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Abstract

In this paper we address the identifiability and efficient learning problem of finite mixtures of
Plackett-Luce models for rank data. We prove that for any k ≥ 2, the mixture of k Plackett-
Luce models for no more than 2k−1 alternatives is non-identifiable and this bound is tight for
k = 2. For generic identifiability, we prove that the mixture of k Plackett-Luce models over
m alternatives is generically identifiable if k ≤ bm−2

2
c!.

We also propose an efficient generalized method of moments (GMM) algorithm to learn the
mixture of two Plackett-Luce models and show that the algorithm is consistent. Our experi-
ments show that our GMM algorithm is significantly faster than the EMM algorithm by Gorm-
ley and Murphy (2008), while achieving competitive statistical efficiency.

1 Introduction
In many machine learning problems the data are composed of rankings over a finite number of alter-
natives [18]. For example, meta-search engines aggregate rankings over webpages from individual
search engines [7]; rankings over documents are combined to find the most relevant document in
information retrieval [14]; noisy answers from online workers are aggregated to produce a more
accurate answer in crowdsourcing [17]. Rank data are also very common in economics and political
science. For example, consumers often give discrete choices data [19] and voters often give rankings
over presidential candidates [8].

Perhaps the most commonly-used statistical model for rank data is the Plackett-Luce model [22,
16]. The Plackett-Luce model is a natural generalization of multinomial logistic regression. In a
Plackett-Luce model, every alternative is parameterized by a positive number that represents the
“quality” of the alternative.

In practice, mixtures of Plackett-Luce models can provide better fitness than a single Plackett-
Luce model. An additional benefit is that the learned parameter of a mixture model can naturally
be used for clustering [21]. The k-mixture of Plackett-Luce combines k individual Plackett-Luce
models via a linear vector of mixing coefficients. For example, Gormley and Murphy [8] propose
an Expectation Minorization Maximization (EMM) algorithm to compute the MLE of Plackett-Luce
mixture models. The EMM was applied to an Irish election dataset with 5 alternatives and the four
components in the mixture model are interpreted as voting blocs.

Surprisingly, the identifiability of Plackett-Luce mixture models is still unknown. Identifiability
is one of the most important properties for statistical models, which requires that different parameters
of the model have different distributions over samples. Identifiability is crucial because if the model
is not identifiable, then there are cases where it is impossible to estimate the parameter from the
data, and in such cases conclusions drawn from the learned parameter can be wrong. In particular,
if Plackett-Luce mixture models are not identifiable, then the voting bloc produced by the EMM
algorithm of Gormley and Murphy [8] can be dramatically different from the ground truth.

In this paper, we address the following two important questions about the theory and practice of
Plackett-Luce mixture models for rank data.
Q1. Are Plackett-Luce mixture models identifiable?
Q2. How can we efficiently learn Plackett-Luce mixture models?

Q1 can be more complicated than one may think because the non-identifiability of a mixture
model usually comes from two sources. The first is label switching, which means that if we label the
components of a mixture model differently, the distribution over samples does not change [23]. This



can be avoided by ordering the components and merging the same components in the mixture model.
The second is more fundamental, which states that the mixture model is non-identifiable even after
ordering and merging duplicate components. Q1 is about the second type of non-identifiability.

The EMM algorithm by Gormley and Murphy [8] converges to the MLE, but as we will see
in the experiments, it can be very slow when the data size is large. Therefore, to answer Q2, we
want to design learning algorithms that are much faster than the EMM without sacrificing too much
statistical efficiency, especially mean squared error (MSE).

1.1 Our Contributions
We answer Q1 with the following theorems. The answer depends on the number of components k
in the mixture model and the number of alternatives m.

Theorem 1 and 2. For any m ≥ 2 and any k ≥ m+1
2 , the k-mixture Plackett-Luce model (denoted

by k-PL) is non-identifiable. This lower bound on k as a function of m is tight for k = 2 (m = 4).

The second half of the theorem is positive: the mixture of two Plackett-Luce models is identifi-
able for four or more alternatives. We conjecture that the bound is tight for all k > 2.

The k-PL is generically identifiable for m alternatives, if the Lebesgue measure of non-
identifiable parameters is 0. We prove the following positive results for k-PL.

Theorem 3. For any m ≥ 6 and any k ≤ bm−2
2 c!, the k-PL is generically identifiable.

We note that bm−2
2 c! is exponentially larger than the lower bound m+1

2 for (strict) identifiability.
Therefore, when m

2 + 1 ≤ k ≤ bm−2
2 c!, even though k-PL is not identifiable in the strict sense, one

may not need to worry too much in practice due to generic identifiability.
For Q2, we propose a generalized method of moments (GMM)1 algorithm [10] to learn the k-PL.

We illustrate the algorithm for k = 2 and m ≥ 4, and prove that the algorithm is consistent, which
means that when the data are generated from k-PL and the data size n goes to infinity, the algorithm
will reveal the ground truth with probability that goes to 1. We then compare our GMM algorithm
and the EMM algorithm [8] w.r.t. statistical efficiency (mean squared error) and computational effi-
ciency in synthetic experiments. As we will see, in Section 5, our GMM algorithm is significantly
faster than the EMM algorithm while achieving competitive statistical efficiency. Therefore, we be-
lieve that our GMM algorithm is a promising candidate for learning Plackett-Luce mixture models
from big rank data.

1.2 Related Work and Discussions
Most previous work in mixture models (especially Gaussian mixture models) focuses on cardinal
data [24, 25, 20, 13, 6]. Little is known about the identifiability of mixtures of models for rank
data. For rank data, Iannario [12] proved the identifiability of the mixture of shifted binomial model
and the uniform models. Awasthi et al. [2] proved the identifiability of mixtures of two Mallows’
models. Mallows mixture models were also studied by Lu and Boutilier [15] and Chierichetti et al.
[5]. Our paper, on the other hand, focuses on mixtures of Plackett-Luce models.

Technically, part of our (non-)identifiability proofs is motivated by the work of Teicher [25], who
obtained sufficient conditions for the identifiability of finite mixture models. However, technically
these conditions cannot be directly applied to k-PL because they work either for finite families
(Theorem 1 in [25]) or for cardinal data (Theorem 2 in [25]). Neither is the case for mixtures of
Plackett-Luce models. To prove our (non-)identifiability theorems, we develop novel applications of
the Fundamental Theorem of Algebra to analyze the rank of a matrix Fkm that represents k-PL (see
Preliminaries for more details). Our proof for generic identifiability is based on a novel application

1This should not be confused with Gaussian mixture models.



of the tensor-decomposition approach that analyzes the generic Kruskal’s rank of matrices advocated
by Allman et al. [1].

