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Abstract

We investigate the parameterized complexity of computing an outcome of the Ke-
meny rule in judgment aggregation, providing the first parameterized complexity
results for this problem for any judgment aggregation procedure. As parameters,
we consider (i) the number of issues, (ii) the maximum size of formulas used to
represent issues, (iii) the size of the integrity constraint used to restrict the set of
feasible opinions, (iv) the number of individuals, and (v) the maximum Hamming
distance between any two individual opinions, as well as all possible combinations
of these parameters. We provide parameterized complexity results for two judgment
aggregation frameworks: formula-based judgment aggregation and constraint-based
judgment aggregation. Whereas the classical complexity of computing an outcome
of the Kemeny rule in these two frameworks coincides, the parameterized complexity
results differ.

1 Introduction

The area of computational social choice places computational aspects of social choice proce-
dures at a first-class level among selection criteria for the choice between such procedures.
For example, since the seminal work of Bartholdi, Tovey and Trick [3], it has been well
known that for many voting rules the problem of computing who won a particular election
is computationally intractable. As a result, the computational complexity of this winner
determination problem plays an important role in the selection of what voting scheme to
use. Traditionally, classical computational complexity theory has been used to provide qual-
itative information about the difficulty of relevant computational problems for social choice
procedures. For instance, completeness results for the classical complexity classes NP and
©% abound in the computational social choice literature (see, e.g., [3, 8, 9] 211, 29, [0} [41]).
However, classical complexity theory—being a worst-case framework that measures the
running time of algorithms in terms of only the bit-size of the input—is mostly blind to what
aspects of the input underlie negative complexity results. Consequently, negative complexity
results tend to be interpreted overly pessimistically. An illustrative example of this concerns
the winner determination problem for the Kemeny voting rule. This problem is ©5-complete
in general (which rules out algorithms that work efficiently across the board), but efficient
algorithms do exist for cases where the number of candidates is small [5] 6] B0, [33] [39].
The multidimensional framework of parameterized complexity [13, 14, 23, [38] offers a
mathematically rigorous theory to analyze the computational complexity of problems on
the basis of more than just the input size in bits. Therefore, using this framework, one
can give much more informative complexity results that are sensitive to various aspects of
the problem input—in principle, any aspect of the input can be taken into account. In the
analysis of voting procedures, parameterized complexity has been used widely, to give a more
accurate picture of the complexity of many related computational problems, including the
problem of winner determination (see, e.g., [Bl [6, B3]). In the area of judgment aggregation,
however, parameterized complexity has been used to analyze the computational complexity



of problems only in very few cases [4, 19]. The fundamental problem of computing the
outcome of judgment aggregation procedures, as of yet, remains uninvestigated from a
parameterized complexity point of view.

We hope to initiate a structured parameterized complexity investigation of the problem
of computing the outcome of judgment aggregation procedures. Judgment aggregation
studies the process of combining individual judgments on a set of related propositions of the
members of a group into a collective judgment reflecting the views of the group as a whole
[15] 26], 34l B5]. Seen from a classical complexity point of view, computing the outcome of
many judgment aggregation procedures is ©5-complete. However, as these negative results
pertain only to the case where every possible input needs to be considered, there is a lot of
room for relativizing these negative results by taking a parameterized complexity perspective
and considering various (combinations of) reasonable restrictions on the inputs.

Contribution In this paper, we start the parameterized complexity investigation of judg-
ment aggregation procedures by considering one of the most prominent procedures: the
Kemeny procedure for judgment aggregation (or Kemeny rule, for short)ﬂ The unrestricted
problem of computing an outcome for this rule is ©5-complete [17,[32]. We consider a num-
ber of natural parameters for this problem—capturing various aspects of the problem input
that can be expected to be small in some applications—and we give a complete parame-
terized complexity classification for the problem of computing the outcome of the Kemeny
rule, for every combination of these parameters. The parameters that we consider are:

e the number n of issues that the individuals (and the group) form an opinion on;
e the maximum size m of formulas used to represent the issues;

e the size ¢ of the integrity constraint used to limit the set of feasible opinions;

e the number p of individuals; and

e the maximum (Hamming) distance h between any two individual opinions.

The results in this paper open up interesting and natural lines of future research. A similar
parameterized complexity analysis can be performed for the problem of computing the
outcome of other judgment aggregation procedures. Moreover, further parameters can be
taken into account in future parameterized complexity analyses of the problem.

We develop parameterized complexity results for two formal frameworks for judgment
aggregation: formula-based judgment aggregation and constraint-based judgment aggregation
(the former is often simply called ‘judgment aggregation’ [12, 17, [32] and the latter is
also called ‘binary aggregation with integrity constraints’ [24] [25])—we define these two
frameworks in detail in Section [3] In general, the computational complexity of computing
the outcome of a judgment aggregation procedure might differ for these two frameworks
[16], but for the Kemeny rule this problem is ©5-complete in both frameworks [17) [24].

Nonstandard Parameterized Complexity Tools Since the invention of parameterized
complexity theory, it has been applied mostly to problems that are in NP. As a result, the
most commonly used parameterized complexity toolbox is insufficient to perform a complete
parameterized complexity analysis of problems that are beyond NP (such as the ©5-complete
problem of computing the outcome of the Kemeny procedure). Recently, various novel
parameterized complexity tools have been developed that aid in analyzing the parameterized
complexity of problems beyond NP [19] 20l 28]. The parameterized complexity results in this

IThis procedure has also been called “MWA” [32], “Median rule” [37], “Simple scoring rule” [I1], and
“Prototype-Hamming rule” [36].



paper feature one of these innovative parameterized complexity tools: the class FPTN? [few],
which consists of problems that can be solved by a fixed-parameter tractable algorithm that
can query an NP oracle a small number of times (that is, the number of oracle queries
depends only on the parameter value). We define this class in detail in Section [2| where we
discuss relevant notions from parameterized complexity.

Overview of Results We provide a parameterized complexity classification for the prob-
lem of computing an outcome of the Kemeny rule, for all possible combinations of the
parameters that we consider—both (1) in the framework of formula-based judgment aggre-
gation and (2) in the framework of constraint-based judgment aggregation.

For the framework of formula-based judgment aggregation, we give a tight classification
for each possible case. In particular, we show the following. When parameterized by any set
of parameters that includes ¢, n and m, the problem is fixed-parameter tractable (Proposi-
tion . Otherwise, when parameterized by any set of parameters that includes either n or
both h and p, the problem is FPTNY [few]-complete (Propositions |§| and [10)). For all
remaining cases, the problem is para-©%-complete (Corollary |§| and Proposition [7))

For the framework of constraint-based judgment aggregation, we show the following re-
sults. When parameterized by any set of parameters that includes either ¢ or n, the problem
is fixed-parameter tractable (Propositions and . Otherwise, when parameterized by
any set of parameters that includes h, the problem is W[SAT]-hard and is in XP (Proposi-
tions and. For all remaining cases, the problem is para-05-complete (Proposition.
The results for the formula-based judgment aggregation framework are summarized in Ta-
ble [1} and the results for the constraint-based framework are summarized in Table [2] (in
both tables, a star denotes an arbitrary choice for the subset).

