary and sufficient conditions on preferences
for the existence of stable coalition structure. More recently, Aziz and Brandl [2012] clarified the
relationships among stability concepts such as core, Nash or individual stability, and provided some
existence results. In fractional hedonic games, Aziz et al. [2014] described the conditions that guar-
antee the existence of a core stable outcome, and Brandl et al. [2015] showed that an individual
stable outcome may fail to exist. Aziz et al. [2016] proposed Boolean hedonic games where each
agent partitions the set of other agents into satisfactory and unsatisfactory groups and showed core
non-emptiness. Lang et al. [2015] introduced the idea of neutral agents and characterized the coali-
tion structures that necessarily/possibly satisfy some stability concepts. Furthermore, Peters [2016]
proposed a graphical representation of hedonic games, where an agent’s utility only depends on her
neighbors’ actions.

Regarding computational complexity, many results exist for verification and existence problems
for various stability concepts. Ballester [2004] showed that the existence problem is NP-complete
for core and individual stability, under individually rational coalition lists. In additively separable
hedonic games, Woeginger [2013] showed that the existence problem for the core is NPN -complete.
Peters and Elkind [2015] developed a framework to prove NP-hardness of existence problems, which
applies to various hedonic games such as hedonic coalition nets [Elkind and Wooldridge, 2009].
QOutline In Section 2, we present our hedonic game model and stability concepts. In Section 3,
we show that the core may be empty and we examine the complexity of deciding its existence. In
Section 4, we provide counter-examples for individual stability, and, with sociable agents, we study
the complexity of the existence problem. Finally, in Section 5, we discuss stability in the presence
of introverted agents.

2 Preliminaries

Let N = {1,...,n} denote the set of agents. A coalition C' C N is a subset of agents. A coalition
structure 7 is a partition of N. Let () denote the coalition to which agent i belongs in 7. Let
CN denote the set of all coalition structures. For every agent i, her preference -, is based on the
coalitions to which she belongs; let >; and ~; respectively denote the strict preference and the in-
difference relation derived from ;.

A hedonic game (N, P) is defined by set of agents N and preference profile P = (7;)icn. Addi-
tively separable hedonic games form a natural class of hedonic games where each agent has a value
for any other agent and the utility that an agent derives from a coalition is the sum of the values that
she has for its members.

Definition 1 (Additively Separable). A hedonic game (N, ) is additively separable if for each
agent i € N there exists a utility function v; : N — R such that v(i) = 0 and for any two coalitions
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All the games that we consider in this paper are additively separable. Furthermore, an additively
separable hedonic game is symmetric when any two agents associate the same value to each other.

Definition 2 (Symmetry). An additively separable hedonic game satisfies symmetry if for all i, j €
N, vi(f) = v;(9)-

‘We concentrate on two prominent stability concepts, core and individual stability. These stability
concepts are among the least restrictive ones -after individual rationality- which concern respectively
coalition and individual deviations. Individual rationality is a minimal stability requirement which
guarantees that each player weakly prefers her coalition over being alone.

Definition 3 (Individual Rationality). A coalition structure 7 € CN is individually rational if there
exists no agent i € N that has an incentive to deviate alone, i.e., {i} »; m(i).

Definition 4 (Core Stability). A coalition structure m € C admits a blocking coalition X C N
(X # Q) if for everyi € X, X =; w(i) holds. The core is the set of coalition structures that do not
admit any blocking coalitions.

Definition 5 (Individual Stability). A coalition structure 7 € C'N is individually stable if there exists
no pair of agent i € N and coalition C € 7 U {0} such that C' U {i} >=; w(i), and C U {i} 7; C
forall j € C.

Intuitively, a coalition structure is core stable if no group of agents benefits from forming a
deviating coalition, and it is individually stable if no individual agent benefits from joining an
existing coalition, without harming any agent in this coalition. Furthermore, a coalition C' is
acceptable to agent 7 if and only if C' 7—; {i} holds. Thus if (¢) is unacceptable to agent i, 7 cannot
be a member of the core or individually stable.

