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Abstract

We introduce a new family of social decision schemes, which can be viewed as a
probabilistic counterpart of positional scoring rules. A rule in this family is defined
by a scoring vector associating a positive value with each rank in a vote, and an
aggregation function. We focus on two types of aggregation functions: those corre-
sponding to egalitarianism (min, and leximin) and the Nash product. We examine
the computation of the rules and their normative properties. We argue that some of
these rules are particularly useful for time-sharing in an efficient and fair manner, or
more generally for portioning.

1 Introduction

Voting concerns making a collective decision based on the preferences of voters over a set of
alternatives. Most common voting rules take as input a collection of linear orders over the
alternatives. Resolute rules output a single alternative, irresolute rules output a nonempty
subset of alternatives, and randomized rules, also known as social decision schemes (SDSs),
output a probability distribution over the set of alternatives. There are at least two rea-
sons why one would like to use randomized rules. The first one has to do with normative
properties: randomized rules tend to offer more strategyproofness guarantees than resolute
rules, while keeping anonymity and neutrality: notably, random dictatorship is anonymous,
neutral, and strategyproof; and they are directly applicable, unlike irresolute rules that have
to be paired with a tie-breaking mechanism to output a winning alternative (this pairing
implying resoluteness and the consequent drawbacks). The second reason has to do with
portioning, that is, deciding how each of the candidates should be represented in the output.
For example, one may want to decide which fraction of the time to listen to each of a set
of radio channels, which fraction of the time the lab meeting will be on each particular
day of the week, or which fraction of the seats of a parliament will go to each party: in
such cases, the probability pa of alternative a being the winner corresponds to the fraction
of the resource (time, number of seats etc.) given to each alternative; it is a probability
distribution only in a technical sense. While our rules make sense for both contexts, the
portioning interpretation is the main interpretation we have in mind.

To illustrate the use of randomized voting for time-sharing, consider the following ex-
ample, adapted from [17]. There are five radio channels (a, b, c, d, e), and only one radio.
1000 voters express their preferences on the channel they want to listen: the first 501
have the preference order a�b�c�d�e and the other 499 voters have the preference order
e�b�c�d�a. How should they decide which fraction of the time they will listen to each
channel?1 Let us review the randomized rules that are most commonly studied and see how
they work on this example.

1Note that although this example may look at first glance like a fair division problem, it is not one. In
fair division, every voter is allocated a share of the available resources and draws utility from her share: an
allocation is a partition of the resources between the voters. Here, there is no allocation: every voter has
to listen to the radio channel that is collectively chosen, even if it is not her preferred one; just like every
voter has no choice but live with the alternative chosen by a voting rule. Notions such as envy-freeness, for
instance, would not make sense in our setting.



Random dictatorship will result in listening to a and e a fraction, respectively, .501 and
.499 of the time. In some settings, this may be a good choice, especially if voters like their
first choice much better than any other choice. In other settings, less so, for instance when
voters’ utilities are typically decreasing regularly. In this case, rather than having every
voter listen to her worst channel about half of the time, it may be better to listen to channel
b (which seems like a good compromise) a significant part of the time.

Egalitarian simultaneous reservation [2] outputs all candidates ranked first by at least
one voter with uniform probability (voters listen to a and e half of the time) thus also rules
out potential compromise alternatives.

The maximal lottery rule [15] outputs a lottery p such that for any lottery q, a weak
majority of voters prefers p to q (such a lottery is guaranteed to exist). It is appealing for
normative reasons [8]. It is Condorcet-consistent, i.e., it outputs the Condorcet winner with
probability 1 when there is one. As a result, it may be overly unfair to the minority: on our
example, a will be listened to all the time although it is the worst channel for almost half
of the voters.

Given an irresolute voting rule F , the uniform F rule outputs the winners of F with
uniform probability: for instance, uniform Borda here outputs the unique Borda winner b
with probability 1. While this may seem acceptable, it would no longer be if we add 200
voters with preference c�a�e�d�b. Alternative b is still the Borda winner, and uniform
Borda leads to one sixth of the population listening to their worst channel all the time.

