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Abstract

We introduce the (j, k)-Kemeny rule – a generalizationa that aggregates weak or-
ders. Special cases include approval voting, the mean rule and Borda mean rule,
as well as the Borda count and plurality voting. Why, then, is the winner problem
computationally simple for each of these other rules, but NP -hard for Kemeny? We
show that winner intractability for the (j, k)-Kemeny rule first appears at the j = 3,
k = 3 level. The proof reveals that computational complexity arises from the cyclic
component in the fundamental decomposition −→w = −→w cycle + −→w cocycle of [11]. Thus
the existence of “underlying” majority cycles – the engine driving both Arrow’s im-
possibility theorem and the Gibbard-Satterthwaite theorem – also serves as a source
of computational complexity in social choice.

aThe (j, k)-Kemeny rule discussed here is akin to, but not the same as, the median
procedure of [1].

1 Introduction

In their seminal paper, Bartholdi, Tovey, and Trick [2] showed that the problem of determin-
ing the winner of a Kemeny election is NP hard (Hemaspaandra, Spakowski, and Vogel [7]
later showed completeness for PNP|| ). We introduce the (j, k)-Kemeny rule, a generalization
wherein ballots are weak orders with j indifference classes and the outcome is a weak order
with k indifference classes. Different values of j and k yield rules of interest in social choice
theory as special cases, including approval voting, the mean rule (see [4] and [5]), and the
Borda mean rule [5]; with an additional restriction one also obtains Borda and plurality
voting.

Why, then, is the winner problem computationally simple for each of these other rules,
but not simple for Kemeny? The short answer is that these other rules each satisfy j ≤ 2
or k ≤ 2, and we show that winner intractability for the (j, k)-Kemeny rule first appears
at the j = 3, k = 3 level. This follows from our central result: the well-known NP -
complete max-cut problem for undirected graphs can be polynomially reduced to max-3OP,
a version of max-cut for weighted directed graphs in which vertices are partitioned into three
pieces rather than two, and these pieces are ordered. The proof reveals that computational
complexity arises from the cyclic component in the orthogonal decomposition −→w = −→w cycle +
−→w cocycle induced by a profile (see [11]; a more complete exposition appears in [5]). In
particular, j ≤ 2 guarantees −→w cycle = 0, while k ≤ 2 guarantees that −→w cycle plays no role
in the aggregation; neither guarantee applies when j, k ≥ 3. However, if the profile happens
to be one with wcycle = 0 (intuitively, the profile has no hidden majority cycles), then the
winner can be computed in polynomial time for any values of j and k; one example is that
Kemeny = Borda when −→w cycle = 0. Thus majority cycles – the engines driving both Arrow’s
impossibility theorem and the Gibbard-Satterthwaite theorem – also serve as a source of
computational complexity in social choice.

1This is a conference version, with some proofs omitted. We thank Matthew Anderson and Alan D.
Taylor for help with the material and presentation, and the COMSOC referees for catching errors and
suggesting some interesting follow-up questions.
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In section 2 we dissect the relationship between the standard max-cut problem for
(weighted, undirected) graphs, and our version max-kOP for directed graphs. While stan-
dard max-cut is NP -hard even for vertex partitions into two pieces, the directed version is
intractable only for partitions into three or more pieces. The cyclic component – a measure
of underlying tendency toward majority cycles – accounts for this critical distinction. We
introduce the (j, k)-Kemeny rule in section 3, and show that a number of familiar aggre-
gation rules are special cases. Calculating the winner for these rules amounts to solving
cases of max-kOP ; this allows us to transfer complexity results from section 2 to the winner
determination problem for these rules.

Parts of this paper extend ideas from [5], which is also the best resource for readers
unfamiliar with the orthogonal decomposition of a weighted tournament into cyclic and
cocyclic components. Notions of generalized scoring rule implicit in [9] and explicit in [12],
[3], and [10] also play an important, behind-the-scenes role. Hudry has several papers
considering complexity issues for special cases of the median procedure, including the case
of aggregating weak orders (see [8]).2