We consider a simple and compact preference called friends appreciation. For each agent 7, set
N is partitioned into {F;, L;, F;}. Agents F; are her friends, E; are her enemies, and L ; are neutral
agents.
Let us define the original friends appreciation proposed by Dimitrov et al. [2006]. When comparing
two coalitions under friends appreciation, an agent first compares the number of her friends in each
coalition, and then the number of her enemies. For two coalitions C' and D, agent ¢ prefers the
coalition with more friends, and in case of a tie, she prefers the one with fewer enemies:

|CNEF;| > |DNF;|or

Furthermore, C' ~; D holds iff |C N F;| = | DN F;| and |C N E;| = |D N E;|. The set of preference
profiles under friends appreciation is denoted by P¥. Note that a preference in P¥" is additively
separable with weights n for a friend, O for a neutral, and —1 for an ennemy.

We slightly generalize friends appreciation by allowing agents to take into account in their prefer-
ences the number of neutrals (after having considered the number of their friends and their enemies).
We propose two alternative preferences, friends appreciation with sociable agents and friends ap-
preciation with introverted agents, depending on whether agents believe that neutrals have a positive
or a negative impact. Under friends appreciation with sociable agents, in the case of a tie for the
number of both friends and enemies, agent ¢ prefers the coalition with more neutrals, i.e., for two
coalitions, C' and D:

|CNF;| >|DNF]or
C»;Ds |CﬂFi\:\DﬂFi|and|CﬂEi|<|DﬂEZ-\7or
|CﬂFZ“ = \DﬁFi|and|CﬂEi| = |DﬂEi\and|Cﬂ 1, | > |Dﬁ 1, ‘
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Similarly, under friends appreciation with introverted agents, agent ¢ prefers the coalition with fewer
neutrals. For both preferences, C' ~; D holds iff |C' N F;| = |D N F;|, |C N E;| = |D N E;|, and
|CN L; | = |DN L; |. The set of preference profiles under friends appreciation with sociable agents
(resp. introverted agents) is denoted by P¥+ (resp. P¥~). A preference in PX+ (resp. PF~)is
additively separable with weights n for a friend, € for a neutral, and —1 for an ennemy (resp. n,—¢,
and —1), for 0 < e << 1.

Definition 6 (HG/F, HG/F+, and HG/F-). An HG/F (resp. HG/F+, HG/F-) is a hedonic game
(N, (Zi)ien) such that each 7=; is in P¥ (resp. P+, PF~).

Hedonic games applying these agents’ preferences can be represented by a labeled digraph,
Gpr1 = (N,Ag U Ap U A}), where each vertex represents an agent, and arc (i, j) in set Ag
labeled by E (resp. by F|, L) indicates that agent ¢ considers agent 5 an enemy (resp. friend, neutral).

In the context of hedonic games, two well-studied decision problems are Existence and Verifica-
tion. Given a stability concept and a hedonic game, the former decides whether there exists a stable
coalition structure, and the latter verifies whether a given coalition structure is stable. For HG/F+,
we define HG/F+/IS/EXIST and HG/F+/C/EXIST as the existence problems related to individual
and core stability. Similarly, we define HG/F+/IS/VERIF and HG/F+/C/VERIF as the verifica-
tion problems. We assume the reader is familiar with concepts from complexity theory, particularly
with time complexity classes NP, NP™', and their complements [Garey and Johnson, 2002]. In our
complexity proofs, we utilize the NP-complete problem MAXCLIQUE and the coNPN -complete
problem MINMAXCLIQUE [Ko and Lin, 1995], defined below.

Definition 7 (Problem MAXCLIQUE). Consider a graph G = (V, A) and a lower threshold k € N.
Does it exist a subset of k vertices VW C V such that subgraph G[W) is a clique ?*

Definition 8 (Problem MINMAXCLIQUE?). Consider a graph G = (V, A), two sets I, J that par-
tition Vinto {V; j | i € I, j € J}, and a lower threshold k € N. For every function t : I — J, does
the subgraph G|Uic1V; 4(;)] contain a clique of size k?