In addition to being important in their own right, our (non)-identifiability theorems also carry a
clear message that has been overlooked in the literature: when using Plackett-Luce mixture models
to fit rank data, one must be very careful about the interpretation of the learned parameter. Specifi-
cally, whenm ≤ 2k−1, it is necessary to double-check whether the learned parameter is identifiable
(Theorem 1), which can be computationally hard. On the positive side, identifiability may not be a
big concern in practice under a much milder condition (k ≤ bm−2

2 c!, Theorem 3).
Gormley and Murphy [8] used 4-PL to fit an Irish election dataset with 5 alternatives. According

to our Theorem 1, 4-PL for 5 alternatives is non-identifiable. Moreover, our generic identifiability
theorem (Theorem 3) does not apply because m = 5 < 6. Therefore, it is possible that there exists
another set of voting blocs and mixing coefficients with the same likelihood as the output of the
EMM algorithm. Whether it is true or not, we believe that it is important to add discussions and
justifications of the uniqueness of the voting blocs obtained by Gormley and Murphy [8].

Parameter inference for single Plackett-Luce models is studied in [4] and [3]. Azari Soufiani
et al. [3] proposed a GMM, which is quite different from our method. The GMM proposed in [3]
cannot be directly applied to Plackett-Luce mixture models. The MM algorithm in [11], which is
compared in [3], is also very different from the EMM that is being compared in this paper.

2 Preliminaries
Let A = {ai|i = 1, 2, · · · ,m} denote a set of m alternatives. Let L(A) denote the set of linear
orders (rankings), which are transitive, antisymmetric and total binary relations, over A. A ranking
is often denoted by ai1 � ai2 � · · · � aim , which means that ai1 is the most preferred alternative,
ai2 is the second preferred, aim is the least preferred, etc. Let P = (V1, V2, · · · , Vn) denote the data
(also called a preference profile), where for all j ≤ n, Vj ∈ L(A).

Definition 1 (Plackett-Luce model). The parameter space is Θ = {~θ = {θi|i = 1, 2, · · · ,m, θi ∈
[0, 1],

∑m
i=1 θi = 1}}. The sample space is S = L(A)n. Given a parameter ~θ ∈ Θ, the probability

of any ranking V = ai1 � ai2 � · · · � aim is

PrPL(V |~θ) =
θi1
1
× θi2∑

p>1 θip
× · · · ×

θim−1

θim−1 + θim

We assume that data are generated i.i.d. in the Plackett-Luce model. Therefore, given a prefer-
ence profile P and ~θ ∈ Θ, we have PrPL(P |~θ) =

∏n
j=1 PrPL(Vj |~θ).

The Plackett-Luce model has the following intuitive explanation. Suppose there are m balls,
representing m alternatives in an opaque bag. Each ball ai is assigned a quality value θi. Then, we
generate a ranking in m stages. In each stage, we take one ball out of the bag. The probability for
each remaining ball being taken out is the value assigned to it over the sum of the values assigned to
the remaining balls. The order of drawing is the ranking over the alternatives.

We require
∑
i θi = 1 to normalize the parameter so that the Plackett-Luce model is identifiable.

It is not hard to verify that for any Plackett-Luce model, the probability for the alternative ap (p ≤ m)
to be ranked at the top of a ranking is θp; the probability for ap to be ranked at the top and aq ranked
at the second position is θpθq

1−θp , etc.

Definition 2 (k-mixture Plackett-Luce model). Given m ≥ 2 and k ≥ 2, we define the k-mixture
Plackett-Luce model as follows. The sample space is S = L(A)n. The parameter space has two
parts. The first part is the mixing coefficients (α1, . . . , αk) where for all r ≤ k, αr ≥ 0, and



∑k
r=1 αr = 1. The second part is (~θ(1), ~θ(2), . . . , ~θ(k)), where ~θ(r) = [θ

(r)
1 , θ

(r)
2 , · · · , θ(r)

m ]> is the
parameter of the r-th Plackett-Luce component. The probability of a ranking V is

Prk-PL(V |~θ) =

k∑
r=1

αr PrPL(V |~θ(r))

where PrPL(V |~θ(r)) is the probability of V in the r-th Plackett-Luce model given ~θ(r).

For simplicity we use k-PL to denote the k-mixture Plackett-Luce model.

Definition 3 (Identifiability) LetM = {Pr(·|~θ) : ~θ ∈ Θ} be a statistical model. M is identifiable
if for all ~θ,~γ ∈ Θ, we have

Pr(·|~θ) = Pr(·|~γ) =⇒ ~θ = ~γ

In this paper, we slightly modify this definition to eliminate the label switching problem. We say that
k-PL is identifiable if there do not exist (1) 1 ≤ k1, k2 ≤ k, non-degenerate ~θ(1), ~θ(2), · · · , ~θ(k1),
~γ(1), ~γ(2), · · · , ~γ(k2), which means that these k1 + k2 vectors are pairwise different; (2) all strictly
positive mixing coefficients (α

(1)
1 , . . . , α

(1)
k1

) and (α
(2)
1 , . . . , α

(2)
k2

), so that for all rankings V we have

k1∑
r=1

α(1)
r PrPL(V |~θ(r)) =

k2∑
r=1

α(2)
r PrPL(V |~γ(r))

Throughout the paper, we will represent a distribution over the m! rankings over m alternatives
for a Plackett-Luce component with parameter ~θ(r) as a column vector ~fm(~θ) with m! elements,
one for each ranking and whose value is the probability of the corresponding ranking. For example,
when m = 3, we have

~f3(~θ) =



Pr(a1 � a2 � a3|~θ)
Pr(a1 � a3 � a2|~θ)
Pr(a2 � a1 � a3|~θ)
Pr(a2 � a3 � a1|~θ)
Pr(a3 � a1 � a2|~θ)
Pr(a3 � a2 � a1|~θ)


=



θ1θ2
1−θ1
θ1θ3
1−θ1
θ1θ2
1−θ2
θ2θ3
1−θ2
θ1θ3
1−θ3
θ2θ3
1−θ3


Given ~θ(1), . . . , ~θ(2k), we define Fkm as a m!× 2k matrix for k-PL with m alternatives

Fkm =
[
~fm(~θ(1)) ~fm(~θ(2)) · · · ~fm(~θ(2k))

]
(1)

We note that Fkm is a function of ~θ(1), . . . , ~θ(2k), which are often omitted. We prove the identifia-
bility or non-identifiability of k-PL by analyzing the rank of Fkm. The reason that we consider 2k
components is that we want to find (or argue that we cannot find) another k-mixture model that has
the same distribution as the original one.

3 Identifiability of Plackett-Luce Mixture Models
We first prove a general lemma to reveal a relationship between the rank of Fkm and the identifiability
of Plackett-Luce mixture models. We recall that a set of vectors is non-degenerate if its elements are
pairwise different.

Lemma 1 If the rank of Fkm is 2k for all non-degenerate ~θ(1), . . . , ~θ(2k), then k-PL is identifiable.
Otherwise (2k − 1)-PL is non-identifiable.