2 Max-cut for directed graphs

In the well known max-cut problem, one starts with an undirected graph G = (V,E) with
finite vertex set V . A vertex cut is a partition P = {J,K} of V into two pieces, and is
assigned a score v(P) equal to the number of edges {a, b} ∈ E whose vertices are “cut” by
P (meaning a ∈ J and b ∈ K, or a ∈ K and b ∈ J). The max cut problem takes G as input,
and asks for a vertex cut of maximal score. The corresponding decision problem takes as
input the graph G along with a positive integer k, and asks whether there exists a vertex
cut of G with score at least k. This decision problem, and hence the max-cut problem, are
among the best known NP -complete problems. For our purposes, a certain generalization
will be useful; the score of a vertex tripartition P = {J,K,L} of V will be the number of
edges {a, b} ∈ E whose vertices belong to different pieces of P. The max-tricut problem
and corresponding decision problem are then formulated exactly as one would expect. Our
main concern will be with the weighted versions of these problems: each edge e of G comes
equipped with a pre-assigned edge-weight w(e) ≥ 0 and we seek to maximize the sum of
the weights assigned to the edges that are cut. These problems are similarly NP -complete.
Notice that for the weighted version there is no loss of generality in assuming G is complete;
just add all the missing edges and assign them weight zero.

We consider a version of max cut for tournaments – directed graphs
−→
H = (V,E) (with

E ⊆ V × V ) for which every two distinct vertices a, b ∈ V satisfy (a, b) ∈ E or (b, a) ∈ E,
but not both – similarly equipped with functions −→w assigning real-number weights (which
may be negative) to directed edges.3 For tournaments, a linearly ordered partition of the
vertices plays the role of a “cut”. For example, we might partition V into two disjoint and

nonempty pieces, T (for top) and B (for bottom); the ordered partition
−→
P = {T > B} is

2There is an important distinction between complexity questions for the (j, k)-Kemeny rule we consider
here, and for the corresponding “(j, k)-median procedure.” We intend to explore the relationship more
thoroughly in a planned extension to this conference version of the paper. Loosely, the difference corresponds
to the distinction (discussed in section 2 here) between the well-known max-cut problem for undirected
graphs and the corresponding “max-kOP” problem for directed graphs.

3We put arrows over symbols for directed graphs and ordered partitions, to distinguish the denoted objects

from ordinary graphs and unordered partitions. Assuming
−→
H is a tournament is analogous to assuming

completeness for undirected graphs, and similarly does not limit generality of Theorem 1, Proposition 1,
or Corollary 1. For the directed problem, allowing negative weights adds no generality; if one reverses
an edge while simultaneously reversing the sign of its weight, the effect on the max-kOP problem (see
Definition 2) is nil. We allow negative weights because they provide notational flexibility needed to develop
the decomposition −→w = −→w cycle +−→w cocycle.
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equivalent to a dichotomous weak order � on V in which two vertices x and y belonging to
the same piece satisfy x � y and y � x (in which case we’ll write x ∼ y), but when x ∈ T
and y ∈ B we get x � y (meaning x � y and y��x). An ordered tripartition {T > M > B}
similarly corresponds to a trichotomous weak order on V (meaning that the equivalence
relation ∼ has three equivalence classes, rather than two, as in a dichotomous order) while
a linear order on V is equivalent to an ordered |V |-partition, which has as many pieces as
there are vertices, so that each piece is a singleton.

Given a tournament or digraph
−→
H = (V,E) with edge-weight function −→w , along with an

ordered k-partition
−→
P corresponding to a k-chotomous weak order � on V , we’ll say that a

directed edge (x, y) goes down if x � y, goes up if y � x, and goes sideways if x ∼ y. For
the example in Figure 1, (a, c), (a, e) and (d, f) go down; (g, b), (g, d) and (c, b) go up; and
(a, b) and (f, e) go sideways. Score −→v is now defined by:

−→v−→w (
−→
P ) =

∑
(x,y) goes down

−→w (x, y) −
∑

(u,v) goes up

−→w (u, v), (1)

with weights on sideways edges omitted. Thus in Figure 1 we have

−→v−→w (
−→
P ) = [3 + 4 + 5]− [1 + 3 + 4] = 4. (2)

Figure 1: A directed graph and ordered 3-partition

If we adopt the following convention . . .

Definition 1 [Reversal convention] For an edge-weight assignment −→w on a tournament
−→
H = (V,E), the reversal convention interprets −→w (a, b) as −−→w (b, a) whenever (a, b) /∈ E.

. . . then equation (1) can be rewritten as:

−→vw(
−→
P ) =

∑
x� y

w(x, y). (3)

Definition 2 The max-kOP problem takes as inputs a tournament
−→
H along with a function

−→w that assigns real number weights to
−→
H’s edges, and seeks an ordered k-partition of maximal

score. The corresponding decision problem is defined as one would expect.