In other words, V is partitioned into |I|-|.J| subsets V; ;. Then, for each function ¢ : I — J, we
consider a MAXCLIQUE problem for the subgraph induced by G[Usc 1V 4(s))-

3 Core Stability with Sociable Agents

In this section, we discuss the existence of a core stable coalition structure under friends appreciation
with sociable agents, as well as the complexity of the existence problem.

3.1 The core may be empty

When neutral agents have no impact on preferences, Ohta et al. [2017] showed that a core stable
coalition structure always exists and that it can be computed in polynomial time as the strongly
connected components of graph Gr = (N, Ap) . These results also hold in the original friends
and enemies model (without neutral agents) [Dimitrov et al., 2006]. However, when all agents
prefer coalitions with more neutrals, the existence of a core stable coalition structure is no longer
guaranteed.

Theorem 1. In an HG/F+, the core may be empty.

To prove this theorem, we utilize the following example:

2A graph G = (V, A) is a clique if and only if for any pair of nodes x, v in V, edge (x, y) belongs to A.
3The complexity proof from Ko and Lin [1995] even holds when J = {0, 1} and |V; o| = |V; 1] forevery i € I.



Example 1. Assume there exist six agents: {1,2,3,4,5,5'}. First, for i € {1,2,3}, agent i consid-
ers agent i + 1 a friend, whereas i + 1 regards i as neutral. Agents 4, 5, and 5" view each other as
neutral. Agents 5 and 5' view agent 1 as a friend, but 1 considers them as neutral. All other relations
are enemy relations.

We illustrate these preferences with Figure 1 which is a representation of Graph Gg | .

Figure 1: Example of an HG/F+ with an empty core.

Proof. By contradiction, assume that a core stable coalition structure 7 exists in Example 1.

First, assume that agents 5 and 5 belong to different coalitions in 7. If agent 1 does not belong to
m(2), then coalition {1,5,5'} is a deviation; thus 7(1) = 7(2). If 5 belongs to 7(1)(= m(2)), then
3 belongs to 7(1) (otherwise 2 deviates alone), which implies that 4 also belongs to 7(1) (otherwise
3 deviates alone). However, 4 has enemies but no friend in this coalition, thus 4 deviates alone.
Therefore 5 does not belong to 7(1), and by symmetry between 5 and 5, {5,5} N 7(1) = 0. Now,
if agent 4 does not belong to 7(3), coalition {4,5,5} is a deviation, but when 4 belongs to 7(3),
coalition {5, 5’} is a deviation. Therefore, 5 and 5’ belong to the same coalition, and since they have
identical preferences, we consider them as a single agent 5-5' in the following.

Assume that there exists a coalition that contains three agents or more from {1, 2, 3,4, 5-5'}. This
coalition must include an agent with no friend and at least one enemy, who then prefers to deviate
in a singleton coalition. Therefore, each coalition consists of at most two agents, which implies that
at least one agent is in a singleton coalition. However, if agent 1 (resp. 2, 3, 4) is in a singleton
coalition, then coalition {1, 5-5'} (resp. {1, 2}, {2, 3}, {3,4}) is a deviation, since agent 5-5 (resp.
1, 2, 3) gains one friend. Similarly, if agent 5-5’ is in a singleton coalition, then coalition {4, 5-5'}
is a deviation since 4 gains one neutral. As a result, there is no core stable coalition structure in
Example 1. O

3.2 Computational Complexity

In this subsection, we study the complexity of the existence of a core stable outcome under friends
appreciation with sociable agents. First, notice that an HG/F+ where there exists no friend relation
is equivalent to a hedonic game under enemies aversion (see Footnote 1) where the neutral arcs from
the original graph become friend arcs in the second. Since under enemies aversion the complexity of
verifying that a given coalition structure is in the core is coNP-complete [Sung and Dimitrov, 2007],
it extends to our setting:

Theorem 2. Problem HG/F+/C/VERIF is coNP-complete.