Given an irresolute voting rule F defined by the maximization of a numerical score,
proportional F outputs each alternative with a probability proportional to its score.2 Pro-
portional Borda, on our orginal example without the extra 200 voters, outputs a, b, c, d, e
with probabilities close to 0.2, 0.3, 0.2, 0.1, 0.2. Now, c and d are Pareto-dominated3 by b:
our voters will listen to a Pareto-dominated station 30 % of the time! Starting from another
score-maximizing rule would not do better in general.4

Having mostly portioning in mind, our goal is to define and study a family of proba-
bilistic rules whose members are desired to satisfy some or all of the following desiderata:
(1) be reasonably fair to the voters, (2) be ex-post Pareto-efficient (no Pareto-dominated
alternative should get a nonzero probability) and (3) potentially allow for compromise al-
ternatives to be selected. Of the rules mentioned above, random dictatorship seems to best
fulfill (1) and (2), but leaves no room for selecting compromise alternatives (3). Simultane-
ous reservation is Pareto-efficient and seems at least to partially satisfy (1). Uniform Borda
(and more generally uniform F ) and the maximal lottery rule also satisfy (2), but do not
seem very fair. Proportional Borda (and more generally proportional F ) arguably satisfies
(1) but clearly violate (2). A time-sharing view of voting also applies to scenarios where
repeated decisions are made with fairness and efficiency in mind [9, 11].

We will now define a randomized version of the well-known family of positional scoring
rules. This family contains some known rules, namely random dictatorship and uniform
rules, but that also includes other rules, which can be much more satisfactory than these
in specific contexts. The intuition is the following: standard positional scoring rules can be
seen as rules maximizing social welfare, where a voter’s utility function is induced from his
ranking by a fixed scoring vector, the winners being those alternatives maximizing utilitarian
social welfare. For SDSs, this principle can be made more powerful: we will still assume
that ranks induce utilities; then we will assume that social welfare is determined by some
symmetric, non-decreasing aggregation function W . Finally, the SDS is defined by (ex ante)

2As noted by an anonymous reviewer, two numerical scores may define irresolute rules F and F ′ that
coincide, whilst at the same time proportional F and proportional F ′ are distinct.

3A first alternative Pareto dominates a second when all voters weakly prefer and some strictly prefer the
first to the second.

4Note that, on the other hand, proportional Borda and proportional Copeland are strategyproof [3].



social welfare maximization.5

Although positional SDSs do not seem to have been studied before, Bogomolnaia et al. [5]
consider a setting similar to ours, where the output lottery maximizes the aggregation of ex
ante utilities, but in the context of dichotomous preferences, and having strategyproofness in
mind. Like us, they consider the Nash and utilitarian social welfare. In a sense, we generalise
their work in that we consider rankings instead of approval ballots, but our motivations are
different.

Barberà [3] also relates positional scoring rules to social decision schemes, but in a
completely different way. His aim is to define rules (such as proportional Borda, cf. above)
that are strategyproof, and whose definition uses the candidate’s positions in the rankings.
These rules are not based on social welfare maximization.

The rest of the paper is structured as follows. In Section 2, we formally present positional
social decision schemes. In Section 3 we focus on egalitarian rules, and show that they can
be computed efficiently. In Section 4 we focus on rules obtained by aggregating expected
scores by the Nash product, and also discuss their computation in the general case as well
as in specific cases. In Section 5 we study a few important properties that should ideally be
satisfied by a social decision scheme (proportional share, Pareto-efficiency, reinforcement,
participation) and identify which of our rules is known to satisfy them. In Section 6 we give
a final summary.

2 Positional social decision schemes

Let X = {x1, . . . , xm} be a set of alternatives and N = {1, . . . , n} be a set of voters. We
use L(X) for the set of all linear orders over X. For � ∈ L(X), the rank of alternative
xj is the number of alternatives that are ranked higher than xj in � plus one, we write
this as r(�, xj). We will write abc as shorthand for a�b�c. A profile � = (�1, . . . ,�n) is
an element of L(X)n. We write ∆(X) for the set of probability distributions over X. An
irresolute social decision scheme (SDS) is a function F from L(X)n to a nonempty subset
of ∆(X). We will typically denote a probability distribution, or lottery, by p ∈ ∆(X). For
such a lottery we use pa or p(a) to denote the probability of selecting alternative a. When
alternatives are indexed, for example xj ∈ X, we write pj instead of pxj

. We also use the
notation (x1 : p1, x2 : p2, . . . , xm : pm).

A scoring vector for m alternatives is a vector s = (s1, . . . , sm) such that s1 ≥ s2 . . . ≥ sm
and s1 > sm. A scoring vector s is strictly decreasing if sj > sj+1 for all j < m. The Borda
vector is bor = (m − 1,m − 2, . . . , 0); the plurality vector is plu = (1, 0, . . . , 0); the veto
vector is vet = (1, . . . , 1, 0).

Given a profile � and scoring vector s, we use uji to refer to the score that voter i ∈ N
assigns to alternative xj ∈ X, that is, uji = sr(�i,xj). We sometimes associate this score
with the utility for voter i, as such, given a probability distribution p ∈ ∆(X), the expected
utility for i is

ui(p) =

m∑
j=1

pju
j
i .

Note that this definition supposes that there is a profile � and scoring vector s in the larger
context. The vector of expected utilities for all voters is u(p). If p is clear from the context,
we will simply write u.