Why propose this particular adaptation of max-cut for tournaments? For one thing, max-
kOP is implicit in a variety of amalgamation rules known to social choice and judgement
aggregation; it is the basis for a generalization of Kemeny voting that yields these known
rules as special cases (see section 3). A second justification arises from mathematical natu-
rality; max-kOP can be shown equivalent to finding a vector (representing the k-chotomous
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weak order) that has maximal inner product with a second vector (representing the weight
function −→w ). The equivalence is not discussed here.

Our immediate goal is to show that max-kOP is NP -hard for k = 3, but polynomial
time both for k = 2 and for arbitrary k when −→w cycle = 0; the argument makes use of the
known NP -hardness of max-cut, and is organized in the form of the following five results:

Theorem 1 Max-tricut is polynomially reducible to max-3OP.

Proposition 1 Max-cut is polynomially reducible to max-tricut.

Thus, we obtain as an immediate corollary:

Corollary 1 Max-3OP is NP -hard.

If we attacked max-kOP via brute force search over all ordered k-partitions (of the vertex
set V of a weighted tournament), then for any fixed k ≥ 2 we’d find that the number of
such partitions grows exponentially in the number |V | of vertices. The key idea behind the
following Theorem 2 and Corollary 2 is that this search space can be reduced to one of size
≤ |V |k−1 for purely acyclic −→w :

Theorem 2 When restricted to inputs satisfying −→w cycle = 0 (equivalently, satisfying that
−→w is “purely acyclic,” with −→w = −→w cocycle), max-kOP is in P.

Theorem 3 For any ordered 2-partition
−→
P of a directed graph

−→
H with edge-weight

function −→w , −→v−→w (
−→
P ) = −→v−→w cocycle

(
−→
P ).

Theorem 3 tells us that max-2OP is equivalent to the restricted version covered by Theorem
2, whence:

Corollary 2 Max-2OP is in P .

We turn now to the proof of Theorem 1. The idea is to replace a weighted graph G with

a correspondingly weighted tournament
−→
HG , −→w in such a way that each tripartition P of G’s

vertices corresponds to an ordered tripartition
−→
P of

−→
H’s vertices satisfying v(P) = −→v (

−→
P ).

The
−→
HG construction produces, for each edge {a, b} of G, two new vertices (in addition to

the original vertices of G) and four directed edges. More precisely:

Definition 3 Let G = (V,E) be any complete (finite, undirected) graph and w :E → < be an

associated nonnegative edge-weight function. The tournament
−→
HG and edge-weight function

−→w induced by G and w are defined as follows:

• For each edge e = {a, b} ∈ E of G, construct two direction vertices dab and dba of HG.
Let D = {dab | {a, b} ∈ E} denote the set of direction vertices and assume D ∩V = ∅.

•
−→
HG’s vertex set is

−→
V = D ∪ V , with elements of V referred to as ordinary vertices.

• Add all edges of form a → dab and dab → b to
−→
HG, with −→w assigning to each the

original weight w({a, b}) of {a, b} in G; then add enough arbitrarily directed edges to

make
−→
HG a tournament, with −→w assigning weight 0 to each of these.

Notice that each edge e = {a, b} of G thus contributes an {a, b} 4-cycle

a −→ dab −→ b −→ dba −→ a (4)

of directed edges in
−→
HG , each with weight w({a, b}). In particular, −→w is purely cyclic. The

combinatorial core of the Theorem 1 proof consists of the following:
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Lemma 1 (Fitting a four-cycle into three levels) Let
−→
P = {T > M > B} be any ordered

tripartition of the vertex set
−→
V of

−→
HG. Then for each weight w edge e = {a, b} of G:

• if a and b belong to the same piece of
−→
P then the net contribution to the score −→v (

−→
P )

made by the edges of the {a, b} 4-cycle is zero, and

• if a and b belong to any two different pieces of
−→
P then, by appropriately reassigning

the direction vertices dab and dba among T , M , and B, we can set the net contribution

to −→v (
−→
P ) made by the edges of the {a, b} 4-cycle equal to 0, or w, or −w, as we prefer.