Py C{e,n,m} P, C{h,p} complexity param. by Py U P»
Py = {¢,n,m} * in FPT (Prop [3)
* P, ={h,p}  in FPTN"[few] (Prop [1)

n e Py * in FPTNF [few] (Prop [2)

P, € {¢,n,m} * FPTNP[few]-hard (Props [} |9] and [10)

P, C {c,m} P, C {h,p} para-©Y-hard (Cor (6 Prop

Table 1: Parameterized complexity results for OurcomMe(KEMENY)®.

P, C{c,n} P, C{h,p} complexity param. by P U P
P #0 * in FPT (Props [11] and [12)

* he P in XP (Prop [L3)
P =0 * WISAT]-hard (Prop
P =0 P, C {p} para-O5-hard (Prop

Table 2: Parameterized complexity results for OuTcoOME(KEMENY)<P.

Roadmap In the remainder of Section [ we discuss relevant related work. Then, in Sec-
tion [2| we give a brief overview of the concepts and tools from the theory of (parameterized)
complexity that we use in this paper. In Section |3} we introduce the two formal judgment
aggregation frameworks, and we formally define the computational problem of computing
an outcome for the Kemeny rule, as well as all the parameterized variants of this problem
that we consider. We provide the parameterized complexity results for all parameterized
variants of the problem (for both judgment aggregation frameworks) in Section |4} Due to
space restrictions, proofs of results marked with an asterisk can be found in the appendix.
Finally, we conclude in Section



Related Work Parameterized complexity theory has been used to investigate the com-
plexity of the winner determination problem in voting (which is analogous to the problem
of computing the outcome of a judgment aggregation procedure) for several voting rules
[l [, [33]. Parameterized complexity has also been used to study various other problems in
the area of judgment aggregation, such as problems related to bribery [, [19]. The complex-
ity of computing outcomes for the Kemeny procedure in judgment aggregation (and other
procedures) has been studied from a classical complexity point of view [I7, I8, 24 [32]. It
has also been studied what influence the choice of formal framework to model the setting of
judgment aggregation has on the (classical) complexity of computing outcomes for various
judgment aggregation procedures [16].

2 Parameterized Complexity

We begin by briefly introducing the relevant concepts and notation from propositional logic
and (parameterized) complexity theory. We use the notation [n], for any n € N, to denote
the set {1,...,n}.

Propositional Logic Propositional formulas are constructed from propositional variables
using the Boolean operators A, V,—, and —. A propositional formula is doubly-negated if it
is of the form ——). For every propositional formula ¢, we let ~p denote the complement
of ¢, i.e., ~p = = if p is not of the form —1, and ~p = 9 if ¢ is of the form —). For a
propositional formula ¢, the set Var(p) denotes the set of all variables occurring in ¢. We
use the standard notion of (truth) assignments « : Var(yp) — {0,1} for Boolean formulas
and the standard notion of truth of a formula under such an assignment. An assignment
that makes the formula true is called a model of the formula.

Classical Complexity We assume the reader to be familiar with the most common con-
cepts from complexity theory, such as the complexity classes P and NP. These basic notions
are explained in textbooks on the topic; see, e.g., [2]. In this paper, we will also refer to
the complexity class O, that consists of all decision problems that can be solved by a
polynomial-time algorithm that queries an NP oracle O(logn) times. The following prob-
lem is complete for the class ©F under polynomial-time reductions [7] [311 44].

MAX-MODEL

Instance: A satisfiable propositional formula ¢, and a variable w € Var(yp).

Question: Is there a model of ¢ that sets a maximal number of variables in Var(y) to
true (among all models of ¢) and that sets w to true?

Parameterized Complexity Next, we introduce the relevant concepts of parameterized
complexity theory. For more details, we refer to textbooks on the topic [10} 13} 14l 23] B§].
An instance of a parameterized problem is a pair (x,k) where = is the main part of the
instance, and k is the parameter. A parameterized problem is fized-parameter tractable
if instances (x,k) of the problem can be solved by a deterministic algorithm that runs
in time f(k)|z|¢, where f is a computable function of k, and c¢ is a constant (algorithms
running within such time bounds are called fpt-algorithms). FPT denotes the class of all
fixed-parameter tractable problems. When considering multiple parameters, we take their
sum as a single parameter.

Parameterized complexity also offers a completeness theory, similar to the theory of
NP-completeness, that provides a way to obtain evidence that a parameterized problem is
not fixed-parameter tractable. Hardness for parameterized complexity classes is based on



fpt-reductions, which are many-one reductions where the parameter of one problem maps
into the parameter for the other. More specifically, a parameterized problem @ is fpt-
reducible to another parameterized problem @’ if there is a mapping R that maps instances
of @ to instances of Q' such that (i) (I,k) € Q if and only if R(I,k) = (I',k') € @,
(ii) ¥ < g(k) for a computable function g, and (iii) R can be computed in time f(k)|I|°
for a computable function f and a constant ¢. Central to the completeness theory are the
classes of the Weft hierarchy, including the class W[SAT]. The parameterized complexity
class W[SAT] can be characterized as the set of those parameterized problems that can be
fpt-reduced to the problem MONOTONE-WSAT [I]. In this problem, the input consists of a
monotone propositional formula ¢p—i.e., ¢ contains no negations—and a positive integer k.
The parameter is k, and the question is whether there exists a truth assignment that sets at
most k variables in Var(y) true and that satisfies ¢. Moreover, the parameterized complexity
class XP consists of all problems that can be solved in time O(nf(*®)), for some computable
function f, where n is the input size and k is the parameter value.

The following parameterized complexity classes are analogues to classical complexity
classes. Let K be a classical complexity class, e.g., ©5. The parameterized complexity
class para-K is then defined as the class of all parameterized problems ) for which there
exist a computable function f and a problem @’ € K such that for all instances (x, k) we
have that (z,k) € Q if and only if (z, f(k)) € Q. Intuitively, the class para-K consists
of all problems that are in K after a precomputation that only involves the parameter. A
parameterized problem is para-K-hard if it is K-hard already for a constant value of the
parameter [22].

The final parameterized complexity class that we consider is FPTNP[feW], consisting
of all parameterized problems that can be solved by an fpt-algorithm that queries an NP
oracle at most f(k) many times, where f is some computable function and where k denotes
the parameter value [19, 20, 27]—an NP oracle can decide in a single time step whether
an instance of an NP problems is a yes-instance or a no-instance. Intuitively, this class
consists of those problems that can be reduced to SAT by a Turing reduction that runs in
fixed-parameter tractable time, and queries the oracle at most f(k) times. The following
parameterized variant of MAX-MODEL is FPT™F [few]-complete under fpt-reductions ().

LocaL-MAX-MODEL

Instance: A satisfiable propositional formula ¢, a subset X C Var(p) of variables, and
a variable w € X.

Parameter: |X|.

Question: Is there a model of ¢ that sets a maximal number of variables in X to true
(among all models of ) and that sets w to true?

3 Judgment Aggregation

Next, we introduce the two formal judgment aggregation frameworks that we use in this
paper: formula-based judgment aggregation (as used by, e.g., [12 17, B2]) and constraint-
based judgment aggregation (as used by, e.g., [24]). For both frameworks, we will also define
the computational problem OUTCOME(KEMENY) of computing an outcome of the Kemeny
procedure, and we will formally define the parameters that we consider.