5A similar path—scoring followed by aggregation—has been followed for fair division in [6, 10, 4]. Also,
Lesca and Perny [16] consider various aggregation functions like ours, in a fair division setting, starting
from cardinal utilities. Goldsmith et al. [13] also generalize positional scoring rules with various aggregation
functions (OWAs), but in a different context. None of these works makes use of randomization.



An aggregation function is a symmetric, non-decreasing function W mapping a collec-
tion of non-negative real numbers (α1, . . . , αn) to a non-negative real number. Standard
choices are W = Σ, W = min, and W = Π; these correspond respectively to utilitarianism,
egalitarianism and the Nash product. Given an aggregation function W , the relation >W is
the complete preorder on vectors that first applies the aggregation function then compares
the results using the natural ordering on the real numbers. Leximin is a refinement of >min:
given u ∈ Rn, let σ be a permutation of {1, . . . , n} such that uσ(1) ≤ . . . ≤ uσ(n), and let

u↑ = (uσ(1), . . . , uσ(n)). Given two vectors u, v of Rn, u >leximin v if there is a k ≤ n such

that u↑k > v↑k and for all i ≤ k, u↑i = v↑i .
We are now in position to define the positional social decision scheme induced by a

scoring vector and an aggregation function.

Definition 1. Let s be a scoring vector and W an aggregation function. The social decision
scheme Fs,W is defined as follows: for every profile �,

Fs,W (�) = {p ∈ ∆(X) | u(p) is maximal in >W }

where >W is considered over {u(p′) | p′ ∈ ∆(X)}.

Note for any W such that >W is a total preorder the above equality makes sense, thus
the definition can also be applied to leximin even though this is not an aggregation function.

The following example shows that the three most obvious choices of W , namely sum,
minimum and product, lead to radically different outcomes.

Example 1. Let X = {a, b}, n = 3, and � = (ab, ab, ba). Let s = (1, 0).

1. Fs,Σ(�) = {(a : 1, b : 0)}.

2. Fs,min(�) = {(a : 1
2 , b : 1

2 )}.

3. Fs,Π(�) = {(a : 2
3 , b : 1

3 )}. (See Section 4.)

Note that in Example 1 Fs,leximin(�) coincides with Fs,min(�); see Section 3 for examples
on which they differ. The following observation shows that using

∑
(·) leads to a well-known

place.

Observation 1. Fs,Σ(�) consists of all lotteries whose support is contained in Rs(�),
where Rs is the irresolute scoring rule associated with scoring vector s. This is thus a
superset of the output of uniform Rs.

3 Egalitarianism

The simplest form of egalitarianism is obtained with W = min, and a finer form with
leximin. As we see in Section 5, leximin offers the guarantee of ex-post efficiency, while this
is not the case for min. On the other hand, Fs,min is simpler to compute. We first show
that Fs,min can be computed in polynomial time—more precisely, that one optimal lottery
can be computed in polynomial time. (This observation is not really new; see for instance
[16] for a similar LP resolution of egalitarian allocation problems.)

Proposition 1. For every s, an optimal lottery for Fs,min can be computed in polynomial
time.



Proof. Fs,min can be computed by the resolution of a linear program (LP) with m + 1
variables:

Maximize t s.t.∑m
j=1 u

j
ipj ≥ t for i = 1, . . . , n∑m

j=1 pj = 1

pj ≥ 0 for j = 1, . . . ,m

On the 1000-voter example of the Introduction, Fbor,min outputs the lottery where b has
probability 1, while if we consider the additional 200 voters with preferences caedb, we get
(b : 1

3 , c : 2
3 ).

When the scoring vector is the plurality vector, we obtain this easy characterization:

Observation 2. Fplu,min outputs all alternatives ranked first in some vote, with uniform
probability, and thus coincides with egalitarian simultaneous reservation.

We now look at Fs,leximin. Although Fs,leximin can output several lotteries, it is essentially
single valued, that is, each voter gets the same expected utility (derived from s) in each
possible lottery outcome of the rule:

Proposition 2. For any s, Fs,leximin is essentially single-valued.

Proof. Assume that there are two different lotteries p and p′ with different utility vectors
u and u′, both leximin-optimal, which implies that for all i ∈ {1, . . . , n}, u↑i = u′↑i . Now,
consider the lottery p∗ = (p + p′)/2 and denote by w the corresponding utility vector. We
can easily check that w leximin-dominates u (and u′), contradicting the leximin-optimality
of u.

On the other hand, there are vectors s for which Fs,min is not essentially single-valued,
see the following example:

Example 2. Let n = 3, m = 4, � = (abcd, acbd, bdac), and s = (1, 1, 0, 0). Fs,min contains
all lotteries of the form

(a : pa, b : pb, c :
1

2
− pa, d :

1

2
− pb),

where pa + pb ≥ 1
2 . The expected utility of the first voter varies between 1

2 and 1. On the
other hand, Fs,leximin contains the unique lottery (a : 1

2 , b : 1
2 ).