This result implies that the corresponding existence problem is in NPN?

following:

. Moreover, we show the

Theorem 3. Problem HG/F+/C/EXIST is NP"!-complete.

Before presenting the proof, we present two useful remarks:



Remark 1. Consider an HG/F+ where there exists a clique of friends, K, in which agents have
no friends outside of K. Then a coalition structure m that divides the agents of K into different
coalitions is not core stable (since K is a deviation for ).

Remark 2. Consider an HG/F+, (N, (>;)ien), composed of b cliques of friends, N =
{K!,..., K"}, and assume that 1) agents have no friend outside of their clique, and 2) agents
in the same clique have the same set of neutrals, which is a subset of {K*,..., K"}, and 3) the
game is symmetric. Then, a core stable coalition exists.

Indeed, core stability in this game is equivalent to core stability in hedonic game (B =
{1,...,b},(>;)jeB) under enemies aversion without neutrals (see Footnote 1), where each clique
of friends, K7, j € {1,...,b}, is represented by a single node j, and for all j,j' € {1,...,b},j' €
Fj (resp. j' € E;) if and only if for any i € K7,i' € KI' )i’ €1, (resp. i’ € Ej).

Proof of Theorem 3. The main argument of the proof resembles to the one of Theorem 4 in [Ohta
et al., 2017] concerning HG/E, however we have to adapt it to our setting. Indeed, while in an HG/E
coalitions in a core stable partition are necessarily cliques (in the graph G ), this does not hold
in an HG/F+. We adapt it by introducing cliques where only single nodes were necessary in their
proof, i.e., we introduce vertex-cliques, a fulcrum-clique, and cliques for inhibitors and logic games
(all described below).

First, by Theorem 2, HG/F+/C/EXIST is in NP™*. We prove NP™ -hardness by reducing the
coNP™_complete MINMAXCLIQUE to the complement of HG/F+/C/EXIST. Let an undirected
graph G = (V, A), a set I partitioning set V into {V; o, V;1 | ¢ € I}, and an integer k£ € N, de-
fine a restricted instance of MINMAXCLIQUE, where Vi € I,|V; o| = |Vi.1| (see Footnote 3). We
construct the corresponding instance of coHG/F+/C/EXIST, illustrated by a partial representation
of G, in Figure 2, as follows:

(1) For each z in V, we create vertex-clique K* that contains k£’ mutual friends (k' is specified at the
end of the proof), and then V' = (¢, Vio U Vi1, where Vi j = U, ¢y, K. For each edge (z,y)
in graph G = (V, A), we introduce mutually neutral arcs between each 2’ € K* and y’ € KY.

(2) We introduce a generalization of Example I where agents 5 and 5’ are replaced by K*, a clique
of k" — 1 mutually neutral agents (k" is specified at the end of the proof).

(3) We introduce a fulcrum-clique of 2 mutual friends, K¥. Agents in K¥ consider agents in K*
and in V neutral. Agents in K* view agents in K% as friends.

(4) Between each pair V; o and V; 1, we introduce |V; o| inhibitors (specified below). Each vertex-
clique K in V; ¢ is paired to one vertex-clique K in V; ; through inhibitor H;; which makes exactly
one of them available for a core stable coalition with K¥.

(5) We connect to each V; ; a logic game L; ; (specified below) containing a blocking coalition iff
condition ‘all agents in V; ; are inhibited, or none is inhibited’ is not satisfied.

(6) All others relations are enemies relations.

Before the main argument, notice that all the vertex-cliques K%,z € V, the fulcrum-clique K ¥,
the inhibitors (described below), and the cliques from the logic games (described below) satisfy
Remark 1. Therefore we do not discuss the stability of the coalition structures that divide the agents
of those cliques.