Proof: (Of Lemma 1) Figures 2L, 2C, and 2R (for Left, Center, Right) show three possible

ways to assign the four vertices a, b, dab and dba to membership in the three pieces of
−→
P . In

2R ordinary vertices a and b belong to the same piece (here, piece M) of
−→
P . Of the four

directed edges in the {a, b} 4-cycle, two are up edges and two are down edges, so if each
edge has weight w the net contribution of these four edges is zero. More generally, whenever
a, b ∈M it is easy to see that the number of up edges from the {a, b} 4-cycle must equal the
number of down edges, no matter where dab and dba are placed, and that this remains true
in case a, b ∈ T or a, b ∈ B. Thus the net contribution is 0 whenever the ordinary vertices
a and b are in the same piece.

Figure 2: Some possible ways to fit an {a, b} 4-cycle into three levels.

In 2L and 2C, ordinary vertices a and b are in different pieces, and we have placed dab
and dba so that there are two down edges and one up edge. If each edge has weight w then
the net contribution of the four edges shown is w. If we exchange the placements of dab and
dba in 2L (or in 2C), we wind up with two up edges and one down edge for a net contribution
of −w; if we move dab and dba into a common piece, then (as in the previous paragraph)
the number of up edges will be equal to the number of down edges, for a net contribution
of zero. A moment’s thought will convince the reader that for all cases in which ordinary
vertices a and b belong to different pieces, exactly three possibilities – two up edges + one
down, two down edges + one up, or equal numbers of up and down edges – can be achieved
by moving dab and dba around. This completes the Lemma 1 proof.

Proof: (Of Theorem 1) It suffices to show that given an edge-weighted graph G and a
positive integer k the answer to the decision problem “Does there exist a vertex tripartition
P = {J,K,L} of V with v(P) ≥ k?” is the same as the answer to “Does there exist an

ordered tripartition
−→
P of the vertex set

−→
V of

−→
HG with −→v (

−→
P ) ≥ k?”

Lemma 1 makes this easy. Given a tripartition P = {J,K,L} of V with v(P) = j ≥ k,
arbitrarily order {J,K,L} as {J > K > L}. For each weight w edge {a, b} of G cut by P,
add each direction vertex dab, dba to one of the sets in {J > K > L}, so as to create two
down edges and one up edge from the {a, b} 4-cycle; for each original uncut edge {a, b} of G
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add each vertex dab, dba to one of the sets {J > K > L} according to the arbitrary dictates

of your current mood. It is easy to see that the resulting
−→
P achieves the exact same score:

−→v (
−→
P ) = v(P) = j ≥ k.
In the other direction, consider an ordered tripartition

−→
P = {V1∪D1 > V2∪D2 > V3∪D3}

of
−→
V with V1 ∪ V2 ∪ V3 = V , D1 ∪ D2 ∪ D3 = D, and −→v (

−→
P ) ≥ k. Let P = {V1, V2, V3},

a tripartition of V . Each weight w edge {a, b} of G cut by P contributes w to v(P) and

contributes w or 0 or −w to −→v (
−→
P ). Thus v(P) ≥ −→v (

−→
P ) ≥ k, as desired.

Proof: (of Proposition 1) The reduction is easy and uninteresting, so we omit details.
Given an (undirected) graph G = (V,E) and edge-weight assignment w, create G? and w?

as follows: add a new vertex ♣ along with edges {♣, v} for each v ∈ V , and extend w by
assigning weight σ = 1 +

∑
{a,b}∈V w({a, b}) to each added edge. Then any maximal-score

tripartition P? of G? will place ♣ alone in one of the three pieces, while the other two pieces
constitute a maximal-score bipartition P of G, with v(P?) = |V |σ+v(P). Thus, there exists
a bipartition P of G with score at least k if and only if there exists a bipartition P? of G?
with score at least |V |σ + k.

The proofs of Theorems 2 and 3 exploit the decomposition

−→w = −→w cycle +−→w cocycle (5)

from [11], discussed in greater detail in [5], and use the following abstract definition of Borda
score4 for a vertex x of a weighted tournament:

Definition 4 (Reversal convention from Definition 1 applies) Given a vertex x of a tour-

nament
−→
H equipped with edge-weight assignment −→w , x’s Borda score is given by:

xβ =
∑
y∈V

−→w (x, y) (6)

Definition 5 (Reversal convention applies) An edge-weight assignment −→w on a tournament
−→
H = (V,E) satisfies exact quantitative transitivity if

−→w (x, y) +−→w (y, z) = −→w (x, z) (7)

holds for every three distinct vertices x, y, z ∈ V .