Clearly, Fs,leximin(�) ⊆ Fs,min(�). It turns out that Fs,leximin is polynomial-time com-
putable as well, but instead of one LP, we solve O(n2) LPs.

Proposition 3. For every s, Fs,leximin is polynomial time computable.

Proof. The algorithm is specified as Algorithm 1 that requires running at most n(n+ 1)/2
LPs. The algorithm maintains a set N ′ of voters whose utilities are fixed. In each iteration
of the while loop, one more voter is added to N ′. The claim is that each time we run the
main LP in the while loop, there exists at least one voter who cannot get utility strictly
more than t∗ and who can be added to set N ′. Assume for contradiction that for each voter
i in N \N ′, there exists at least one lottery which satisfied the guarantees of the other voters
and which gives i utility strictly more than t∗. But in that case a convex combination of all
such lotteries corresponding to each voter in N \N ′ will give each such voter utility strictly
more than t∗ which contradicts the optimality of the main LP. Now that we know that at



Input: (N,X, u) where uji is the utility of voter i for the j-th alternative.
Output: p = (p1, . . . , pm).

1 N ′ ←− ∅
2 while N ′ 6= N do
3 solve the following “main” linear program (LP):

Maximize t s.t.

m∑
j=1

ujipj ≥ t for i ∈ N \N ′

m∑
j=1

ujipj = ti for i ∈ N ′

m∑
j=1

pj = 1 and pi ≥ 0 ∀i ∈ {1, . . . ,m}

4 Let the solution to the previous LP be t∗.
5 Find some i′ ∈ N \N ′ for which the following corresponding LP has ε = 0 as the optimal solution.

Maximize ε s.t.

m∑
j=1

ujipj ≥ t
∗ for i ∈ N \ (N ′ ∪ {i′})

m∑
j=1

uj
i′pj ≥ t

∗ + ε

m∑
j=1

ujipj = ti for i ∈ N ′

m∑
j=1

pj = 1 and pi ≥ 0 ∀i ∈ {1, . . . ,m}, ε ≥ 0.

6 For such an i′, N ′ ←− N ′ ∪ {i′} and ti′ ←− t∗
7 end while
8 return p = (p1, . . . , pm)

Algorithm 1: Computing a leximin lottery

least one voter i in N \N ′ cannot get more than t∗ without violating the minimal guarantees
of other voters, we can identify such an voter i′ by running the second LP corresponding to
i′. If ε = 0 for the second LP, voter i′’s utility is now fixed to t∗ and cannot be increased.
Hence i′ is correctly added to N ′.

4 Nash social welfare

While egalitarianism is an appealing way of generalizing scoring rules to randomized social
choice, it is not always desirable. Especially when the number of voters is large, maximizing
the expected utility of the worst-off voter may lead to a high loss for a large fraction of the
population. On the other hand, we have seen that utilitarian social welfare can be highly
unfair to the minority. It it thus tempting to look for an aggregation function that lies
in between; the most obvious choice is then the Nash social welfare function [14], where
social welfare is the product of individual utilities. We start by showing that essential
single-valuedness holds.

Proposition 4. For all s, Fs,Π is essentially single-valued.



Proof. Let us assume that there are two different Nash lotteries p and p′ that yield a Nash
social welfare of U > 0, with different utility vectors u and u′ (i.e., ui 6= u′i for at least some
voter i). Now, the lottery p∗ defined as p∗j = (pj + p′j)/2 for every alternative j yields a
utility vector u∗ with Nash social welfare∏

i∈N
u∗i =

∏
i∈N

ui + u′i
2

>
∏
i∈N

√
ui · u′i = U,

which contradicts the optimality of U . The inequality follows by the relation between the
arithmetic and geometric means and since all utilities are positive.

Now we consider the cases of plurality and veto, in which the optimal lottery is not only
polynomial-time computable, but it also has a nice closed-form expression.

Proposition 5. Fplu,Π is the lottery p defined as follows: for every x, p(x) is the proportion
of voters who rank x first.

Therefore, Fplu,Π coincides with random dictatorship. This result is in fact not new: see
Example 3.6a, page 79, in [17].

Things are considerably more complicated with veto. In any profile � where there are
alternatives that are not vetoed by any voter, Fvet,Π(P ) can be any probability distribution
over these alternatives. We will show how to define Fvet,Π for profiles in which every
alternative is vetoed at least once. First, sort the alternatives in non-decreasing order in
terms of their number of vetoes and rename them as a1, a2, ..., am (i.e., a1 and am are the
least and most vetoed alternatives, respectively). For an alternative a, we denote by vt(a)
the number of vetoes it receives in the profile.