Formula-Based Judgment Aggregation An agenda is a finite, nonempty set ® of
formulas that does not contain any doubly-negated formulas and that is closed under
complementation. Moreover, if ® = {¢1,...,9n, ®¥1,...,¢0n} is an agenda, then we
let [®] = {¥1,...,¢n} denote the pre-agenda associated to the agenda ®. We denote the
bitsize of the agenda ® by size(®) = > cqlp|. A judgment set J for an agenda ® is a



subset J C ®. We call a judgment set J complete if p € J or ~p € J for all ¢ € ®; and we
call it consistent if there exists an assignment that makes all formulas in J true. Intuitively,
the consistent and complete judgment sets are the opinions that individuals and the group
can have.

We associate with each agenda ® an integrity constraint I', that can be used to fur-
ther restrict the set of feasible opinions. Such an integrity constraint consists of a single
propositional formula. We say that a judgment set J is I'-consistent if there exists a truth
assignment that simultaneously makes all formulas in J and T true. Let J(®,T") denote the
set of all complete and I'-consistent subsets of ®. We say that finite sequences J € J(®,T')™
of complete and I'-consistent judgment sets are profiles, and where convenient we equate a
profile J = (J1,. .., Jp) with the (multi)set {J,...,J,}.

A judgment aggregation procedure (or rule) for the agenda ® and the integrity con-
straint T is a function F' that takes as input a profile J € J(®,T)*, and that produces a
non-empty set of non-empty judgment sets, i.e., it produces an element in 22<b\{@}\{(2)}. We
call a judgment aggregation procedure F' resolute if for any profile J it returns a single-
ton, i.e., |F(J)| = 1; otherwise, we call F' irresolute. An example of a resolute judgment
aggregation procedure is the strict majority rule Majority, where Majority(J) = {J*} and
where ¢ € J* if and only if ¢ occurs in the strict majority of judgment sets in J, for
all p € [®]. We call a judgment aggregation procedure F' complete and I'-consistent, if .J
is complete and I'-consistent, respectively, for every J € J(®,T)" and every J € F(J).
The procedure Majority is not consistent. Consider the agenda ® with [®] = {p,q,p — ¢},
and the profile J = (Jy,J2,J3), where J1 = {p,q,(p = @)}, J2 = {p,~¢,~(p — @)},
and J3 = {—p, ¢, (p — ¢)}. The unique outcome {p, =g, (p — ¢)} in Majority(J) is incon-
sistent.

The Kemeny aggregation procedure is based on a notion of distance. This distance is
based on the Hamming distance d(J,J") = |{p € [®] : p € (J\ J)U (J"\ J) }| between two
complete judgment sets J, J'. Intuitively, the Hamming distance d(J, J') counts the number
of issues on which two judgment sets disagree. Let J be a single I'-consistent and complete
judgment set, and let (Ji,...,J,) = J € J(®,T)" be a profile. We define the distance
between J and J to be Dist(J, J) = 3,1, d(J, Ji). Then, we let the outcome Kemenyg (J)
of the Kemeny rule be the set of those J* € J(®,T") for which there is no J € J(®,T)
such that Dist(J,J) < Dist(J*,J). (If ® and T'" are clear from the context, we often
write Kemeny(J) to denote Kemenyg (J).) Intuitively, the Kemeny rule selects those
complete and I'-consistent judgment sets that minimize the cumulative Hamming distance
to the judgment sets in the profile. The Kemeny rule is irresolute, complete and I'-consistent.

We formalize the problem of computing an outcome of the Kemeny rule—in the formula-
based judgment aggregation framework—with the following decision problem OUTCOME-
(KEMENY)™. Any algorithm that solves OUTCOME(KEMENY)™ can be used to construct
some J* € Kemeny(J), with polynomial overhead, by iteratively calling the algorithm and
adding formulas to the set L. Moreover, multiple outcomes Ji,J3,... can be constructed
by adding previously found outcomes as the sets L;.

OurcoME(KEMENY)™®

Instance: An agenda ® with an integrity constraint ', a profile J € J(®,T)T and
subsets L, Ly, ..., L, C ® of the agenda, with u > 0.

Question: TIs there a judgment set J* € Kemeny(J) such that L C J* and L; € J* for
each i € [u]?

The parameters that we consider for the problem OuTCOME(KEMENY)™ are de-
fined straightforwardly. For an instance (®,T',J,L,L1,...,L,) of OurcoME(KEMENY)™
with J = (J1,...,Jp), we let n = [[®]|, m = max{|p| : ¢ € [®]}, ¢ = ||, p = |J],
and h = max{d(J;,Jy) : 1 <i<i <p}



Constraint-Based Judgment Aggregation Let Z = {z1,...,2z,} be a finite set of
issues. Intuitively, these issues are the topics about which the individuals want to combine
their judgments. A truth assignment o : Z — {0,1} is called a ballot, and represents
an opinion that individuals and the group can have. We will also denote ballots o by

a binary vector (b,...,b,) € {0,1}", where b; = «(z;) for each i € [n]. Moreover, we
say that (p1,...,pn) € {0,1,%}™ is a partial ballot, and that (pi,...,pn) agrees with a
ballot (b1,...,by,) if p; = b; whenever p; # x, for all i € [n]. As in the case for formula-

based judgment aggregation, we introduce an integrity constraint I', that can be used to
restrict the set of feasible opinions (for both the individuals and the group). The integrity
constraint I" is a propositional formula on the variables x1, . .., z,,. We define the set R(Z,T)
of rational ballots to be the ballots (for Z) that satisfy the integrity constraint I'. Rational
ballots in the constraint-based judgment aggregation framework correspond to complete and
I'-consistent judgment sets in the formula-based judgment aggregation framework. We say
that finite sequences 7 € R(Z,T")* of rational ballots are profiles, and where convenient we
equate a profile r = (r1,...,r,) with the (multi)set {ri,...,7p}.

A judgment aggregation procedure (or rule), for the set Z of issues and the integrity
constraint T, is a function F' that takes as input a profile » € R(Z,T')*, and that pro-
duces a non-empty set of ballots. We call a judgment aggregation procedure F' rational (or
consistent), if r is rational for every » € R(Z,T')* and every r € F(r).

As an example of a judgment aggregation procedure we consider the strict majority
rule Majority, where Majority(r) = {(b1,...,b,)} and where each b; agrees with the ma-
jority of the i-th bits in the ballots in r (in case of a tie, we arbitrarily let b; = 1). To
see that Majority is not rational, consider the set Z = {x1, 22,23} of issues, the integrity
constraint I' = z3 <> (1 — 2), and the profile r = (r1,72,73), where r1 = (1,1,1), 7o =
(1,0,0), and r3 = (0,0,1). The unique outcome (1,0,1) in Majority(r) is not rational.

The Kemeny aggregation procedure is defined for the constraint-based judgment aggre-
gation framework as follows. Similarly to the case for formula-based judgment aggregation,
the Kemeny rule is based on the Hamming distance d(r,r") = |{¢ € [n] : b; # b} }|, between
two rational ballots r = (b1,...,b,) and ' = (b],...,b,) for the set Z of issues and the
integrity constraint I'. Let r be a single ballot, and let (rq,...,7,) = 7 € R(Z,I')* be a
profile. We define the distance between r and r to be Dist(r,r) =3, d(r, ;). Then, we
let the outcome Kemenyz (r) of the Kemeny rule be the set of those ballots 7* € R(Z,T')
for which there is no r € R(Z,T') such that Dist(r,r) < Dist(r*,r). (If Z and T are clear
from the context, we often write Kemeny(r) to denote Kemenyz -(r).) The Kemeny rule is
irresolute and rational.