Main argument

First, observe that no core stable coalition structure contains a coalition with agents from the left
and the right of K'¥ (w.r.t. Figure 2). Thus, in a core stable coalition, K ¥ is either grouped with K*
(of size k" — 1) or a clique whose size is at least k¥’ in V. If clique K% goes to the left, the game
from the generalization of Example 1 is isolated and thus has an empty core. However, if clique K¢
goes to the right, the core of game K¥ U Example 1 is non-empty: {{K?¥, K*},{1,2},{3,4}}is
core stable.
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Figure 2: Instance of coHG/F+/C/EXIST from MINMAXCLIQUE.

Assume that there exists a function t* : I — {0, 1} such that subgraph G[U;c 1V 4+ ()] contains
no clique of size k. We claim that a core stable coalition structure exists. For each i € I, we set
the inhibitors to V; 1 _¢«(;). Thus no logic game generates a blocking coalition and only agents in
Uier Vi ¢ () are available to K. Thus, if we group cliques K¥ and K* together, K'¥ has no interest
to deviate left, which implies that partial coalition structure {{ K%, K*},{1,2},{3,4}} admits no
blocking coalition (in the whole game). Furthermore, the subgraph composed of vertex-cliques K*
in U;er Vi ¢+ (5) represents a game that satisfies Remark 2, and thus, a core stable partition exists*.

Conversely, assume that for every function ¢ : I — {0, 1}, subgraph G[U;crV; ¢(;)] contains a
clique of size k. By contradiction, assume that a core stable coalition structure 7 exists. Then there
exists function ¢™ such that, for each ¢ € I, all inhibitors between V; ¢ and V; ; are set to 1 — t™(3),
otherwise at least one logic game is not core stable. Thus K¥ is grouped with a clique which size is
at least k" in G [Uije1V; 4= (3], which exists for any function ¢ : I — {0, 1} by assumption.

Inhibitors and logic games

Inhibitors and logic games help us model the MINMAXCLIQUE problem; the former make agents
(un)available for a deviation with K ®, and the later impose that the set of available agents correspond
to a function ¢ : I — {0,1}.

An inhibitor, H;" , is a clique that contains £* mutual friends (k* is specified at the end of the
proof) and pairs one vertex-clique K“ in V; o with one vertex-clique K¥ in V; 1, such that each K¢
in V; o is paired to exactly one K¥ in V;; and conversely. Each agent in H;/ is mutually neutral
with each agent in K* and K. Thus, inhibitor H; either joins all the agents in K or all the agents
in K (but not both or partially) in a core stable coalition. Furthermore, when Hy joins K (resp.
KY), we enforce that K* (resp. KY) prefers to stay with H; over any other coalition by properly
fixing k*, the size of Hy.

Each logic game L; ; relies on a combination of gadget games, presented in Figure 3, that model
logical gates with the understanding that an available agent amounts to Boolean True.

All K* in Figure 3 are cliques of friends. In gate NOT, we assume that K and K'Y have identical
size, then the availability of K* makes K'Y non-available. In gate OR, we assume that K*' and K2
have size s > 2, and that K and K'Y have sizes s — 1. Then the availability of K** or K”2 makes
K non-available and K'Y available. In gate DUPLIC, we assume that the size of K is s > 3, the
size of each Kt and K?2 is s — 2, and the size of each K¥' and K¥2 is s — 1. The availability of
K? is duplicated into K¥* and KY2.3

By combining the logic gates and taking the vertex-cliques K* € V;; as input, each L; ; is

“More precisely, this subgraph also includes the separating-clique K% (introduced at the end of the proof) of each
vertex-clique K®, with a similar conclusion.
SNote that gates OR and AND generalize from binary operators to multinary ones.



Figure 3: Logic gates NOT, OR and DUPLIC (input: K, output: K¥).

constructed to obtain formula (/\Kwevi ; K-?C) \ (/\KweVi ; ﬁKx), i.e. “all vertex-cliques K* €

Vi,; are available or none is”. The validity of this formula is represented by the availability of the
final output K7, of L; ;. As depicted in Figure 4, the output K7, of each L; ; is then connected to
a specific instance of Example 1, such that the core of game the L; ; U Example 1 exists if and only
if the formula is valid.