Proposition 6. Let k∗ be the maximum integer such that (k∗ − 1)vt(ak∗) <
∑k∗

j=1 vt(aj).
Then, there exists k ∈ {2, ..., k∗} such that Fvet,Π is the lottery p defined as

pai = 1− (k − 1)vt(ai)∑k
j=1 vt(aj)

,

if i = 1, 2, ..., k, and as pai = 0 otherwise.

Proof. It can be easily seen that p, as defined, is indeed a lottery for every value of k, i.e.,∑m
j=1 paj = 1. Since we consider only the case in which every alternative is vetoed by some

voter, no alternative is picked with probability 1; this would make the Nash product equal
to zero.

Let p be a lottery corresponding to Fvet,Π and K be the set of alternatives in its support.
Without loss of generality, we can assume that the lottery is monotonic in the ordering
defined above for the alternatives, i.e., paj ≥ paj+1

. Indeed, it is not possible to have two
alternatives a and b with vt(a) > vt(b) such that a ∈ K and b 6∈ K. If this was the case, the
lottery p′ with p′x = px for every alternative different than a and b, p′a = 0, and p′b = pa would
have strictly higher Nash product compared to p. Also, paj = 0 implies that paj+1 = 0.
Indeed, if this is not the case and paj+1 > 0, then it must be that vt(aj+1) = vt(aj); hence,
by considering the lottery p′ with p′aj = paj+1

and p′aj+1
= 0, we get a lottery with the same

Nash social welfare with p.
Hence, the set K consists of the first k alternatives in the ordering defined above. We

know that k ≥ 2; we will also show that k ≤ k∗. Since all the probabilities associated to
alternatives in K are strictly positive (and also strictly smaller than 1), this means that their
values nullify the partial derivatives of the Nash product as a function of the probabilities



p uses for the alternatives in K. The partial derivative of the Nash product with respect to
pai for i = 1, 2, ..., k − 1 is

∂

∂pai

k−1∑
j=1

paj

vt(ak)
k−1∏
j=1

(
1− paj

)vt(aj)

=

(
vt(ak)∑k−1
j=1 paj

− vt(ai)

1− pai

)
·

k−1∑
j=1

paj

vt(ak)

·
k−1∏
j=1

(
1− paj

)vt(aj)
.

Using
∑k−1
j=1 paj = 1− pak we obtain

p(ai) = 1− vt(ai)

vt(ak)
(1− p(ak)) (1)

and, summing (1) over all alternatives in K, we have

1 =
∑
a∈K

p(a) = p(ak) +

k−1∑
j=1

p(aj)

= p(ak) + k − 1−
∑k−1
i=1 vt(ai)

vt(ak)
(1− p(ak))

= p(ak)

∑k
i=1 vt(ai)

vt(ak)
+ k −

∑k
i=1 vt(ai)

vt(ak)

and, hence,

p(ak) = 1− (k − 1)vt(ak)∑k
j=1 vt(aj)

.

Now, if we had k > k∗, then, by the definition of k∗, it would also be p(ak) = 0 which
contradicts our assumption that the probabilities in the support of p are strictly positive.
So, k ≤ k∗ and, by (1), for i = 1, 2, ..., k we have

p(ai) = 1− (k − 1)vt(ai)∑k
j=1 vt(aj)

Proposition 6 suggests a polynomial-time algorithm for computing Fvet,Π in profiles
where each alternative is vetoed at least once as follows: it first computes k∗; then, it
considers the k∗ − 1 lotteries defined according to the statement of Proposition 6 and picks
the one that maximizes the Nash social welfare.

One might hope to obtain similar positive results for computing Fs,Π exactly for other
scoring vectors such as k-approval6 or Borda. Unfortunately, there is a fundamental difficulty
in doing so. The following examples shows that the Nash lottery for 2-approval and Borda
can have irrational probabilities.

6The k-approval scoring vector has 1 in the first k coordinates and 0 in the rest.



Example 3. Let � = (abcd, acbd, bcad, cdab) and s = (1, 1, 0, 0). Fs,Π(�) is the solution
of the following non-LP:

Maximize
((pa + pb) · (pa + pc) · (pb + pc) · (pc + pd)) s.t.

pa + pb + pc + pd = 1

As d is Pareto dominated by c, pd = 0. Permuting a and b in the voters’ rankings does
not change the utilities received due to 2-approval, thus pa = pb ≤ 1/2. Thus pc = 1 − 2pa.
Substituting into the above non-LP, we have a Nash welfare of 2pa(1− 2pa)(1− pa)2, which

is maximized for pa = 7−
√

17
16 .