We formalize the problem of computing an outcome of the Kemeny rule—in the
constraint-based judgment aggregation framework—with the following decision problem
OutcoME(KEMENY)P.  Similarly to algorithms for Ourcome(KEMENY)™, algorithms
that solve OUTCOME(KEMENY)” can be used to construct multiple outcomes.

OuTcoME(KEMENY )P

Instance: A set T of issues with an integrity constraint T', a profile » € R(Z,I')" and
partial ballots 1y, ...,1, (for Z), with u > 0.

Question: Is there a ballot r* € Kemeny(r) such that [ agrees with 7* and each I; does
not agree with r*?

We define the parameters that we consider for OUTCOME(KEMENY) as follows. For
an instance (Z,T,r,1,11,...,1l,) of OUTCOME(KEMENY)® with » = (rq,...,7,), we let n =
IZ|, ¢ = |T'|, p = ||, and h = max{d(r;,r) : 1 < i < i < p}. We remark that the
parameter m does not make sense in the constraint-based framework, as issues are not
represented by a logic formula. When needed, the parameter m for OUTCOME(KEMENY <"
is defined by letting m = 1.



4 Complexity Results

In this section, we develop the parameterized complexity results for the different parame-
terized variants of OUTCOME(KEMENY)® and OuTcoME(KEMENY) that we consider.

4.1 Upper Bounds for the Formula-Based Framework

We begin with showing upper bounds for OuTCOME(KEMENY)®™. When parameterized
either (i) by both A and p or (ii) by n, the problem is in FPTNF [few].

Proposition 1. OUTCOME(KEMENY)™ parameterized by h and p is in FPTNT [few].

Proof. The main idea behind this proof is that with these parameters, we can derive a
suitable upper bound on the minimum distance of any complete and I'-consistent judgment
set to the profile J, such that the usual binary search algorithm with access to an NP oracle
only needs to make O(log h + log p) many oracle queries.

We describe an algorithm A that solves OuTCOME(KEMENY )™ with the required number
of oracle queries. Let (®,I',J,L, Ly,...,L,) be an instance. The algorithm needs to deter-
mine the minimum distance d(J, J) for any complete and I'-consistent judgment set J to the
profile J. Let d* denote this minimum distance. An upper bound on d* is given by h(p—1).
This upper bound can be derived as follows. Take an arbitrary J € J. Clearly d(J,J) =0,
and for every J' € J with J # J" we know that d(J, J') < h. Therefore, d(J,J) < h(p —1).
Since J € J, we know that J is complete and I'-consistent. Therefore, the minimum distance
of any complete and I'-consistent judgment set to the profile J is at most h(p — 1).

The algorithm A firstly computes d*. Since d* < h(p — 1), with binary search this can
be done using at most [logh(p — 1)] = O(log h + logp) many queries to an oracle. Then,
with a single additional oracle query, the algorithm A determines whether there exists a
complete and I'-consistent judgment set J* with d(J*,J) = d*, L C J*, and L; € J* for
each j € [u]. O

When parameterized by the number n of formulas in the pre-agenda, the number of
possible judgment sets is bounded by a function of the parameter. This allows the problem
to be solved in fixed-parameter tractable time, using a single query to an NP oracle for each
judgment set to determine whether it it I'-consistent.

Proposition* 2. OUTCOME(KEMENY)® parameterized by n is in FPTNY [few].

When additionally parameterizing by ¢ and m, I'-consistency of the judgment sets can
be decided in fixed-parameter tractable time, and thus the whole problem becomes fixed-
parameter tractable.

Proposition* 3. OurcoME(KEMENY)™ parameterized by c, n and m is fized-parameter
tractable.

4.2 Lower Bounds for the Formula-Based Framework

Next, we turn to parameterized hardness results for the problem OUTCOME(KEMENY)™.
We begin with showing that the problem is para-©Y-hard even when parameterized by c, h
and m. We will use the following lemma.

Lemma* 4. Let ¢ be a propositional formula on the variables z1,...,z,. In polynomial
time we can construct a propositional formula ¢" with Var(y') O Var(p)U{z1,...,2,} such
that for every truth assignment o : Var(y) — {0,1} it holds that (1) pla] is true if and only
if 'a] is satisfiable, and (2) if o sets exactly i variables to true, then ¢'[a] = z;.



Proposition 5. OUTCOME(KEMENY)™ parameterized by ¢ and h is para-©%-hard.

Proof. We show that OuTcOME(KEMENY)® is ©5-hard already for a constant value of the
parameters, by giving a reduction from MAX-MODEL. Let (¢, w) be an instance of MAX-
MobEL with Var(p) = {z1,...,z,} and w = 2. Without loss of generality, we may assume
that there is a model a of ¢ that sets at least two variables z; to true. By Lemma {4} we
can construct a suitable formula ¢’ = ¢; A - -+ A ¢, with additional variables z1, ..., z, that
represent a lower bound on the number of variables among z1, .. ., z, that are true in models
of .

We construct the agenda ® by letting [®] = {zw, 2-w, 215+, 20} U { Yw,i, Ywyi & €
m+1]}U{y; i€ [nl,je i} U{x,x'}, where zy, 2y and all Yy i, Y-, yi,; are fresh
variables. We let Y = { 4w, Y-w,i 1 ¢ € [n+1] }U{y;; : i € [n],j € [i] }. Moreover, we let x
be such that x = =(VY AV([P\Y)) V ((z0 < 21 ¢ —2-) A ¢')), and we define y’ such
that x' = x (that is, we let x’ be a syntactic variant of ).

Then, we construct the profile J as follows. We let J = {Jyi,J-w: 1% € [n + 1]} U
{Jij i€ [n],j€li]}. Each of the judgment sets in the profile includes exactly two formulas
in [®]. Consequently, the maximum Hamming distance between any two judgment sets in
the profile is 4. For each i € [n + 1], we let {Yuw,i, 2w} C Jw.i and {y-wis2-w} C Jow,i-
Moreover, for each i € [n] and each j € [i], we let {y; ;, 2z} C J; ;. It is straightforward to
verify that each J € J is consistent. Finally, we let L = {z,}, [ =T, and u = 0.

In other words, all formulas in [®] are excluded in a majority of the judgment sets in the
profile J. However, some formulas in [®] are included in more judgment sets in the profile
than others. The formulas z, and z-, are both included in n + 1 sets. Each formula z;
(for ¢ € [n]) is included in exactly ¢ sets. All formulas in ¥ are included in exactly one set.
Finally, the formulas x and x’ are included in none of the sets. Intuitively, the formulas that
are included in more judgment sets in the profile are cheaper to include in any candidate
outcome J*.

The complete judgment set that minimizes the cumulative Hamming distance to the
profile J is the set Jy = {—p : ¢ € [®]} that includes no formulas in [®]. However, this
set is inconsistent, which is straightforward to verify using the definition of x. It can be
made consistent by adding two formulas @1, o from [®] (and removing their complements).
The choice of ¢1, ps that leads to a consistent judgment set with minimum distance to the
profile is by letting 1 € {2y, 2-} and letting wo = 24, where £ is the maximum number
of variables among 1, ..., x, set to true in any model of ¢. Moreover, whenever ¢ = z,,,
the resulting judgment set is consistent if and only if there is a model of ¢ that sets ¢
variables among x1,...,x, to true, including the variable w. From this, we directly know
that (¢, w) € MAX-MODEL if and only if (®,T",J,L) € OUTCOME(KEMENY)fb. This con-
cludes our para-©5-hardness proof. O

This hardness result can straightforwardly be extended to the case where all formulas
in the agenda are of constant size, by using the well-known Tseitin transformation [43] to
transform a formula into CNF, leading to the following corollary.