Definition 6 (Reversal convention applies) An edge-weight assignment −→w on a tournament
−→
H = (V,E) is difference generated if there exists a function Γ : V → < such that

−→w (x, y) = Γ(x)− Γ(y) (8)

holds for every two distinct vertices x, y ∈ V . In this case, we can identify the vertices of−→
H with a sequence of real numbers

γ1 ≤ γ2 ≤ · · · ≤ γm (9)

enumerating Γ’s values in non-decreasing order.

4In section 3 we obtain a tournament
−→
HΠ = (A,E) and edge-weighting −→wΠ from a profile Π of weak (or

linear) orders over a finite set A of m alternatives. The score of a vertex a ∈ A according to Definition 4
(above) then coincides with the conventional notion of a’s Borda score based on Π, as calculated using the
“symmetric” Borda weights m− 1,m− 3, . . . , 3−m, 1−m.
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Lemma 2 Given an edge-weight assignment −→w on a tournament
−→
H = (V,E), the following

are equivalent:

1. −→w satisfies exact quantitative transitivity,

2. −→w is difference generated,

3. −→w is purely acyclic (equivalently, wcycle = 0 in the vector orthogonal decomposition
−→w = −→w cycle +−→w cocycle; equivalently, −→w ∈ Vcocycle, the cocycle subspace).

Proof: We leave the easy (1)⇔ (2) equivalence to the reader. If −→w is purely acyclic, then
as an immediate consequence of Observation 11.2 of [5], −→w is difference generated via the
function assigning scaled Borda scores:

Γ: x 7→ xβ

|V |
. (10)

Conversely, assume −→w is difference generated via Γ, and let x1, x2, . . . , xr, x1 be any

cycle of vertices. The corresponding basic cycle σ is an edge-weighting of
−→
H that assigns

weight one to each edge xi → xi+1 or xr → x1 from the vertex cycle (under the reversal
convention), and weight zero to each other edge. Thus

−→w ·σ =
[
Γ(x1)−Γ(x2)

]
+
[
Γ(x2)−Γ(x3)

]
+· · ·+

[
Γ(xr−1)−Γ(xr)

]
+
[
Γ(xr)−Γ(x1)

]
= 0 (11)

It follows from linearity of the dot product that −→w · τ = 0 holds for any linear combination
of basic cycles – hence −→w ⊥ Vcycle, and −→w ∈ Vcocycle. Thus −→w is purely acyclic. (The
argument is like that for Proposition 15 in [5].)

Definition 7 An ordered k-partition P = {Pk >′ Pk−1 >
′ · · · >′ P1} of a nondecreasing

sequence γ1 ≤ γ2 ≤ · · · ≤ γm of real numbers is monotone if i < j ⇒ π(γi) ≤′ π(γj), where
≤′ refers to the ordering of P’s pieces, and π(γi) denotes the piece Ps for which γi ∈ Ps.

Equivalently, monotone partitions are obtained by “cutting” the γ sequence from line
(9) with k − 1 dividers ↓i :

γ1, γ2, . . . , γm1
↓1 γm1+1, . . . , γm2

↓2 . . . ↓k−1 γmk−1+1, . . . , γm (12)

Lemma 3 Given a purely acyclic edge-weight assignment −→w on a tournament
−→
H = (V,E),

there exists a monotone ordered k-partition of V = {γ1 ≤ γ2 ≤ · · · ≤ γm} that achieves
maximal score.

Proof: (of Lemma 3) It is straightforward to show that if some ordered partition
−→
P satisfied

i < j with π(γi) >
′ π(γj) then swapping γi for γj (by moving γi into the piece to which γj

initially belonged, and γj into γi’s initial piece) can never decrease
−→
P ’s score. A sequence

of such swaps converts
−→
P into a monotone partition.

Proof: (of Theorem 2) Given an instance of max-kOP with purely acyclic −→w , calculate
the scaled Borda scores γ1 ≤ γ2 ≤ · · · ≤ γm from line (10) and identify them with the m

vertices. Calculate −→v (
−→
P ) for each possible monotone ordered k-partition, of which there

are at most (m− 1)k−1, because there are at most m− 1 options for placing each divider ↓i
in line (12); output any optimal partition and its score. This calculation is polynomial in
the size of the tournament and maximum edge weight, so acyclic max-kOP is in P.
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Proof: (of Theorem 3) For any ordered partition
−→
P of a directed graph

−→
H, the score

−→v (
−→
P ) is a linear functional on the vector space of all possible edge weightings −→w , so that

−→v−→w (
−→
P ) = −→v−→w cocycle

(
−→
P ) + −→v−→w cycle

(
−→
P ). Thus, once we demonstrate that for 2-partitions

−→v−→w cycle
(
−→
P ) = 0, it follows that 2-partitions also satisfy −→v−→w (

−→
P ) = −→v−→w cocycle

(
−→
P ).