Furthermore, to ensure that the main game is not altered by the logic games, each vertex-clique
K7 is separated from L; ; by a double gate NOT, depicted in Figure 4. This double gate Not is
composed of a separating-clique K * of size k’ and an input-clique K** of size (k' — 1) (which is
the actual input for the logic game L; ;). Separating-clique K** is mutually neutral with K* and
K, as well as with K%, and any vertex-clique K™ such that edge (x,w) € A and its separating-
clique K*". Thus, when K” joins K%, both K* and K*” join it.

Finally, we explain the values of &', k", and k*. Since, in the instance of Example 1 associated with
L; ;, clique K j‘ ; has only one friend (agent 1), we can set the size of output K7; to 2. Recall that
gate AND(K™1, K*2) is equal to NOT(OR(NOT (K '), NOT(K*2))). It implies that between each
input K* and the output K +; of L; j, there are at most 1 gate Duplic, 2 gates OR and 2 gates NOT.
Thus, the size of each input K** has to be at least 6. Due to separating-clique K %, we set the size
of each vertex-clique K* to 7, i.e., k' = 7.

Since each K*” is mutually neutral with K¥, a clique of size k in the original MinMaxClique in-
stance implies a core stable coalition with (2 x k') x k neutrals for K¥. Thus, we set k" = 14k.
Finally, excluding inhibitors, the maximal number of neutrals for agent v in V;; is
7414 x (|V| — 1) + 2, that is, 7 neutrals from v’s separating-clique, 14 x (|V| — 1) neutrals from
the (|]V| — 1) other vertex-cliques and their separating-cliques, and 2 neutrals from the fulcrum-
clique. So we set k* = 14 x (|V| — 1) + 10. O

4 Individual Stability

In this section, we investigate the existence of an individually stable coalition structure under both
the original friends appreciation and friends appreciation with sociable agents.

4.1 Friends Appreciation with Indifferent Agents

Under the original friends appreciation, an individually stable outcome always exists in an HG/F
without neutral agents [Dimitrov and Sung, 2004]. When adding neutral agents, although Ohta et al.
[2017] argued that the core always exists, they did not address individual stability. We address it
with Theorem 4 which proves that an individually stable outcome is no longer guaranteed.

Theorem 4. In an HG/E, an individually stable coalition structure may not exist.

To prove this theorem, we utilize the following example.
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Example 2. Consider 12 agents {0, ...,11}, divided into four groups: {0,1,2}, Cy = {3,4,5},
Cy = {6,7,8}, and Cy = {9,10, 11}, and the following preferences, illustrated in Figure 5 which
is a partial representation of graph Ggp .

In this example and the following proof, when we write (3], we mean (mod 3). First, for i €
{0, 1, 2}, preferences in groups C; are defined as follows:

e agents 3(i + 1) + 1 and 3(i + 1) + 2 consider agent 3(i + 1) a friend, and other relations within
C; are neutral;

o all agents in C; consider agents i and i + 1 [3] neutral, agent i + 2 [3] an enemy, and agents from
Cj,j # 1, enemies.

Fori € {0, 1,2}, agent i’s preferences are such that:

e agent i considers agent i + 1 [3] as friend, but agent i + 1 [3] regards agent i as neutral;

e agent i considers agent 3(i + 1) as enemy and agents 3(i + 1) + 1 and 3(i + 1) + 2 as friend;

e agent i regards agent 3((i + 2 [3]) + 1) as neutral and agents 3((: +2 [3]) + 1) + 1 and 3((i + 2
[3]) + 1) + 2 as friend;

e agent i is mutually enemy with any agent in C; 1 [3).