Corollary* 6. OUTCOME(KEMENY)® parameterized by c, h and m is para-©%-hard.
The problem is also para-©Y-hard when parameterized by ¢, m and p.
Proposition 7. OUTCOME(KEMENY)® parameterized by c, m and p is para-05-hard.

Proof. We firstly show para-©Y-hardness for the problem parameterized by ¢ and p, by
giving a reduction from MAX-MODEL that uses constant values of ¢ and p. This reduction
can be seen as a modification of the ©5-hardness proof for OuTcOME(KEMENY)™ given by
Endriss and De Haan [I8, Proposition 7 and Corollary 8].



Let (¢, w) be an instance of MAX-MODEL. We may assume without loss of generality
that ¢ is satisfiable by some truth assignment that sets at least one variable in Var(y) to
true. We construct an instance (®,T,J, L) of OuTcoME(KEMENY)™ as follows. Take an
integer b such that b > 2|Var(p)|, e.g., b = 3|Var(p)| + 1. Let [®] = Var(p) U {z; : i €
B,7 € B]}U{¢}: i€ [b]}, where each of the formulas ¢} is a syntactic variant of the
following formula ¢'. We define ¢’ = (\/ e /\ie[b] zi.j) V . Intuitively, the formula ¢’ is
true either if (i) all variables z; ; are set to true for some j € [3], or if (ii) ¢ is satisfied.
Then we let J = {Ji, J2, J3}, where for each j € [3], we let J; contain the formulas z; ; for
all 7 € [b], all formulas in Var(y), all the formulas ¢}, and no other formulas from [®]. (For
each ¢ € [®], if ¢ & J;, we let —¢ € J;.) Clearly, the judgment sets Jy, Jo and J3 are all
complete and consistent. Moreover, we let I' = T, and L = {w}. It is straightforward to
verify that the parameters ¢ and p have constant values.

We now argue that there is some J* € Kemeny(J) with L C J* if and only if (¢, w) €
MAX-MODEL. To see this, we first observe that the only complete and consistent judgment
sets J for which it holds that d(J,J) < d(J;,J) (for any j € [3]) must satisfy that J = ¢.
Moreover, among those judgment sets J for which J |= ¢, the judgment sets that minimize
the distance to the profile J satisfy that z; ; ¢ J for all 4 € [b] and all j € [3], and ¢} € J
for all 4 € [b]. Using these observations, we directly get that there is some J* € Kemeny(.J)
with L C J* if and only if there is a model of ¢ that sets a maximal number of variables
in Var(p) to true and that sets the variable w to true.

Then, to show that the problem is also para-©%-hard when parameterized by ¢, m and p,
we can modify the above reduction in a way that is entirely similar to the proof of Corollary 6]
replacing the formulas ¢} by the clauses of 3CNF formulas that have the same effect on the
consistency of judgment sets as the formulas ¢/. O

For all parameterizations that do not include all of the parameters ¢, n and m, the
problem OUTCOME(KEMENY)™ is FPTY [few]-hard. We begin with the case where ¢ can
be unbounded; this proof can be extended straightforwardly to the other two cases.

Proposition 8. OUTCOME(KEMENY)™ parameterized by h, n, m and p is FPT [few]-
hard.

Proof. We show FPTNP [few]-hardness by giving an fpt-reduction from LOCAL-MAX-
MobDEL. (This reduction from LOCAL-MAX-MODEL is very similar to the reduction from
MAX-MODEL used in the proof of Proposition ) Let (¢, X,w) be an instance of LOCAL-
MaX-MODEL, with X = {x1,...,z;}. We construct an instance (®,T", J, L) as follows. Take
an integer b such that b > 2|X|, e.g., let b = 3|X[+1. Welet ® = XU{z;:i€[b],j € [3]}.
Moreover, we let I' = ¢" = (V;¢(5 Aiepp) #i,5) V - Intuitively, the formula I' is true either
if (i) all variables z; ; are set to true for some j € [3], or if (ii) ¢ is satisfied. Then we
let J = {J1, Jo, J3}, where for each j € [3], we let J; contain the formulas z; ; for all i € [b],
and all formulas in X, and no other formulas in [®]. (For each ¢ € [®], if ¢ & J;, we
let = € J;.) Clearly, the judgment sets Ji, Jo and J3 are all complete and I'-consistent.
Finally, we let L = {w}. It is easy to verify that h = 2b =6k +2 and n = 3b+ k = 10k + 3,
where k£ = | X|, and that m and p are constant. Therefore, all parameter values are bounded
by a function of the original parameter k.

We now argue that there is some J* € Kemeny(J) with L C J* if and only if (¢, X, w) €
LocAL-MAX-MODEL. The argument for this conclusion is similar to the argument used in
the proof of Proposition [7] We first observe that the only complete and consistent judgment
sets J for which it holds that d(J,J) < d(J;,J) (for any j € [3]) must satisfy that J = ¢.
Moreover, among those judgment sets J for which J = ¢, the judgment sets that minimize
the distance to the profile J satisfy that z; ; ¢ J for all ¢ € [b] and all j € [3]. Using these
observations, we directly get that there is some J* € Kemeny(J) with L C J* if and only



if there is a model of ¢ that sets a maximal number of variables in X to true and that sets
the variable w to true. O

Proposition* 9. OuTCOME(KEMENY)™ parameterized by ¢, h, n and p is FPTY [few]-
hard.

Proposition* 10. OuTcoME(KEMENY)™ parameterized by ¢, h, m and p is FPTNY [few]-
hard.

4.3 Upper Bounds for the Constraint-Based Framework

We now turn to showing upper bounds for OuTcoME(KEMENY)?. When parameterized
by the number n of issues, the number of possible ballots is bounded by a function of the
parameter. This allows the problem to be solved in fixed-parameter tractable time.

Proposition* 11. OUTCOME(KEMENY)® parameterized by n is fized-parameter tractable.

Since the size ¢ of the integrity constraint is an upper bound on the number of issues
that play a non-trivial role in the problem, this fixed-parameter tractability result easily
extends to the parameter c.

Proposition* 12. OuTcoME(KEMENY)? parameterized by c is fived-parameter tractable.

Bounding the maximum Hamming distance h between any two ballots in the profile gives
us membership in XP.

Proposition 13. OuTCOME(KEMENY)® parameterized by h is in XP.

Proof. Let (Z,T',7,1,1,...,l,) be an instance, with » = (r1,...,7,). We describe an algo-
rithm to solve the problem in time O(p-n"-n9), for some constant d. The main idea behind
this algorithm is the fact that each ballot whose Hamming distance to every ballot in the
profile is more than h is irrelevant.

Take a ballot r such that d(r,r;) > h for each i € [p]. We show that there exists a rational
ballot 7 with d(r/,r) < d(r,r). Take any ballot in the profile, e.g., v’ = ry. Clearly, 1’ is
rational. Since d(r,r;) > h for each i € [p], we know that d(r,r) > hp. On the other hand,
for ' we know that d(r’,r;) < h for each i € [p] (and d(r',r1) = 0), so d(r',r) < h(p — 1).
Therefore, d(r’,r) < d(r,r).