Example 4. Let � = (abc, acb, cab, cab). Fbor,Π(�) is the solution of the following non-LP:

Maximize
(
(2pa + pb) · (2pa + pc) · (2pc + pa)2

)
s.t.

pa + pb + pc = 1

Here b is dominated by a, so pb = 0, and thus pc = 1−pa. Substituting these, we get a Nash

social welfare of 2pa(1 + pa)(2− pa)2 which is maximized for pa = 1+
√

33
8 .

On the positive side, computing a lottery that approximates Fs,Π for any scoring vector

s is possible using techniques for solving convex programs. Recalling that by uji we denote
the score the j-th alternative gets from the i-th voter in a profile �, Fs,Π(�) is the solution
of the following convex program:

Maximize (
∑n

i=1 log ui) s.t.

ui =
∑m
j=1 u

j
ipj for i = 1, . . . , n∑m

j=1 pj = 1

pj ≥ 0, for j = 1, . . . ,m

Then, using standard techniques (such as the ellipsoid method; e.g., see the discussion in
[18]), a lottery that approximates the objective value of this convex program within an
additive term of ε can be computed in time that is polynomial in the size of the profile and
1/ε.

5 Normative properties

We now show that our rules enjoy a number of desirable social-choice theoretic properties.
Our goal is to investigate SDSs which (due to our portioning view) should guarantee some
level of fairness to the voters, be Pareto-efficient, and may allow the selection of compromise
alternatives. All proofs for this section are placed in the appendix.

5.1 Positive fair share

If randomized voting for tie-breaking is used in a one-shot context, then fairness is not
particularly meaningful. This is especially the case if the number of voters is large and the
number of alternatives is small: we have to accept that, most likely, some voters will have
their worst alternative elected (political elections being a good example). However, with
a portioning view of randomized voting, fairness does count. Fairness in voting has been
discussed in [2, 5, 9, 11]. Bogomolnaia et al. [5] define the positive share property [5]: an



SDS F satisfies positive shares if for each profile �, voter i, and p ∈ F (�), if xi is the least
preferred alternative of voter i then p(xi) < 1. Though positive share is a weak property, it
is violated by the maximal lottery rule, by utilitarian rules Fs,Σ (provided that sm = 0), and
by some proportional rules (however, proportional Borda and more generally proportional
scoring rules satisfies it). The following result is immediate:

Proposition 7. If sm = 0 and W ∈ {Π,min, leximin}, then Fs,W satisfies positive shares.

Note that sm = 0 applies in particular to Borda and k-approval (including plurality and
veto).

5.2 Pareto efficiency

An SDS F is ex post efficient if the support of any lottery in F (�) consists only of Pareto-
efficient alternatives. Other efficiency notions for SDSs need to refer to a lottery extension
principle [1]. This is achieved through the notion of (first order) stochastic dominance (SD):
a lottery p SD-dominates a lottery p′ with respect to an individual’s preference’s �i if for
all i ∈ N and x ∈ X, ∑

y∈X,y�ix

p′(y) ≥
∑

y∈X,y�ix

p(y) .

Similarly, p strictly SD-dominates p′ with respect to �i if∑
y∈X,y�ix

p′(y) >
∑

y∈X,y�ix

p(y) .

We say F is SD-efficient if for all profiles � there is no p ∈ F (�) and p′ ∈ ∆(X) such that
p′ SD-dominates p with respect to �i for all i ∈ N and p′ strictly SD-dominates p with
respect to �i for some i ∈ N .

Proposition 8. If s is a strictly decreasing scoring vector, and W a strictly monotonic
aggregation function, then Fs,W satisfies SD-efficiency.

Since SD-efficiency implies ex-post efficiency, under the conditions of Proposition 8, Fs,W

is ex-post efficient. (When s is not strictly decreasing, and/or W is not strictly increasing,
then we get the weaker result that among all lotteries in Fs,W (�) there is at least one whose
support consists only of Pareto-efficient alternatives.)

5.3 Population consistency

For � = (�1, . . .�n) and �′ = (�n+1, . . . ,�p), we denote � + �′ = (�1, . . . ,�p).

Definition 2. An SDS F satisfies population consistency if whenever F (�) ∩ F (�′) 6= ∅
then F (� + �′) = F (�) ∩ F (�′). It is said to satisfy weak population consistency if for
all � and �′, F (� + �′) ⊇ F (�) ∩ F (�′).

An aggregation function W is said to be reinforcing if W (α1, . . . , αn) ≥ W (β1, . . . , βn)
and W (αn+1, . . . , αt) ≥W (βn+1, . . . , βt) together imply W (α1, . . . , αt) ≥W (β1, . . . , βt). It
is further strictly reinforcing if it is reinforcing and if W (α1, . . . , αn) ≥ W (β1, . . . , βn) and
W (αn+1, . . . , αt) > W (βn+1, . . . , βt) together imply W (α1, . . . , αt) > W (β1, . . . , βt).