Proof. By contradiction, assume that an individually stable outcome 7 exists in Example 2.
We first focus on Cj. Notice that agent 3 has no friend in this game, implying that 7(3) N E53 = 0;
otherwise 3 deviates in a singleton coalition. Notice also that agents 3, 4, and 5 have identical
preferences toward agents outside of Cj, and that 4 and 5 share a unique friend, that is agent 3. This
implies that agents in Cj are in the same coalition, which does not contain any enemy of 3.
Thus, by symmetry, for ¢ € {0,1,2}, agents in C; belong to the same coalition, which does not



Figure 5: Partial representation of an HG/F with no individually stable outcome.

contain any enemy of agent 3(¢ 4+ 1). Furthermore, for i € {0, 1,2}, agent i belongs to the coalition
of C; or C; 4 o3], Where 4 has at least two friends. Thus, for i € {0,1, 2}, C; is either alone, grouped
with agent 7, grouped with agent ¢ + 1 [3], or grouped with both.

Then, there are two cases to consider: (1) agents 0, 1, and 2 join three different coalitions, or (2) for
i €{0,1,2}, agents ¢ and i + 1 [3] belong to the same coalition. For i € {0,1,2} :

Case (1): If agent 4 joins Cj, then 7 deviates toward coalition {4 4 2 [3], C;;2j31 }, Where she has two
friends and no enemy. However, if i joins C; 9[3, then i deviates toward coalition {i 4- 1 [3], C;},
where she has three friends.

Case (2): Assume that agents ¢ and 41 [3] join the same coalition, i.e., 7(i) = 7(i+1 [3]) = {4,i+1
(3], Ci}. If agent i + 2 [3] joins C;o3), then i + 2 [3] deviates toward C; 13, where she has no
enemy. However, if agent i + 2 [3] joins Cjq[3), then ¢ + 1 [3] deviates toward coalition {7 + 2
(3], Cit1[3) }» where she has three friends.

As aresult, no individually stable coalition structure exists. [

4.2 Friends Appreciation with Sociable Agents

In this subsection, we study individual stability in the presence of sociable agents. We prove that an
individually stable coalition structure may not exist and that deciding its existence is NP-complete.

Theorem 5. In an HG/F+, an individually stable coalition structure may not exist.

Proof. The proof is based on the same example as in the proof of Theorem 1. Assume that an
indiviudal stable coalition structure 7 exists in Example 1. Furthermore, assume that agents 5 and
5’ belong to different coalitions.

Notice first that w(4) N {1,2} = 0, since otherwise agent 4 deviates in a singleton coalition. It
implies that agent 3 does not belong to 7(1), since otherwise 3 deviates in a singleton coalition.
Then, assume that agent 1 does not belong to (2). If 7(1)N{5,5'} = 0, then 5 deviates toward {1}.
However, if m(1) = {1,5} (resp. {1,5'}), then 5 (resp. 5) deviates toward {1,5} (resp. {1,5'}).
Thus, 1 belongs to 7(2), which implies that w(1) N {5,5} = 0, since otherwise agent 2 deviates in
a singleton coalition. Then, 3 does not belong to 7(5) or 7(5’), since otherwise 5 or 5’ deviates in
singleton coalition. In other words, agents 5 and 5’ are either both in singleton coalitions or just one
of them is and the other belongs to 7(4). If 5 and 5’ are both in singleton coalitions, then 5 deviates
toward {5'}. Thus, 7(4) N {5,5'} # 0, but then 5 (resp. 5') deviates toward {4, 5"} (resp. {4,5}).



Therefore, 5 and 5" belong to the same coalition and we can apply a similar argument as in the proof
of Theorem 1 to show that there is no individually stable coalition structure. O

Now we study the complexity of the existence of an individually stable outcome. First, given
an HG/F+ and a coalition structure m, verifying whether 7 is individually stable is polynomial,
since there is a polynomial number of individual deviations to consider. This result implies that the
corresponding existence problem is in NP. Indeed, we show that it is NP-complete.

Theorem 6. Problem HG/F+/IS/EXIST is NP-complete.

Proof. As mentioned above, problem HG/F+/IS/EXIST is in NP. To prove NP-hardness, we reduce
the NP-complete problem MAXCLIQUE to problem HG/F+/IS/EXIST.