Next, observe that the multiple options for fitting a cycle into three levels of an ordered
partition (Lemma 1, Figure 2) are severely constrained for ordered partitions having only
two levels.

Figure 3: Fitting a cycle into two levels.

As suggested by the example in Figure 3, for 2-partitions the number of down edges will
always equal the number of up edges. Thus, for the basic cycle σ that assigns weight 1 to

each edge that appears in Figure 3, and weight 0 to every edge not drawn in, −→vσ(
−→
P ) = 0.

By linearity, the same holds for any linear combination of basic cycles, and so we conclude

that for ordered 2-parttions
−→
P , −→v−→w cycle

(
−→
P ) = 0.

3 The (j, k)-Kemeny rule

Suppose that V = {v1, . . . , vm} is a (finite) set of m alternatives, and that voters in a finite
set N cast weak (or linear) order ballots, resulting in a profile Π = {≥i}i∈N . The induced

tournament
−→
HΠ = (V,E) and edge-weights −→wΠ are as follows:

• E = {(vi, vj) | i < j}. Remark: This adds one directed edge for each two vertices.

• −→wΠ(vi, vj) = |{t ∈ N | vi ≥t vj}| − |{t ∈ N | vj ≥t vi}|. Remark: These weights are
the net majorities by which voters favor vi over vj .

5

Definition 8 The (j, k)-Kemeny rule takes, as input, a profile Π of j-chotomous weak
orders on a finite set V of alternatives, and outputs the k-chotomous weak order(s)6 on

V corresponding to the solution(s) of max-kOP for
−→
HΠ, −→wΠ. The (j, |V |)-, (|V |, k)- and

(|V |, |V |)-Kemeny rules are defined similarly, with linear ordered ballots when |V | appears
in the j position, and linearly ordered outputs when |V | appears in the k position. A 2? in
either position refers to those ordered 2-partitions (equivalently, dichotomous weak orders)
{T > B} for which T = {x} is a singleton (contains a single alternative x).

5Loosely, the edge-weighted tournament provides the “C2” information, in Fishburn’s classification, [6].
Note that w(vi, vj) is negative when i < j and more voters strictly prefer vj to vi than strictly prefer vi to
vj – this compensates for having initially oriented the (vi, vj) edge in the direction opposite to the majority.
We won’t have the option of sticking to positive weights by adjusting the direction of the edge, because the
two components of the decomposition can differ as to which direction to choose.

6Ties are possible. When the number of ties is large, there may be an exponential blow-up in the number
of orders in the output. However for rules (1)-(5) of Proposition 2 the output can be described in a compact
language that describes a class of tied orders in terms of ties among individual alternatives.
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Proposition 2 Note that a dichotous weak order {T > B} can be interpreted as an approval
ballot approving all alternatives in T . When T = {x}, an output {T > B} can be interpreted
as naming x as winner, while an input {T > B} can be interpreted as a plurality ballot for
x. With that understanding, special cases of (j, k)-Kemeny7 include:

1. (2, 2)-Kemeny is the Mean Rule.8

2. (2, |V |)-Kemeny and (2, 2?)-Kemeny are approval voting (with outcome the ranking(s)
by approval score, and the approval winner(s), respectively).

3. (2?, |V |)-Kemeny and (2?, 2?)-Kemeny are plurality voting (with outcome the rank-
ing(s) by plurality score, and the plurality winner(s), respectively).

4. (|V |, 2)-Kemeny is the Borda Mean Rule.9

5. (|V |, 2?)-Kemeny is the Borda count voting rule.

6. (|V |, |V |)-Kemeny is the Kemeny voting rule (with a ranking as output).

The results of Theorems 2 and 3 and of Corollary 2 now lift immediately to (j, k)-Kemeny,
showing:

Theorem 4 The problem of determining the winning ordering for a ( 1, 2)-Kemeny
election is in P whenever at least one of the blanks contains 2 (or 2?), and also whenever
−→wΠcycle

= 0. In particular, winner determination is in P for rules (1) – (5) of Proposition
2 . Also, for profiles satisfying −→wΠcycle

= 0, the ( 1, |V |)-Kemeny outcome is the linear
ranking induced by Borda scores; in particular, the original Kemeny rule agrees with Borda.