We thus know that every rational ballot with minimum distance to the profile lies at
Hamming distance at most h to some ballot r; in the profile ». The algorithm works as
follows. It firstly enumerates all ballots with Hamming distance at most h to some r; € 7.
This can be done in time O(p - n"). Then, similarly to the algorithm in the proof of
Proposition it discards those ballots that are not rational, and subsequently discards
those ballots that do not have minimum distance to the profile. Finally, it iterates over all
remaining rational ballots with minimum distance to determine whether there is one among
them that agrees with [ and disagrees with each ;. O

4.4 Lower Bounds for the Constraint-Based Framework

Finally, we show parameterized hardness results for OUTCOME(KEMENY)”. When param-
eterized by both h and p, the problem is W[SAT]-hard.

Proposition 14. OUuTCOME(KEMENY)? parameterized by h and p is W[SAT]-hard.



Proof. We give an fpt-reduction from the W[SAT]-complete problem MONOTONE-WSAT.
Let (o, k) be an instance of MONOTONE-WSAT. Assume without loss of generality that k
is divisible by 4. We construct an instance (Z,T',7,1) of OUTCOME(KEMENY) as follows.
We let Z = Var(p)U{z}U{y;; :i € [3],j € [2k+1]}. Moreover, we let I' = (zA¢') V (-2 A
Vie[:s](/\je[%kﬂ] Yi,j)). We define r = (r1,r2,73) as follows. For each r;, we let r;(w) = 0
for all w € {z} U Var(¢'). Moreover, for each r; and each y, ;, we let r;(y,;) = 1 if and
only if £ = ¢. It is readily verified that r1, ro and r3 are all rational. Finally, we let [ be
the partial assignment for which I(z) = 1, and that is undefined on all remaining variables.
This completes our construction. Clearly, p = 3. Moreover, h = 2(%k +1).

By construction of I', the only ballots that are rational—and that can have a smaller
distance to the profile » than the ballots r1, 79 and r3—are those ballots r* that satisfies (z A
¢'). The ballots r1, r5 and 73 have distance 4(2k+1) = 3k+4 to the profile 7. Any ballot r*
that satisfies (2 A ¢') minimizes its distance to r by setting all variables y; ; to false. Any
such ballot 7* has distance 3(w + 1) = 3w + 3 to the profile v, where w is the number of
variables among Var(y’) that it sets to true. Therefore, the distance of such a ballot r* to
the profile r is smaller than the distance of 1, 7o and r3 to r if and only if w < k. From
this we can conclude that there is some r* € Kemeny(r) that agrees with [ if and only
if (¢, k) € MONOTONE-WSAT. O

Finally, the proof of Proposition [7] can be modified to work also for the problem
OuTcoME(KEMENY)®P parameterized by p, showing para-©5-hardness for this case.

Proposition* 15. OuTcoME(KEMENY)? parameterized by p is para-©%-hard.

5 Conclusion

We gave the first parameterized complexity results for the fundamental problem of comput-
ing outcomes of judgment aggregation procedures. We studied parameterized variants of
this problem for the Kemeny rule, for all combinations of the parameters ¢, h, n, m and p.
Moreover, we performed this parameterized complexity analysis for two formal frameworks
for judgment aggregation: formula-based and constraint-based judgment aggregation.

Interestingly, for many combinations of parameters, the complexity of the problem differs
between the two frameworks—which is in contrast with the fact that the problem has the
same complexity in both frameworks when viewed from a classical complexity point of view.
This reflects the ability of the framework of parameterized complexity to more accurately
indicate what aspects of the problem input contribute to the complexity of the problem.
The two judgment aggregation frameworks distribute the aspects of the problem differently
over various parts of the problem input.

Future work includes extending the parameterized complexity investigation for comput-
ing outcomes of the Kemeny rule to different parameters. For instance, in particular for
the constraint-based judgment aggregation framework, restricting the maximum degree of
variables in the integrity constraint might lead to more positive parameterized complexity
results. Other natural parameters that could be considered are width measures that cap-
ture the amount of structure in the logic formulas in the problem input. Moreover, it would
be interesting to perform a similar parameterized complexity analysis for other judgment
aggregation procedures.
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Appendix: Additional Proofs

In this appendix, we provide proofs for those results in the main text for which a proof was
omitted (these results were marked with an asterisk).

Proposition 16. LocAL-MAX-MoODEL is FPTNY [few]-complete.

Proof. Membership in FPTNY [few] can be shown routinely. We show hardness by giving
an fpt-reduction from the problem of deciding, given a family (¢;,¥})1<i<x of pairs of
propositional formulas, whether there exists some 1 < ¢ < k such that ¢, is satisfiable
and ¢ is unsatisfiable. The parameter for this problem is k. This problem is known to be
complete for FPTNP [few] [20].

Let (i, ¢})1<i<k be an instance of this problem. We assume without loss of generality
that the formulas ¢; and ¢} are all variable-disjoint. We construct an instance (¢, Z, w)
of LOCAL-MAX-MODEL as follows. We consider the following disjoint sets of propositional
variables:

V= U (Ve U Var(s)),
1<i<k

X ={a;x;:1<i<k},

Y ={y,y,:1<i<k}, and

W = {w}.

Welet Z=XUY UW.

We then define the formula i to be the conjunction of the following propositional for-
mulas. Firstly, we ensure that whenever some z; is true, then ¢; must be satisfied, and
whenever some z} is true, then ¢} must be satisfied. We do so by means of the following

formula:
/\ (i = i) A (2] = #))).
1<i<k

Then, we ensure that the variables y; and y, get the same truth value as the variables x;
and z) (respectively):

N (@i o y) A (@] < ).
1<i<k

Finally, we ensure that w can only be true if there is some 1 < ¢ < k such that z; is true
and x} is false:

w 4> \/ (z; A —al).
1<i<k

The satisfying assignment of 1 that sets as many variables in Z to true as possible
satisfies as many of the formulas ¢; and ¢} as possible. Therefore, the model of ¢ that
sets a maximal number of variables in Z to true sets w to true if and only if there is
some 1 < £ < k such that ¢, is satisfiable and 902 is unsatisfiable. O

Proof of Proposition[d The main idea behind this proof is that the number of possible
judgment sets is bounded by the parameter, that is, there are only 2™ many possible com-
plete judgment sets. We describe an algorithm A that solves the problem in fixed-parameter
tractable time by querying an NP oracle at most 2" many times. Let (®,T,J, L, Ly,..., Ly)
be an instance. Firstly, the algorithm A enumerates all possible complete judgment
sets Jy,...,Jon C ®. Then, for each such set J;, the algorithm uses the NP oracle to
determine whether J; is I'-consistent. Each judgment set J; that is not I'-consistent is dis-
carded. This can be done straightforwardly using 2™ many calls to the NP oracle—one for



each set J;. (The number of oracle calls that are needed can be improved to O(n) by using
binary search on the number of T'-consistent sets J;.)

Then, for each of the remaining (I'-consistent) judgment sets J;, the algorithm A com-
putes the cumulative Hamming distance d(J;, J) to the profile J. This can be done in
polynomial time. Then, those J; for which this distance is not minimal—that is, those J;
for which there exists some J; such that d(J;,J) < d(J;, J)—are discarded as well. The
remaining judgment sets J; then are exactly the complete and I'-consistent judgment sets
with a minimum distance to the profile J.