Let graph G = (V, A) and threshold k& € N define an instance of MAXCLIQUE. We construct
the corresponding instance of HG/F+/IS/EXIST with n vertex-agents in V' = )V (modeling graph
G), n cliques of neutrals K1, ..., K,, each of size k, and three agents 1’, 2, 3'; therefore the set of
agentsis N = V U (K;);ev U {1’,2/,3'}. The preferences are define as follows and are illustrated
in Figure 6, which is a partial representation of graph Ggr .

In set V, for each edge (¢,7) in graph G = (V,.A), we construct neutral arcs (¢, j) and (j,?).
Moreover, all agents in V' consider agent 3’ neutral, whereas agent 3’ considers each of them friends.
Forall ¢ € V, all k agents in K; are mutually neutral toward each other, mutually neutral with agent
1 € V, and they consider agent 1’ a friend, whereas agent 1’ considers them neutrals. Furthermore,
agent 1’ (resp. 2) considers agent 2 (resp. 3’) as friend, whereas agent 2’ (resp. 3') considers agent
1’ (resp. 2') as neutral. Finally, all other arcs are enemies; notice in particular that agents from two
different cliques in (K;);cy are enemies.

First, notice that the structure of the whole game is based on Example 1, with cliques (K;);cn in

Model of
g= (V7 A)

Figure 6: Instance of HG/F+/IS/EXIST from MAXCLIQUE.

place of agents 5 and 5, and agents in V' (model of G) embedded in place of agent 4. Thus, with a
similar argument, we see that if there is no clique of size &k in V, then no individually stable coalition
structure exists. However, when a clique C' of size k exists, the following coalition structure is
individually stable: {{C,3'},{1',2'}, ({K;,4})igc, ({Ki})icc}- Indeed, agent i € V in coalition
{C, 3’} has no interest in deviating toward K; since the number of neutrals is the same. Since agent
2’ cannot join agent 3’ while 3’ is not alone, the deviation cycle in Example 1 is interrupted. O

5 Discussion

In this section, we discuss the stability of coalition structures when considering introverted agents.

Friends appreciation with introverted agents When all agents are introverted, that is, they value
neutral agents in their coalition negatively, enemies and neutral agents have similar (but not equiv-
alent) impact on preferences. Thus, we obtain similar results as under friends appreciation without
neutral agents, that is, core and individually stable coalition structures always exist. We prove this



result by showing that the strict core® always exists, with the same argument developed for the strict
core under friends appreciation without neutral agents [Dimitrov et al., 2006].

Theorem 7. Under friends appreciation with introverted agents (1) there always exists a strict
core coalition structure and (2) it can be computed in polynomial time as the strongly connected
components of graph Gp = (N, Ap).

By definition, a strict core stable coalition structure is also core and individually stable. Thus,
core stable and individually stable coalition structures always exist and, moreover, can be computed
in polynomial time.

Friends appreciation with sociable and introverted agents In practice, there exist both sociable
and introverted agents at the same time. Clearly in this case, core and individual stability are not
guaranteed, as the results obtained when only sociable agents exist extend.

6 Conclusion

We studied the impact of neutrals on stability in hedonic games under friends appreciation with
sociable/introverted agents. With sociable agents, we provided counterexamples showing that both
core stable and individually stable coalition structures might not exist. Then we examined the com-
plexity of deciding the existence of such outcomes, proving that it is NPNF-complete for core sta-
bility and NP-complete for individual stability. We also proved that an individually stable coalition
structure might not exist under friends appreciation with indifferent agents, i.e., the original friends
appreciation. Finally, we showed that with introverted agents a strict core/core/individually stable
outcome always exists and can be computed in polynomial time.

In future works, we will explore graph structures or constraints on preferences (such as symmetry)
required to guarantee core and individual stability under friends appreciation with social agents. We
will also study the computational complexity regarding individual stability under friends apprecia-
tion with indifferent agents.

6 A coalition structure 7 € C™N admits weakly blocking coalition X C N iff forevery i € X, X =; m(%), and there
exists j € X such that X >; m(5). The strict core is the set of coalition structures that do not admit any weakly blocking
coalition.
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