We need to be a bit more careful when lifting the NP -hardness results from Theorem
1, Proposition 1, and Corollary 1 to the context of ( 1, 2)-Kemeny, however. To argue
for NP -hardness when 1 is filled with either a fixed j ≥ 3 or with |V |, we need to know

that the specific weighted tournaments
−→
HG , −→w constructed in the proof of Theorem 1 are

induced as
−→
HΠ, −→wΠ for some profile Π of j-chotomous orders (j ≥ 3), and for some profile

of linear orders. Actually, it suffices to induce some scalar multiple C−→w of the Theorem 1
weights as −→wΠ, for each of these types of profile. But given an arbitrary integer-valued −→w ,
for j ≥ 3 it is straightforward to construct a profile Π of j-chotomous weak orders (or of
linear orders) satisfying −→wΠ = 2−→w . To make the argument when 2 is filled by a fixed
k ≥ 3 we need versions of Theorem 1 and Proposition 1 asserting “Max-kcut is polynomially
reducible to max-kOP,” and “Max-cut is polynomially reducible to max-kcut,” but these
are straightfoward generalizations, and we omit the details.

Theorem 5 The problem of determining the winning ordering for a ( 1, 2)-Kemeny
election is NP -hard whenever

• 1 is filled with either a fixed j ≥ 3 or with |V |, and

• 2 is filled with a fixed k ≥ 3

both hold. In particular winner determination is NP -hard for (3, 3)-Kemeny.

7When j = |V | or k = |V | (or both), (j, k)-Kemeny coincides with the corresponding (j, k)-median
procedure; otherwise, these aggregation rules differ. We’ll have more to say about this in a planned expansion
of the current conference version of this paper.

8The Mean Rule outcome ranks all alternatives with above average approval score over all those with
below average score; see [5] for details.

9Borda Mean Rule acts like the Mean Rule, but with Borda scores replacing approval scores.
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None of our reasoning here shows NP -hardness when 2 is filled with |V |; in particular,
Theorem 5 does not allow us to draw hardness conclusions for (|V |, |V |)-Kemeny (that is, for
the original Kemeny rule itself) or for (j, |V |)-Kemeny with j ≥ 3, because max-cut is not
polynomially reducible to “max-|V |cut.”10 Nonetheless, our argument that computational
complexity arises from the cyclic component also applies to the cases missing from Theorem
5. We know from [2] that the original Kemeny rule winner problem is NP -hard, and the
last clause of Theorem 4 tells us that Kemeny reduces to a computationally easy rule when
−→wΠcycle

= 0. As for (j, |V |)-Kemeny, the comments preceding the Theorem 5 statement
reveal that for j ≥ 3 the induced weights −→wΠ from profiles of j-chotomous weak orders are
essentially as general as those arising from linear rankings, so winner determination is as
hard as for the original Kemeny rule.

We end by mentioning two interesting questions raised by the COMSOC referees. One
referee points out that the full power of pure acyclicity (equivalently, of quantitative tran-
sitivity) is not needed to make Kemeny’s rule easy to compute – ordinary transitivity of
majority preference suffices. So, is ordinary transitivity similarly sufficient to make the
(3, 3)-Kemeny winner problem tractable? A natural initial approach to this question is to
reconsider Lemma 3 in this light, and ask what happens if we restrict our search to parti-
tions that are monotone with respect to the linear ordering induced by a transitive majority
preference relation – would such a limited search necessarily find an ordered tripartition
achieving maximal score? It is not difficult to see that the answer is no, not necessarily.
About all we can say about the question at this point is that with this obvious approach
falling short, we do not know the answer.

A second referee asks what happens to tractability when the cyclic component is simple
– what happens, for example, if −→w cycle can be written as a sum of only one or two simple cy-
cles? We conjecture (but with low confidence) that winner determination for (3, 3)-Kemeny
would indeed become tractable in this case. In this connection, it seems worth mentioning
that the dimension of the cocyclic subspace grows linearly with the number of alternatives,
while the dimension of the cyclic space grows quadratically. In a sense, then, the cyclic
component is inherently the more complicated one, so that sharply limiting its complexity
places a rather strong restriction on the underlying profile.
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