Finally, the algorithm goes over each of these remaining sets J;, and checks whether L C
Ji and L; ¢ J; for all j € [u]. This can clearly be done in polynomial time. If this check
succeeds for some J;, the algorithm A accepts the input, and otherwise, the algorithm rejects
the input. L]

Proof of Proposition[3 We describe an fpt-algorithm A that solves the problem.
Let (®,T,J,L,Ly,...,L,) be an instance. The algorithm A works exactly in the same
way as the algorithm in the proof of Proposition[2] The only difference is that in order to
check whether a given judgment set J; is I'-consistent, it does not need to make an oracle
query. Determining whether a given judgment set .J; is I'-consistent can be done in a brute-
force fashion (e.g., using truth tables) in time 2°t"™ .| J;|, since there are at most ¢ + nm
propositional variables involved. Therefore, the algorithm runs in fixed-parameter tractable
time. O

Proof of Lemmal4 Let ¢ be a propositional formula on the variables z1,...,z,. We con-
struct the formula ¢’ as follows. We introduce propositional variables z; ; and z; for
each i € [n] and each j € [i]. Intuitively, the variables z; ; encodes whether among the
variables x1,...,x; at least j variables are set to true, and the variables z; encode whether
among the variables 1, ..., z, exactly 7 variables are set to true.

We let ¢’ be a conjunction of several formulas. The first conjunct of ¢’ is the original
formula . Then, we add the following conjunct:

Z1,1 £ X1

Moreover, for each i € [n] such that ¢ > 1, we add:

i &> /\ (zig <> zic1j—1) | A | "2 & /\ (21,5 ¢ zi—15) |
JEld] JEld]

where for any i € [n], z; o abbreviates T. Finally, for each ¢ € [n], we add:
2 <> (Zni A Znjit1),

where z, ,,+1 abbreviates L.
It is straightforward to verify that the formula ¢’ satisfies the required properties. [

Proof of Corollary[l We can modify the proof of Proposition [f| as follows. We replace the
formula —x (and its syntactic variant —x’) by a 3CNF formula that has the same effect. By
using the standard Tseitin transformation [43], we can transform —y into a 3CNF formula 1)
such that for each truth assignment « : Var(—y) — {0,1} it holds that —x[«] is true if
and only if ¢[a] is satisfiable. Moreover, we can do this in such a way that the variables
in Var(¢)\Var(—y) are fresh variables. Similarly, we transform —x’ into a 3CNF formula .
Letp =ciA---Acpand ¥ =i A+ A g

For all judgment sets J € J, we had that =y, —x’ € J. Instead, we now ensure that for
all J € J, we have ¢;,¢; € J for all i € [b]. It is straightforward to verify that for each J € J



it holds that J |= —x, and that for any J* € Kemeny(J) it holds that J* = —x. Therefore,
after this transformation, we have the same set Kemeny(J) of outcomes. Moreover, the
maximum Hamming distance between any two judgment sets in the profile J is 4. O

Proof of Proposition[9 We can show FPTNP [few]-hardness by modifying the reduction from
LoCAL-MAX-MODEL used in the proof of Proposition |8] Rather than using the formula ¢’
as the integrity constraint I', we let I' = T, and we add b many syntactic variants ¢}, ..., ¢}
of ¢’ (and their negations) to the agenda ®—that is, the formulas ¢} for i € [b] are all
syntactically different from each other, but for each such formula ¢} it holds that ¢’ = ¢/.
The judgment sets Jy, J2 and J3 in the profile J all include each of these formulas ¢}.

As a result, the parameter value h remains the same. The value of the parameter p
remains a constant, and the value of the parameter n increases only by b, so it remains
bounded by a function of the original parameter k.

It is straightforward to verify that there are enough syntactic variants of the formula ¢’
in all judgment sets in the profile that for any complete and consistent judgment set J* that
minimizes the distance to the profile, it must hold that J* & ¢’. Therefore, we get that
the modified reduction is a correct reduction from LOCAL-MAX-MODEL, and thus that the
problem is FPTNP[feW]—hard. O

Proof of Proposition[I0, We show FPTNP[feW]—hardness by modifying the (already mod-
ified) reduction from LOCAL-MAX-MODEL given in the proof of Proposition @ In this
reduction, the agenda included a small number of formulas ¢}, that were each of unbounded
size. By using the same trick that we used in the proof of Corollary [6 we can use the
standard Tseitin transformation [43] to transform each of these formulas into a 3CNF for-
mula ¢} that will have the same effect. Then, rather than including ¢} in the agenda @,
we include all clauses of the formula ¢! in the agenda ®. Then, in the judgment sets Jy, Jo
and J3 in the profile J, we also include the clauses of ¢! instead of the single formula ¢/,
for all ¢ € [b].

As a result, the number n of formulas in @ is not bounded by a function of the original
parameter k anymore, but the maximum size m of any formula in the agenda ® is now
bounded by a constant. Using the arguments used in the proofs of Corollary [6] and Propo-
sition [J] it is then straightforward to verify the correctness of this modified reduction. [

Proof of Proposition[11 The main idea behind this proof is that the number of possible
ballots is bounded by the parameter, that is, there are only 2" many possible (rational)
ballots. We describe an algorithm A that solves the problem in fixed-parameter tractable
time. Let (Z,T',7,l,l1,...,1l,) be an instance. Firstly, the algorithm A enumerates all
possible ballots rq,...,ron € {0,1}™. Then, for each such ballot 7;, the algorithm determines
whether r; is rational, by checking whether I'[r;] is true. This can be done in polynomial
time. Each irrational ballot is discarded.

Then, for each of the remaining (rational) ballots r;, the algorithm A computes the
cumulative Hamming distance d(r;, r) to the profile . This can also be done in polynomial
time. Then, those r; for which this distance is not minimal—that is, those r; for which
there exists some r; such that d(ry,r) < d(r;,r)—are discarded as well. The remaining
ballots r; then are exactly those rational ballots with a minimum distance to the profile r.

Finally, the algorithm goes over each of these remaining ballots r;, and checks whether [
agrees with r; and whether for all j € [u], I; does not agree with ;. If this check succeeds
for some 7;, the algorithm A accepts the input, and otherwise, the algorithm rejects the
input. O

Proof of Proposition[13 Since |I'| = ¢, we know that the number of propositional variables
in T is also bounded by the parameter ¢. Take an instance (Z,T,r,l,l;,...,l,). Then,



let Z/ = Var(T') C Z be the subset of issues that are mentioned in the integrity constraint T
We know that any outcome r* € Kemeny(r) agrees with the majority of ballots in  on every
issue in Z\Z' (in case of a tie, either choice works). Therefore, all that remains is to determine
whether there are suitable choices for the issues in Z (to obtain some r* € Kemeny(r) that
agrees with [ and does not agree with [; for all j € [u]). By Proposition we know that
this is fixed-parameter tractable in |Z'|. Since |Z’| < ¢, we get fixed-parameter tractability
also for OUTCOME(KEMENY)®? parameterized by c. O

Proof of Proposition[I5, We modify the ©)-hardness reduction used in the proof of Propo-
sition [7] to work also for the case of OUTCOME(KEMENY)" for a constant value of the
parameter p. Instead of adding the formulas ¢ to the agenda ®, as done in the proof of
Proposition [7} we let T' = ¢’. The remaining formulas in the agenda ® were all proposi-
tional variables, and thus we can transform the instance (®,T', J, L) that we constructed for
OutcoME(KEMENY)™ into an instance (Z,T,,[), where r and [ are constructed entirely
analogously to J and L. Clearly, p = 3. Moreover, by a similar argument to the one that is
used in the proof of Proposition we get that (Z,T,7,1) € OutcoME(KEMENY)®” if and
only if (p,w) € MAX-MODEL. O



References

[1]

K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability
and completeness. IV. On completeness for W[P| and PSPACE analogues. Annals of
Pure and Applied Logic, 73(3):235-276, 1995.