Proof: Suppose for the sake of contradiction the rank of Fkm is 2k for all
non-degenerate ~θ(1), . . . , ~θ(2k) but k-PL is non-identifiable. Then, there exist non-
degenerate ~θ(1), ~θ(2), · · · , ~θ(k1), ~γ(1), ~γ(2), · · · , ~γ(k2) and all strictly positive mixing coefficients
(α

(1)
1 , . . . , α

(1)
k1

) and (α
(2)
1 , . . . , α

(2)
k2

), such that for all rankings V , we have

k1∑
r=1

α(1)
r PrPL(V |~θ(r)) =

k2∑
r=1

α(2)
r PrPL(V |~γ(r))

Let ~δ(1), ~δ(2), . . . , ~δ(2k−(k1+k2)) denote any 2k − (k1 + k2) vectors so that
{~θ(1), . . . , ~θ(k1), ~γ(1), . . . , ~γ(k2), ~δ(1), . . . , ~δ(2k−(k1+k2))} is non-degenerate. It fol-
lows that the rank of the corresponding Fkm is strictly smaller than 2k, because∑k1
r=1 α

(1)
r PrPL(V |~θ(r)) −

∑k2
r=1 α

(2)
r PrPL(V |~γ(r)) +

∑(2k−k1−k2)
r=1

~δ(r) · 0 = 0. This is a
contradiction.

On the other hand, if rank(Fkm) < 2k for some non-degenerate ~θ’s, then there exists a nonzero
vector ~α = [α1, α2, . . . , α2k]> such that Fkm · ~α = 0. Suppose in ~α there are k1 positive elements
and k2 negative elements, then it follows that max{k1, k2}-mixture model is not identifiable, and
max{k1, k2} ≤ 2k − 1. �

Theorem 1 For any m ≥ 2 and any k ≥ m+1
2 , the k-PL is non-identifiable.

Proof sketch: The proof is constructive and is based on a refinement of the second half of Lemma 1.
For any k and m = 2k − 1, we will define ~θ(1), . . . , ~θ(2k) and ~α = [α1, . . . , α2k]T such that (1)
Fkm · ~α = 0 and (2) ~α has k positive elements and k negative elements. In each ~θ(r), the value for
alternatives {a2, . . . , am} are the same. The proof for any m < 2k − 1 is similar.

Formally, let m = 2k − 1. For all i ≥ 2 and r ≤ 2k, we let θ(r)
i =

1−θ(r)1

2k−2 , where θ(r)
i is the

parameter corresponding to the ith alternative of the rth model. For simplicity of notation we use er
to represent θ(r)

1 and we use br to represent 1−θ(r)1

2k−2 . It is not hard to check that the probability for a1

to be ranked at the ith position in the rth Plackett-Luce model is

(2k − 2)!

(2k − 1− i)!
er(br)

i−1∏i−1
p=0(1− pbr)

(2)

Then Fkm can be reduced to a (2k−1)× (2k) matrix. Because rank(Fkm) ≤ 2k−1 < 2k, Lemma 1
immediately tells us that (2k − 1)-PL is non-identifiable for 2k − 1 alternatives, but this is much
weaker than what we are proving in this theorem. We now define a new (2k− 1)× (2k) matrix Hk

obtained from Fkm by performing the following linear operations on row vectors. (i) Make the first
row of Hk to be ~1; (ii) for any 2 ≤ i ≤ 2k − 1, the ith row of Hk is the probability for a1 to be
ranked at the (i− 1)-th position according to (2); (iii) remove all constant factors.

More precisely, for any er we define the following function.

~f∗(er) =



1
er

er(1−er)
er+2k−3

...
er(1−er)2k−3

(er+2k−3)···((2k−3)er+1)


Then we define Hk = [ ~f∗(e1), ~f∗(e2), · · · , ~f∗(e2k)].

Lemma 2 If there exist all different e1, e2, · · · , e2k < 1 and a non-zero vector ~β∗ =
[β∗1 , β

∗
2 , · · · , β∗2k]> such that (i) Hk ~β∗ = 0 and (ii) ~β∗ has k positive elements and k negative

elements, then k-PL for 2k − 1 alternatives is not identifiable.



All missing proofs can be found in the appendix. Next, we prove a stronger lemma stating that
such ~β∗ in Lemma 2 exists not only for some choices of er’s, but also for all combinations of non-
degenerate {e1, . . . , e2k}. In fact, we will prove that the following ~β∗ satisfies the conditions. For
any r ≤ 2k, we let

β∗r =

∏2k−3
p=1 (per + 2k − 2− p)∏

q 6=r(er − eq)
(3)

Note that the numerator is always positive. W.l.o.g. let e1 < e2 < · · · < e2k, then half of the
denominators are positive and the other half are negative. We then use induction to prove that the
conditions in Lemma 2 are satisfied in the following series of lemmas.

Lemma 3
∑
s

1∏
t 6=s(es−et)

= 0.

Lemma 4 For all µ ≤ ν − 2, we have
∑ν
s=1

(es)
µ∏

t 6=s(es−et)
= 0.

Lemma 5 Let f(x) be any polynomial of degree ν − 2, then
∑ν
s=1

f(es)∏
t 6=s(es−et)

= 0.

Now we are ready to prove that Hk ~β∗ = 0. Note that the degree of the numerator of β∗r is 2k − 3
(see Equation (3)). Let [Hk]i denote the i-th row of Hk. We have the following calculations.

[Hk]1 ~β∗ =

2k∑
r=1

∏2k−3
p=1 (per + 2k − 2− p)∏

q 6=r(er − eq)
= 0

[Hk]2 ~β∗ =

2k∑
r=1

∏2k−3
p=1 er(per + 2k − 2− p)∏

q 6=r(er − eq)
= 0

For any 2 < i ≤ 2k − 1, we have

[Hk]i ~β∗ =

2k∑
r=1

er(1− er)i−2∏i−2
p=1(per + 2k − 2− p)

∏2k−3
p=1 (per + 2k − 2− p)∏

q 6=r(er − eq)

=

2k∑
r=1

er(1− er)i−2
∏2k−3
p=i−1(per + 2k − 2− p)∏
q 6=r(er − eq)

= 0 (Lemma 5)

The last equation is obtained by letting v = 2k−2 in Lemma 5. Therefore, Hk ~β∗ = 0. Note that ~β∗
is also the solution for less than 2k − 1 alternatives. The theorem follows after applying Lemma 2.

�

Theorem 2 For k = 2, and any m ≥ 4, the 2-PL is identifiable.

Proof sketch: We will apply Lemma 1 to prove the theorem. That is, we will show that for all
non-degenerate ~θ(1), ~θ(2), ~θ(3), ~θ(4) such that rank(F2

4) = 4. We recall that F2
4 is a 24 × 4 matrix.