Proposition 9.

1. If W is reinforcing then Fs,W satisfies weak population consistency.

2. If W is strictly reinforcing then Fs,W satisfies population consistency.



Clearly, Σ, Π and (with some abuse of notation) leximin are strictly reinforcing, and min
is weakly reinforcing, therefore:

Corollary 1.

1. Fs,Σ and Fs,leximin satisfy population consistency.

2. Fs,min satisfies weak population consistency.

3. Fs,Π satisfies weak population consistency; if sm > 0 then Fs,Π satisfies population
consistency.

IfW is associative7 and monotonic (respectively strictly monotonic) thenW is reinforcing
(respectively strictly reinforcing). We recall that in the non-randomized setting, population
consistency is the characteristic property of positional scoring rules. However, this does not
carry over to positional SDSs, since the maximal lottery rule satisfies population consistency
as well.

5.4 Participation

In order to define the participation property (stating that it is always in a voter’s interest to
participate), we first need to extend preference relations between alternatives to preference
relations between lotteries. The most common way to do so is by using stochastic dominance:
an SDS F satisfies SD-participation [7] if there does not exist a profile � and an voter i for
which the lottery F (�−i) stochastically dominates the lottery F (�) w.r.t. i’s preferences,
where �−i is the profile obtained from � by i abstaining. This notion is defined for resolute
SDSs, therefore it does not directly apply to irresolute SDSs; however, it does apply if they
are essentially single-valued, which is the case for W = Π or leximin.

Proposition 10. For any strictly decreasing scoring vector s, Fs,Π satisfies SD-
participation.

Proposition 11. For any strictly decreasing scoring vector s, Fs,leximin satisfies SD-
participation.

Stronger generalizations of participation are generally not satisfied by our rules. An
SDS F satisfies strong SD-participation [7] if for all profiles � and voters i the lottery
F (�) SD-dominates F (�−i) with respect to �i. Note that this is a stronger condition than
SD-participation as two lotteries can be incomparable according to SD-dominance.

Proposition 12. Fbor,leximin and Fbor,min do not satisfy strong SD-participation.

Proposition 13. Fbor,Π does not satisfy strong SD-participation.

The exception here are rules that take the sum.

Proposition 14. Fs,Σ satisfies strong-SD-participation [7].

7By “associative” here we mean the natural extension of the traditional property on binary operators to
functions that take sequences as input. The basic idea is the the order of the sequence is unimportant.



Pos. fair shares SD efficient Polytime Strategyproof

Fplu,Σ (RD) X X X X
Fplu,min (ESR) X X X x
Fbor,Σ x X X x
Fbor,min X x X x
Fbor,leximin X X X x
Fvet,Π X x X x
Fbor,Π X X (?) x
Maximal lottery x X X x
Proportional Borda X x X X

Table 1: Summary of normative results.

5.5 Strategyproofness

Strategyproofness requires that no voter can misreport her preferences and get more ex ante
utility with respect to her private cardinal utilities. Deterministic positional scoring rules
are well-known to be not strategyproof. It follows that Fs,Σ rules are not strategyproof.
Similarly, simple examples can be constructed to show that Fs,min, Fs,leximin and Fs,Π rules
are not strategyproof as well. Note that the lack of strategyproofness of the class of rules
we consider is not their design flaw but simply a consequence of imposing anonymity and ex
post efficiency. It follows from [12] that for strict preferences, the only anonymous, ex post
efficient, and strategyproof rule is random dictatorship. If we forego strategyproofness, the
world of SDSs becomes much more interesting.

6 Discussion

Table 1 gives a summary of properties satisfied by some typical SDSs that belong to the
family defined in this paper (the first seven), together with two other SDSs that are not part
of the family (the last two). The first two rules have already been defined: RD stands for
random dictatorship, ESR for egalitarian simultaneous reservation; the five rules after these
are novel. SD participation and reinforcement are omitted from the table because they are
less discriminating than the other properties. The (?) indicates that no polynomial-time
algorithm is known and NP-hardness is conjectured.

Coming back to our initial discussion about the possible uses of social decision schemes,
it is now clearer that they should not be evaluated along the same criteria whether they are
used for randomized voting or for portioning. Positive fair share, for instance, is not necessary
desirable for randomized voting (it would exclude the Borda rule with uniform tie-breaking,
which, in many classical contexts, is a very good rule). Our family of rules can be used to
pick a desirable rule in function of the context. If all we care about is strategyproofness and
efficiency, then the good old random dictatorship is probably the best solution. If we care
about strategyproofness and fair share, but not so much about efficiency, then proportional
Borda can be a good solution (it could for instance be used for deciding the apportionment
between parties at a parliament election). New rules, in particular those induced by the
min, leximin and Nash aggregation functions, reconcile fairness and efficiency, at the price
of losing strategyproofness.
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[13] Judy Goldsmith, Jérôme Lang, Nicholas Mattei, and Patrice Perny. Voting with rank
dependent scoring rules. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 698–
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A Proofs

Proposition 8. If s is a strictly decreasing scoring vector, and W a strictly monotonic
aggregation function, then Fs,W satisfies SD-efficiency.