S. Arora and B. Barak. Computational Complezity — A Modern Approach. Cambridge
University Press, 2009.

J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult
to tell who won the election. Social Choice and Welfare, 6(2):157-165, 1989.

D. Baumeister, G. Erdélyi, and J. Rothe. How hard is it to bribe the judges? A study
of the complexity of bribery in judgment aggregation. In Proceedings of the Second
International Conference on Algorithmic Decision Theory (ADT 2011), Piscataway,
NJ, USA, October 26-28, 2011, volume 6992 of Lecture Notes in Computer Science,
pages 1-15. Springer Verlag, 2011.

N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in computational
aspects of voting — a parameterized complexity perspective. In H. L. Bodlaender,
R. Downey, F. V. Fomin, and D. Marx, editors, The Multivariate Algorithmic Revolu-
tion and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th
Birthday, volume 7370 of Lecture Notes in Computer Science, pages 318-363. Springer
Verlag, 2012.

N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond.
Fixed-parameter algorithms for Kemeny rankings. Theoretical Computer Science,
410(45):4554-4570, 2009.

Z.-7Z. Chen and S. Toda. The complexity of selecting maximal solutions. Information
and Computation, 119:231-239, June 1995.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to com-
putational social choice. In Proceedings of the 33rd Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM 2007), pages 51-69. Springer
Verlag, 2007.

V. Conitzer and T. Walsh. Barriers to manipulation in voting. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors, Handbook of Computa-
tional Social Choice. Cambridge University Press, Cambridge, 2015.

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

F. Dietrich. Scoring rules for judgment aggregation. Social Choice and Welfare,
42(4):873-911, 2014.

F. Dietrich and C. List. Judgment aggregation without full rationality. Social Choice
and Welfare, 31(1):15-39, 2008.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer Verlag, 2013.



[15]

[16]

[17]

[18]

[28]

[29]

U. Endriss. Judgment aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia, editors, Handbook of Computational Social Choice. Cambridge University
Press, Cambridge, 2016.

U. Endriss, U. Grandi, R. de Haan, and J. Lang. Succinctness of languages for judgment
aggregation. In Proceedings of the Fifteenth International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2016), Cape Town, South Africa,
April 25-29, 2016. AAAT Press, 2016.

U. Endriss, U. Grandi, and D. Porello. Complexity of judgment aggregation. J. Artif.
Intell. Res., 45:481-514, 2012.

U. Endriss and R. de Haan. Complexity of the winner determination problem in judg-
ment aggregation: Kemeny, Slater, Tideman, Young. In Proceedings of AAMAS 2015,
the 14th International Conference on Autonomous Agents and Multiagent Systems.
TFAAMAS/ACM, 2015.

U. Endriss, R. de Haan, and S. Szeider. Parameterized complexity results for agenda
safety in judgment aggregation. In Proceedings of the 5th International Workshop on
Computational Social Choice (COMSOC-2014). Carnegie Mellon University, June 2014.

U. Endriss, R. de Haan, and S. Szeider. Parameterized complexity results for agenda
safety in judgment aggregation. In Proceedings of AAMAS 2015, the 14th International
Conference on Autonomous Agents and Multiagent Systems. IFAAMAS/ACM, 2015.

P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Using complexity to pro-
tect elections. Communications of the ACM, 53(11):74-82, 2010.

J. Flum and M. Grohe. Describing parameterized complexity classes. Information and
Computation, 187(2):291-319, 2003.

J. Flum and M. Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

U. Grandi. Binary Aggregation with Integrity Constraints. PhD thesis, University of
Amsterdam, 2012.

U. Grandi and U. Endriss. Lifting integrity constraints in binary aggregation. Artificial
Intelligence, 199-200:45-66, 2013.

D. Grossi and G. Pigozzi. Judgment Aggregation: A Primer. Morgan & Claypool
Publishers, 2014.

R. de Haan and S. Szeider. Fixed-parameter tractable reductions to SAT. In U. Egly and
C. Sinz, editors, Proceedings of the 17th International Symposium on the Theory and
Applications of Satisfiability Testing (SAT 2014) Vienna, Austria, July 14-17, 2014,
volume 8561 of Lecture Notes in Computer Science, pages 85-102. Springer Verlag,
2014.

R. de Haan and S. Szeider. The parameterized complexity of reasoning problems beyond
NP. In C. Baral, G. De Giacomo, and T. Eiter, editors, Proceedings of the Fourteenth
International Conference on the Principles of Knowledge Representation and Reasoning
(KR 2014), Vienna, Austria, July 20-24, 2014. AAAI Press, 2014.

E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections.
Theoretical Computer Science, 349(3):382-391, 2005.



[30]
[31]

32]

[33]

[44]

J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India, 2006.

M. W. Krentel. The complexity of optimization problems. J. of Computer and System
Sciences, 36(3):490-509, 1988.

J. Lang and M. Slavkovik. How hard is it to compute majority-preserving judgment
aggregation rules? In 21st Furopean Conference on Artificial Intelligence (ECAI 2014).
IOS Press, 2014.

C. Lindner and J. Rothe. Fixed-parameter tractability and parameterized complexity,
applied to problems from computational social choice. Mathematical Programming
Glossary, 2008.

C. List and P. Pettit. Aggregating sets of judgments: An impossibility result. Economics
and Philosophy, 18(1):89-110, 2002.

C. List and C. Puppe. Judgment aggregation: A survey. In Handbook of Rational and
Social Choice. Oxford University Press, 2009.

M. K. Miller and D. Osherson. Methods for distance-based judgment aggregation.
Social Choice and Welfare, 32(4):575-601, 2009.

K. Nehring, M. Pivato, and C. Puppe. Condorcet admissibility: indeterminacy and
path-dependence under majority voting on interconnected decisions. MPRA, 2011.
http://mpra.ub.uni-muenchen.de/32434/.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2006.

V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for
two “edge” problems: MAXCUT and MAXDAG. Information Processing Letters,
104(2):65-72, 2007.

J. Rothe. Economics and Computation. Springer, 2016.

J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem for
Young elections. Theory Comput. Syst., 36(4):375-386, 2003.

J. Siekmann and G. Wrightson, editors. Automation of reasoning. Classical Papers on
Computer Science 1967-1970, volume 2. Springer Verlag, 1983.

G. S. Tseitin. Complexity of a derivation in the propositional calculus. Zap. Nauchn.
Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23-41, 1968. English translation
reprinted in [42].

K. W. Wagner. Bounded query classes. SIAM J. Comput., 19(5):833-846, 1990.

Ronald de Haan

Algorithms & Complexity Group
Technische Universitat Wien
Vienna, Austria

Email: dehaan®@ac.tuwien.ac.at


dehaan@ac.tuwien.ac.at

	Introduction
	Parameterized Complexity
	Judgment Aggregation
	Complexity Results
	Upper Bounds for the Formula-Based Framework
	Lower Bounds for the Formula-Based Framework
	Upper Bounds for the Constraint-Based Framework
	Lower Bounds for the Constraint-Based Framework

	Conclusion