Instead of proving rank(F2
4) = 4 directly, we will first obtain a 4×4 matrix F∗ = T×F2

4 by linearly
combining some row vectors of F2

4 via a 4× 24 matrix T . Then, we show that rank(F∗) = 4, which
implies that rank(F2

4) = 4.
For simplicity we use [er, br, cr, dr]

> to denote the parameter of r-th Plackett-Luce compo-

nent for a1, a2, a3, a4 respectively. Namely,
[
~θ(1) ~θ(2) ~θ(3) ~θ(4)

]
=


e1 e2 e3 e4

b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 =


~ω(1)

~ω(2)

~ω(3)

~ω(4)

, where for each r ≤ 4, ~ω(r) is a row vector. We further let ~1 = [1, 1, 1, 1].



Clearly we have
∑4
i=1 ~ω

(i) = ~1. Therefore, if there exist three ~ω’s, for example
{~ω(1), ~ω(2), ~ω(3)}, such that ~ω(1), ~ω(2), ~ω(3) and ~1 are linearly independent, then rank(F2

4) = 4
because each ~ω(i) corresponds to the probability of ai being ranked at the top, which means that
~ω(i) is a linear combination of rows in F2

4. Because ~θ(1), ~θ(2), ~θ(3), ~θ(4) is non-degenerate, at least
one of {~ω(1), ~ω(2), ~ω(3), ~ω(4)} is linearly independent of ~1. W.l.o.g. suppose ~ω(1) is linearly inde-
pendent of ~1. This means that not all of e1, e2, e3, e4 are equal. The theorem will be proved in the
following two cases.
Case 1. ~ω(2), ~ω(3), and ~ω(4) are all linear combinations of ~1 and ~ω(1).
Case 2. There exists a ~ω(i) (where i ∈ {2, 3, 4}) that is linearly independent of ~1 and ~ω(1).

We will only show the proof for a subcase of Case 1 to illustrate the main idea. The full proof
is quite involved and can be found in the appendix. In Case 1, for all i = 2, 3, 4 we can rewrite
~ω(i) = pi~ω

(1) + qi for some constants pi, qi. Because ~ω(1) + ~ω(2) + ~ω(3) + ~ω(4) = ~1, we have

p2 + p3 + p4 = −1

q2 + q3 + q4 = 1

In this case for each r ≤ 4, the r-th column of F2
4, which is ~f4(~θ(r)), is a function of er. Because

the ~θ’s are non-degenerate, e1, e2, e3, e4 must be pairwise different. We will show the proof for the
following subcase of Case 1.

Case 1.1: p2 + q2 6= 0 and p2 + q2 6= 1.
For this case we first define a 4× 4 matrix F̂ as follows.

F̂ Moments
1 1 1 1
e1 e2 e3 e4
e1b1
1−b1

e2b2
1−b2

e3b3
1−b3

e4b4
1−b4

e1b1
1−e1

e2b2
1−e2

e3b3
1−e3

e4b4
1−e4


~1

a1 � others
a2 � a1 � others
a1 � a2 � others

We use ~1 and ~ω(1) as the first two rows. ~ω(1) corresponds to the probability that a1 is ranked
at the top. We call such a probability a moment. Each moment is the sum of probabilities of
some rankings. For example, the “a1 � others” moment is the total probability for {V ∈ L(A) :
a1 is ranked at the top of V }. It follows that there exists a 4× 24 matrix T̂ such that F̂ = T̂ × F2

4.
Define

~θ(b) = [
1

1− b1
,

1

1− b2
,

1

1− b3
,

1

1− b4
]

where bi = p2ei + q2. We then define

~θ(e) = [
1

1− e1
,

1

1− e2
,

1

1− e3
,

1

1− e4
]

And define F∗ =


~1
~ω(1)

~θ(b)

~θ(e)

. It can be verified that F̂ = T ∗ × F∗, where

T ∗ =


1 0 0 0
0 1 0 0

− 1
p2

−1 1−q2
p2

0

−(p2 + q2) −p2 0 p2 + q2





Because Case 1.1 assumes that p2 + q2 6= 0 and we can select a2 such that p2 6= 0, q2 6= 1
(see appendix), we have that T ∗ is invertible. Therefore, F∗ = (T ∗)−1 × F̂, which means that
F∗ = T × F2

4 for some 4× 24 matrix T .
We now prove that rank(F∗) = 4. For the sake of contradiction, suppose that rank(F∗) < 4. It

follows that there exist a nonzero row vector ~t = [t1, t2, t3, t4], such that ~t ·F∗ = 0. This means that
for all r ≤ 4,

t1 + t2er +
t3

1− p2er − q2
+

t4
1− er

= 0

Let
f(x) = t1 + t2x+

t3
1− p2x− q2

+
t4

1− x
Let g(x) = (1 − p2x − q2)(1 − x)f(x). We recall that e1, e2, e3, e4 are four roots of f(x), which
means that they are also the four roots of g(x). Because in Case 1.1 we assume that p2 + q2 6= 1,
it can be verified that not all coefficients of g(x) are zero. We note that the degree of g(x) is 3.
Therefore, due to the Fundamental Theorem of Algebra, g(x) has at most three different roots. This
means that e1, e2, e3, e4 are not pairwise different, which is a contradiction.

Therefore, rank(F∗) = 4, which means that rank(F2
4) = 4. This finishes the proof for Case 1.1.

The proof for other cases are more complicated and can be found in appendix. �
Slightly abusing the notation, we say that a parameter of k-PL is identifiable, if there does not

exist a different parameter modulo label switching with the same probability distribution over the
sample space. The next theorem proves that the Lebesgue measure (in the km− 1 dimensional Eu-
clidean space) of non-identifiable parameters of k-PL for m alternatives is 0 (generic identifiability
as is defined in Section 1.1).

Theorem 3 For 1 ≤ k ≤ bm−2
2 c!, the k-PL over m ≥ 6 alternatives is generically identifiable.

Proof: The theorem is proved by analyzing the uniqueness of tensor decomposition. We construct
a rank-one tensor for each Plackett-Luce component. Then the k-mixture model can be represented
by another tensor, which is the weighted sum of k rank-one tensors. If the tensor decomposition is
unique, then k-PL is identifiable.

To construct the rank-one tensor Tr for the r-th Plackett-Luce component, we partition the set
of alternatives into three sets. In the rest of the proof we assume that m is even. The theorem can be
proved similarly for odd m.

SA = {a1, a2, · · · , am−2
2
}

SB = {am
2
, am+2

2
, · · · , am−2}

SC = {am−1, am}

There are n1 = n2 = m−2
2 ! rankings over SA and SB respectively, and two rankings over SC

(n3 = 3). Let the three coordinates in the tensor Tr for the r-th Plackett-Luce model (with parameter
~θ(r) be p

(r)
A ,p

(r)
B ,p

(r)
C that represent probabilities of all rankings within SA, SB , SC respectively.