Proof. Assume s is strictly decreasing, W is strictly increasing, and that p′ SD-dominates
p w.r.t. P . Then for every i ∈ N and x ∈ X,

∑
y∈X,y�ix

p′(y) ≥
∑
y∈X,y�ix

p(y) with one
inequality being strict. Let i ∈ N and σ such that xσ(1) �i . . . �i xσ(m). Now,

ui(p
′)− ui(p) =

m∑
j=1

sj
(
p′(xσ(j) − p(xσ(j))

)
=

m−1∑
j=1

(sj − sj+1)

≥
j∑

k=1

p′(xσ(j))− p(xσ(j)) ≥ 0 ,

with one inequality being strict because sj > sj+1 for all j. By strict monotonicity of W ,
we have W (u1(p′), . . . , un(p′)) > W (u1(p), . . . , un(p)), therefore, p /∈ Fs,W (P ).

Proposition 9.

1. If W is reinforcing then Fs,W satisfies weak population consistency.

2. If W is strictly reinforcing then Fs,W satisfies population consistency.

Proof. Assume W is reinforcing and let � and �′ be as above. Let p ∈ F (�) ∩
F (�′); this means that for all p′, W (u1(p), . . . , un(p)) ≥ W (u1(p′), . . . , un(p′)) and
W (un+1(p), . . . , ut(p)) ≥W (un+1(p′), . . . , ut(p

′)). For each i ≤ p let ui = (sr(xk,�i)|1 ≤ k ≤
p). Because W is reinforcing, for all p′ we have W (u1(p), . . . , ut(p)) ≥W (u1(p′), . . . , ut(p

′))
from which p ∈ F (� + �′) follows, which proves I.

For II, the strict inequality follows in a similar way, but we also need the
converse inclusion. Let p′ /∈ F (�) ∩ F (�′): without loss of generality, p′ /∈
F (�). Then W (u1(p), . . . , un(p)) > u1W ((p′), . . . , un(p′)) and W (un+1(p), . . . , ut(p)) ≥
W (un+1(p′), . . . , ut(p

′)). Because W is strictly reinforcing, we have W (u1(p), . . . , ut(p)) >
W (u1(p′), . . . , ut(p

′)) therefore, p′ /∈ F (� + �′).

Proposition 10. For any strictly decreasing scoring vector s, Fs,Π satisfies SD-
participation.



Proof. If Fs,Π does not satisfy SD-participation then let � and i be s.t.

Fs,Π(�−i) = p′ SD-dominates Fs,Π(�) = p. (2)

As s is strictly decreasing, (2) implies

ui(p
′) > ui(p). (3)

Since Fs,Π(�) = p, we have ∏
j∈N

ui(p) ≥
∏
j∈N

u′i(p). (4)

From (3) and (4),
∏
j∈N\{i} ui(p) ≥

∏
j∈N\{i} u

′
i(p), which contradicts Fs,Π(�−i) = p′.

Proposition 12. Fbor,leximin and Fbor,min do not satisfy strong SD-participation.

Proof. Consider the profile where voter 1 has preferences abcde, voter 2 preferences dbcae
and voter 3 preferences aebdc. When 3 does not vote, the (unique) outcome is the lottery
where b has probability 1 which gives utility of 3 to voters in {1, 2}. Now if 3 participates,
the maximum possible minimum welfare is 2.5 which is achieved for all voters by lottery
(a : 1

2 , d : 1
2 ). Since the second lottery does not SD-dominate the first according to

voter 3’s preferences, it follows that Fbor,leximin and Fbor,min do not satisfy strong SD-
participation.

Proposition 13. Fbor,Π does not satisfy strong SD-participation.

Proof. Consider the profile where voter 1 has preferences abcdefgh, voter 2 has preferences
fgchabde and voter 3 has preferences fghcabde. The (unique) outcome is the lottery where
c has probability 1 if only the first two voters participate, whereas for all three voters we
have a mixture between a and f , which is not SD-dominant for voter 3.

Proposition 14. Fs,Σ satisfies strong-SD-participation [7].

Proof. It has recently been proved [7] that social welfare maximizing lotteries satisfy strong
SD-participation, which implies that Fs,Σ satisfies strong SD-participation.
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