Then, for any rankings VA ∈ L(SA), VB ∈ L(SB), and VC ∈ L(SC), we can prove that
PrPL(VA, VB , VC |~θ(r)) = PrPL(VA|~θ(r)) × PrPL(VB |~θ(r)) × PrPL(VC |~θ(r)). That is, VA, VB and
VC are independent given ~θ(r). We will prove this result for a more general class of models called
random utility models (RUM), of which the Plackett-Luce model is a special case [26]. In an RUM,
given a ground truth utility ~θ = [θ1, θ2, . . . , θm] and a distribution µi(·|θi) for each alternative,
an agent samples a random utility Xi for each alternative independently with probability density
function µi(·|θi). The probability of the ranking ai1 � ai2 � · · · � aim is

Pr(ai1 � · · · � aim |~θ) = Pr(Xi1 > Xi2 > · · · > Xim)

=

∫ ∞
−∞

∫ ∞
xim

· · ·
∫ ∞
xi2

µim(xim)µim−1
(xim−1

) . . . µi1(xi1)dxi1dxi2 . . . dxim



W.l.o.g. we let i1 = 1, . . . , im = m. Let SX1>X2>···>Xm denote the subspace of Rm where
X1 > X2 > · · · > Xm and let µ(~x|~θ) denote µm(xm)µm−1(xm−1) . . . µ1(x1). Thus we have

Pr(a1 � · · · � am|~θ) =

∫
SX1>X2>···>Xm

µ(~x|~θ)d~x

Lemma 6 Given a random utility modelM(~θ) over a set of m alternatives A, let A1,A2 be two
non-overlapping subsets of A, namely A1,A2 ⊂ A and A1 ∩ A2 = ∅. Let V1, V2 be rankings over
A1 and A2, respectively, then we have Pr(V1, V2|~θ) = Pr(V1|~θ) Pr(V2|~θ).

Proof: We first prove the following claim.

Claim 1 Given a random utility model M(~θ), for any parameter ~θ and any As ⊆ A, we let ~θs
denote the components of ~θ for alternatives in As, and let Vs be a full ranking over As (which is a
partial ranking over A). Then we have Pr(Vs|~θ) = Pr(Vs|~θs).

The proof of Claim 1 can be found in the appendix. Let A1 = {a11, a12, . . . , a1m1
} and A2 =

{a21, a22, . . . , a2m2
}. Without loss of generality we let V1 and V2 be a11 � a12 � · · · � a1m1

and a21 � a22 � · · · � a2m2
respectively. For any ~θ, let ~θ1 denote the subvector of ~θ on A1. Let

S1 denote SX11>X12>···>X1m1
. ~θ2 and S2 are defined similarly. According to Claim 1, we have

Pr(V1|~θ) = Pr(V1|~θ1) =
∫
S1 µ(~x1|~θ1)d~x1 and Pr(V2|~θ) = Pr(V2|~θ2) =

∫
S2 µ(~x2|~θ2)d~x2. Then

we have

Pr(V1, V2|~θ) =

∫
S1×S2×Rm−m1−m2

µ(~x|~θ)d~x

=

∫
S1×S2

µ(~x1, ~x2|~θ1, ~θ2)d~x (Claim 1)

=

∫
S1

∫
S2
µ(~x1|~θ1)µ(~x2|~θ2)d~x1d~x2 (Fubini’s Theorem)

=

∫
S1
µ(~x1|~θ1)d~x1

∫
S2
µ(~x2|~θ2)d~x2

= Pr(V1|~θ1) Pr(V2|~θ2)

�

Because SA, SB , and SC are non-overlapping, it follows that Tr = p
(r)
A ⊗ p

(r)
B ⊗ p

(r)
C . Be-

cause k ≤ bm−2
2 c!, we have min{k, |L(SA)|} + min{k, |L(SB)|} + min{k, |L(SC)|} = 2k + 2.

By Corollary 3 in [1], k-PL is generically identifiable. For completeness we include Corollary 3
here. Let M(k;n1, n2, n3) be a k-mixture, 3-feature statistical model, where n1, n2, n3 are the
cardinalities of the three sets of events we defined.

The parameters of the modelM(k;n1, n2, n3) are generically identifiable, up to label switching,
provided min(k, n1) + min(k, n2) + min(k, n3) ≥ 2k + 2.

Since n1 = n2 = m−2
2 !, n3 ≥ 2, this condition holds. �

4 A Generalized Method of Moments Algorithm for 2-PL

In a generalized method of moments (GMM) algorithm, a set of q ≥ 1 moment conditions g(V, ~θ)
are specified. Moment conditions are functions of the parameter and the data, whose expectations
are zero at the ground truth. g(V, ~θ) ∈ Rq has two inputs: a data point V and a parameter ~θ. For
any ~θ∗, the expectation of any moment condition should be zero at ~θ∗, when the data are generated



from the model given ~θ∗. FormallyE[g(V, ~θ∗)] = ~0. In practice the observed moment values should
match the theoretical values from the model. In our algorithm, each moment condition corresponds
to an event in the data, e.g. a1 is ranked at the top. We use moments to denote such events. Given
any preference profile P , we let g(P, ~θ) = 1

n

∑
V ∈P g(V, ~θ), which is a function of ~θ. The GMM

algorithm we will use then computes the parameter that minimizes the 2-norm of the empirical
moment conditions in the following way.

GMMg(P ) = inf
~θ
||g(P, ~θ)||22 (4)

In this paper, we will show results for m = 4 and k = 2. Our GMM works for other combinations
of k and m, if the model is identifiable. Otherwise the estimator is not consistent. For m = 4 and
k = 2, the parameter of the 2-PL is ~θ = (α, ~θ(1), ~θ(2)). We will use the following q = 20 moments
from three categories.

(i) There are four moments, one for each of the four alternatives to be ranked at the top. Let
{gi : i ≤ 4} denote the four moment conditions. Let pi = αθ

(1)
i + (1− α)θ

(2)
i . For any V ∈ L(A),

we have gi(V, θ) = 1− pi if and only if ai is ranked at the top of V ; otherwise gi(V, θ) = −pi.
(ii) There are 12 moments, one for each combination of top-2 alternatives in a ranking. Let

{gi1i2 : i1 6= i2 ≤ 4} denote the 12 moment conditions. Let pi1i2 = α
θ
(1)
i1
θ
(1)
i2

1−θ(1)i1
+ (1 − α)

θ
(2)
i1
θ
(2)
i2

1−θ(2)i1
.

For any V ∈ L(A), we have gi1i2(V, ~θ) = 1− pi1i2 if and only if ai1 is ranked at the top and ai2 is
ranked at the second in V ; otherwise gi1i2(V, ~θ) = −pi1i2 .

(iii) There are four moments that correspond to the following four rankings a1 � a2 � a3 � a4,
a2 � a3 � a4 � a1, a3 � a4 � a1 � a2, a4 � a1 � a2 � a3. The corresponding gi1i2i3i4 ’s are
defined similarly.

The choices of these moment conditions are based on the proof of Theorem 2, so that the 2-PL
is strictly identifiable w.r.t. these moment conditions. Therefore, our simple GMM algorithm is the
following.

Algorithm 1 GMM for 2-PL
Input: Preference profile P with n full rankings.
Compute the frequency of each of the 20 moments
Compute the output according to (4)

The theoretical guarantee of our GMM is its consistency, as we defined in Section 1.1.

Theorem 4 Algorithm 1 is consistent w.r.t. 2-PL, where there exists ε > 0 such that each parameter
is in [ε, 1].

Originally all parameters lie in open intervals (0, 1]. The ε requirement in the theorem is introduced
to make the parameter space compact, i.e. all parameters are chosen from closed intervals. The proof
is done by applying Theorem 3.1 in [9]. The main hardness is the identifiability of 2-PL w.r.t. the
moment conditions used in our GMM. Our proof of the identifiability of 2-PL (Theorem 2) only
uses the 20 moment conditions described above.2

4.1 Complexity
For learning k-PL with m alternatives and n rankings with EMM, each E-step performs O(nk2)
operations and each iteration of the MM algorithm for the M-step performs O(m2nk) operations.
Our GMM for k = 2 and m = 4 has overall complexity O(n). The complexity of calculating
moments is O(n) and the complexity of optimization depends only on m and k.

2In fact our proof only uses 16 of them (four moment conditions in category (ii) are redundant). However, our syn-
thetic experiments show that using 20 moments improves statistical efficiency without sacrificing too much computational
efficiency.



5 Experiments
The performance of our GMM algorithm (Algorithm 1) is compared to the EMM algorithm [8] for
2-PL with respect to running time and statistical efficiency for synthetic data. The synthetic datasets
are generated as follows.

• Generating the ground truth: for k = 2 mixtures and m = 4 alternatives, the mixing coef-
ficient α∗ is generated uniformly at random and the Plackett-Luce components ~θ(1) and ~θ(2)

are each generated from the Dirichlet distribution Dir(~1).

• Generating data: given a ground truth ~θ∗, we generate each ranking with probability α∗ from
the PL model parameterized by ~θ(1) and with probability 1− α∗ from the PL model parame-
terized by ~θ(2) up to 45000 full rankings.

The GMM algorithm is implemented in Python 3.4 and termination criteria for the optimization
are convergence of both the solution and the objective function values to be within 10−8. The
optimization of (4) uses the fmincon function through the MATLAB Engine for Python.

The EMM algorithm is implemented in Python 3.4 and termination criteria for optimization
are convergence of the solution to be within 10−8 and a maximum of 500 EM iterations. The
MM algorithm embedded in the M step is also implemented for convergence within 10−8 with
a maximum number of iterations equal to 5 plus the number of the current overall EM iteration
divided by 50.

We use the Mean Squared Error (MSE) as the measure of statistical efficiency defined as MSE =
E(‖ ~θ − ~θ∗ ‖22).

All experiments are run on an Ubuntu Linux server with 16 Intel Xeon E5 v3 CPUs each running
at 3.50 GHz.

5.1 Results

Figure 1: The MSE and running time of GMM and EMM. Values are calculated over 1000 datasets.

The comparison of the performance of the GMM algorithm to the EMM algorithm is presented
in Figure 1 for up to n = 100 rankings. We observe that the EMM algorithm achieves smaller MSE
than the GMM algorithm, but MSE of the GMM algorithm is not bad. With regard to running time,
however, GMM greatly outperforms EMM even for small n. Statistics are calculated over 1000 trials
(datasets). The running time of EMM becomes prohibitively large as the number of votes increases,



whereas the running time of GMM remains low while still able to achieve competitive results. For
example, when n = 106 the EMM would take about four days to finish, while our GMM algorithm
would take no more than 5 seconds. It is possible that the GMM algorithm can be further improved
by using a more accurate optimizer or another set of moment conditions. The implication is that
GMM may be better suited for very large datasets where running time becomes infeasibly large with
EMM. GMM can also be used to provide a good initial point for other methods such as the EMM.

Figure 2: The MSE and running time of GMM. GMM-Moments is the time to calculate the moment
condition values observed in the data and GMM-Opt is the time to perform the optimization. Values
are calculated over 50000 trials.

For larger datasets, the performance of the GMM algorithm is shown in Figure 2 for up to
n = 45000 rankings calculated over 50000 trials. Optimization using the expected moments that are
computed from the ground truth parameters (rather than generating rankings) gives a lower bound
of MSE = 7.016 × 10−3 as calculated over 10000 trials. We observe that as the number of votes
increases, the GMM converges toward this lower bound. The overall running time of GMM shown
in the figure is comprised of the time to calculate the moments from data (GMM-Moments) and the
time to optimize the objective function (GMM-Opt). The time for calculating the moment values
increases linearly with n, but it is dominated by the time to perform the optimization.

6 Summary and Future Work
In this paper we address the problem of identifiability and efficient learning for Plackett-Luce mix-
ture models. We show that for any k ≥ 2, k-PL for no more than 2k − 1 alternatives is non-
identifiable and this bound is tight for k = 2. For generic identifiability, we prove that the mixture
of k Plackett-Luce models over m alternatives is generically identifiable if k ≤ bm−2

2 c!. We also
propose a GMM algorithm for learning 2-PL with four or more alternatives. Our experiments show
that our GMM algorithm is significantly faster than the EMM algorithm in [8], while achieving
competitive statistical efficiency.

There are many directions for future research. An obvious open question is whether k-PL is
identifiable for 2k alternatives for k ≥ 3, which we conjecture to be true. It is also important to
study how to efficiently check whether a learned parameter is identifiable for k-PL when m < 2k.
Can we further improve the statistical efficiency and computational efficiency for learning k-PL?
We also plan to develop efficient implementations of our GMM algorithm and apply it widely to
various learning problems with big rank data.
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Appendix

Lemma 2 If there exist all different e1, e2, · · · , e2k < 1 and a non-zero vector ~β∗ =
[β∗1 , β

∗
2 , · · · , β∗2k]>, s.t.

• Hk ~β∗ = 0,

• ~β∗ has k positive elements and k negative elements.

then k-PL for 2k − 1 alternatives is not identifiable.
Proof: W.l.o.g. assume β∗1 , β

∗
2 , · · · , β∗k > 0 and β∗k+1, β

∗
k+2, β

∗
2k < 0. Hk

2k−1
~β∗ = 0 means that

k∑
r=1

β∗r
~fr = −

2k∑
r=k+1

β∗r
~fr

According to the first row in Hk, we have
∑
r β
∗
r = 0. Let S =

∑k
r=1 β

∗
r . Further let α∗r = β∗r/S

when r = 1, 2, · · · , k and α∗r = −β∗r/S when r = k + 1, k + 2, · · · , 2k. We have

k∑
r=1

α∗r
~fr =

2k∑
r=k+1

α∗r
~fr

where
∑k
r=1 α

∗
r = 1 and

∑2k
r=k+1 α

∗
r = 1. This means that the model is not identifiable. �

Lemma 3
∑
s

1∏
t 6=s(es−et)

= 0 where ∀s 6= t, es 6= et.
Proof: The partial fraction decomposition of the first term is

1∏
q 6=1(e1 − eq)

=
∑
q 6=1

(
Bq

e1 − eq
)

where Bq = 1∏
p6=q,p6=1(eq−ep) .

Namely,
1∏

q 6=1(e1 − eq)
= −

∑
q 6=1

(
1∏

p 6=q(eq − ep)
)

We have ∑
s

1∏
t 6=s(es − et)

=
1∏

q 6=1(e1 − eq)
+
∑
q 6=1

(
1∏

p 6=q(eq − ep)
) = 0

�

Lemma 4 For all µ ≤ ν − 2, we have
∑ν
s=1

(es)
µ∏

t 6=s(es−et)
= 0.

Proof: Base case: When ν = 2, µ = 0, obviously

1

e1 − e2
+

1

e2 − e1
= 0

Assume the lemma holds for ν = p and all µ ≤ ν − 2, that is
∑ν
s=1

eµs∏
t 6=s(es−et)

= 0. When
ν = p+ 1, µ = 0, by Lemma 3 we have

p+1∑
s=1

1∏
t6=s(es − et)

= 0



Assume
∑p+1
s=1

eqs∏
t 6=s(es−et)

= 0 for all µ = q, q ≤ p− 2. For µ = q + 1,

p+1∑
s=1

eq+1
s∏

t6=s(es − et)
=

p+1∑
s=1

eqsep+1∏
t 6=s(es − et)

+

p+1∑
s=1

eqs(es − ep+1)∏
t6=s(es − et)

=ep+1

p+1∑
s=1

eqs∏
t 6=s(es − et)

+

p∑
s=1

eqs∏
t6=s(es − et)

= 0

The last equality is obtained from the induction hypotheses. �

Lemma 5 Let f(x) be any polynomial of degree ν − 2, then
∑ν
s=1

f(es)∏
t6=s(es−et)

= 0.
This can be easily derived from Lemma 4.

Theorem 2 For k = 2, and any m ≥ 4, the 2-PL is identifiable.
Proof: We will apply Lemma 1 to prove the theorem. That is, we will show that for all non-
degenerate ~θ(1), ~θ(2), ~θ(3), ~θ(4) such that rank(F2

4) = 4. We recall that F2
4 is a 24×4 matrix. Instead

of proving rank(F2
4) = 4 directly, we will first obtain a 4 × 4 matrix F∗ = T × F2

4 by linearly
combining some row vectors of F2

4 via a 4× 24 matrix T . Then, we show that rank(F∗) = 4, which
implies that rank(F2

4) = 4.
For simplicity we use [er, br, cr, dr]

> to denote the parameter of rth Plackett-Luce component
for a1, a2, a3, a4 respectively. Namely,

[
~θ(1) ~θ(2) ~θ(3) ~θ(4)

]
=


e1 e2 e3 e4

b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4


where for each r ≤ 4, ~ω(r) is a row vector. We further let ~1 = [1, 1, 1, 1]. For proof convenience we
define 5 row vectors.

~1 = [1, 1, 1, 1]

~ω(1) = [e1, e2, e3, e4]

~ω(2) = [b1, b2, b3, d3]

~ω(3) = [c1, c2, c3, c4]

~ω(4) = [d1, d2, d3, d4]

Clearly we have
∑4
i=1 ~ω

(i) = ~1. Therefore, if there exist three ~ω’s, for example
{~ω(1), ~ω(2), ~ω(3)}, such that {~ω(1), ~ω(2), ~ω(3)} and ~1 are linearly independent, then rank(F2

4) = 4
because each ~ω(i) corresponds to the probability of ai being ranked at the top, which means that ~ω(i)

is a linear combination of rows in F2
4. Because ~θ(1), ~θ(2), ~θ(3), ~θ(4) is non-degenerate, at least one of

{~ω(1), ~ω(2), ~ω(3), ~ω(4)} is linearly independent of ~1. W.l.o.g. suppose ~ω(1) is linearly independent
of ~1. This means that not all of e1, e2, e3, e4 are equal. The theorem will be proved in the following
two cases.
Case 1. ~ω(2), ~ω(3), and ~ω(4) are all linear combinations of ~1 and ~ω(1).
Case 2. There exists a ~ω(i) (where i ∈ {2, 3, 4}) that is linearly independent of ~1 and ~ω(1).



Case 1. For all i = 2, 3, 4 we can rewrite ~ω(i) = pi~ω
(1) + qi for some constants pi, qi. More

precisely, for all r = 1, 2, 3, 4 we have:

br = p2er + q2 (5)
cr = p3er + q3 (6)
dr = p4er + q4 (7)

Because ~ω(1) + ~ω(2) + ~ω(3) + ~ω(4) = ~1, we have

p2 + p3 + p4 = −1 (8)
q2 + q3 + q4 = 1 (9)

In this case for each r ≤ 4, the r-th column of F2
4, which is f4(~θ(r)), is a function of er. Because

the ~θ’s are non-degenerate, e1, e2, e3, e4 must be pairwise different.
We assume p2 6= 0 and q2 6= 1 for all subcases of Case 1 (This will be denoted as Case 1

Assumption). The following claim shows that there exists pi, qi where i ∈ {2, 3, 4} satisfying this
condition. If i 6= 2 we can switch the row of alternatives a2 and ai. Then the assumption holds.

Claim 2 There exists i ∈ 2, 3, 4 which satisfy the following conditions:

• qi 6= 1

• pi 6= 0

Proof: Suppose for all i = 2, 3, 4, qi = 1 or pi = 0.
If pi = 0, qi must be positive because br, cr, dr are all positive. If pi 6= 0, Then qi = 1 due to

the assumption above. So qi > 0 for all i = 2, 3, 4. If there exists i s.t. qi = 1, then (9) does not
hold. So for all i, qi 6= 1. Then pi = 0 holds for all i ∈ {2, 3, 4}, which violates (8). �

Case 1.1. p2 + q2 6= 0 and p2 + q2 6= 1.
For this case we first define a 4× 4 matrix F̂ as follows.

F̂ Moments
1 1 1 1
e1 e2 e3 e4
e1b1
1−b1

e2b2
1−b2

e3b3
1−b3

e4b4
1−b4

e1b1
1−e1

e2b2
1−e2

e3b3
1−e3

e4b4
1−e4


~1

a1 � others
a2 � a1 � others
a1 � a2 � others

We use ~1 and ~ω(1) as the first two rows. ~ω(1) corresponds to the probability that a1 is ranked
in the top. We call such a probability a moment. Each moment is the sum of probabilities of
some rankings. For example, the “a1 � others” moment is the total probability for {V ∈ L(A) :
a1 is ranked at the top of V }. It follows that there exists a 4× 24 matrix T̂ such that F̂ = T̂ × F2

4.
Define

~θ(b) = [
1

1− b1
,

1

1− b2
,

1

1− b3
,

1

1− b4
]

= [
1

1− p2e1 − q2
,

1

1− p2e2 − q2
,

1

1− p2e3 − q2
,

1

1− p2e4 − q2
]



and

~θ(e) = [
1

1− e1
,

1

1− e2
,

1

1− e3
,

1

1− e4
] (10)

And define F∗ =


~1
~ω(1)

~θ(b)

~θ(e)

. It can be verified that F̂ = T ∗ × F∗, where

T ∗ =


1 0 0 0
0 1 0 0

− 1
p2

−1 1−q2
p2

0

−(p2 + q2) −p2 0 p2 + q2


Because Case 1.1 assumes that p2 + q2 6= 0 and by Case 1 Assumption p2 6= 0, q2 6= 1, we have
that T ∗ is invertible. Therefore, F∗ = (T ∗)−1× F̂, which means that F∗ = T ×F2

4 for some 4×24
matrix T .

We now prove that rank(F∗) = 4. For the sake of contradiction, suppose that rank(F∗) < 4. It
follows that there exist a nonzero row vector ~t = [t1, t2, t3, t4], such that ~tF∗ = 0. This means that
for all r ≤ 4,

t1 + t2er +
t3

1− p2er − q2
+

t4
1− er

= 0

Let
f(x) = t1 + t2x+

t3
1− p2x− q2

+
t4

1− x
Let g(x) = (1−p2x−q2)(1−x)f(x). We recall that e1, e2, e3, e4 are four roots of f(x), which

means that they are also the four roots of g(x). Now we will verify that not all coefficients of f(x)
are zero. Suppose all coefficients of x in f(x) are zero, then g(x) = 0 holds for all x. By assigning
x to different values, we have

g(1) = t4(1− p2 − q2) = 0

g(
1− q2

p2
) =

t3(p2 + q2 − 1)

p2
= 0

By Case 1.1 assumption p2 + q2 6= 1, we have t3 = t4 = 0. Then from f(x) = t1 + t2x = 0 holds
for all x, we have t1 = t2 = 0, which is a contradiction.

We note that the degree of g(x) is 3. Therefore, due to the Fundamental Theorem of Algebra,
g(x) has at most three different roots. This means that e1, e2, e3, e4 are not pairwise different, which
is a contradiction. Therefore, rank(F∗) = 4, which means that rank(F2

4) = 4.
Case 1.2. p2 + q2 = 1.

If we can find an alternative ai, such that pi and qi satisfy the following conditions:

• pi 6= 0

• qi 6= 1

• pi + qi 6= 0

• pi + qi 6= 1

Then we can use ai as a2, which belongs to Case 1.1. Otherwise we have the following claim.

Claim 3 If for i ∈ {3, 4}, pi and qi satisfy one of the following conditions



1. pi = 0

2. pi 6= 0, qi = 1

3. pi + qi = 0

4. pi + qi = 1

We claim that there exists i ∈ {3, 4} s.t. pi, qi satisfy condition 2, namely pi 6= 0, qi = 1.

Proof: Suppose pi = 0, then qi > 0 because pie1+qi is a parameter in a Plackett-Luce component.
If for i = 3, 4, pi and qi satisfy any of conditions 1, 3 or 4, then qi ≥ −pi (qi > 0 for condition
1, qi = −pi for condition 3, qi = 1 − pi > −p1 for condition 4). As

∑4
i=2 pi = −1,

∑4
i=2 qi ≥

1−
∑4
i=2 pi = 2, which contradicts that

∑4
i=2 qi = 1. �

Without loss of generality we let p3 6= 0 and q3 = 1. We now construct F̂ as is shown in the
following table.

F̂ Moments
1 1 1 1
e1 e2 e3 e4
e1b1
1−e1

e2b2
1−e2

e3b3
1−e3

e4b4
1−e4

c1b1
1−c1

c2b2
1−c2

c3b3
1−c3

c4b4
1−c4


~1

a1 � others
a1 � a2 � others
a3 � a2 � others

We define ~θb the same way as in Case 1.1, and define

~θ(c) = [
1

e1
,

1

e2
,

1

e3
,

1

e4
]

Define

F∗ =


~1
~ω(1)

~θ(e)

~θ(c)


We will show that F̂ = T ∗ × F∗ where T ∗ has full rank.

For all r = 1, 2, 3, 4

crbr
1− cr

=
(p3er + q3)(p2er + q2)

1− p3er − q3
=

(p3er + 1)(p2er + 1− p2)

−p3er
= −p2er + (p2 − 1− p2

p3
)− 1− p2

p3er

So

F̂ =


~1
~ω(1)

−~1− p2~ω
(1) + ~θ(e)

(p2 − 1− p2
p3

)~1− p2~ω
(1) − 1−p2

p3
~θ(c)


Suppose p2 6= 1, we have F̂ = T ∗ × F∗ where

T ∗ =


1 0 0 0
0 1 0 0
−1 −p2 1 0

p2 − 1− p2
p3
−p2 0 − 1−p2

p3





which is full rank. So rank(F∗) = rank(F̂).
If rank(F2

4) ≤ 3, then there is at least one column in F2
4 dependent of the other columns. As all

rows in F̂ are linear combinations of rows in F2
4, there is also at least one column in F̂ dependent

of the other columns. Therefore we have rank(F̂) ≤ 3. Further we have rank(F∗) ≤ 3. Therefore,
there exists a nonzero row vector ~t = [t1, t2, t3, t4], s.t.

~tF∗ = 0

Namely, for all r ≤ 4,

t1 + t2er +
t3

1− er
+
t4
er

= 0

Let

f(x) = t1 + t2x+
t3

1− x
+
t4
x

= 0

g(x) = x(1− x)f(x) = x(1− x)(t1 + t2) + t3x+ t4(1− x)

If any of the coefficients in f(x) is nonzero, then g(x) is a polynomial of degree at most 3. There
will be a maximum of 3 different roots. Since this equation holds for er where r = 1, 2, 3, 4, there
exists s 6= t s.t. es = et. Otherwise g(x) = f(x) = 0 for all x. We have

g(0) = t4 = 0

g(1) = t3 = 0

Substitute t3 = t4 = 0 into f(x), we have f(x) = t1 + t2x = 0 for all x. So t1 = t2 = 0. This
contradicts the nonzero requirement of ~t. Therefore there exists s 6= t s.t. es = et. From (5)(6)(7)
we have ~θ(s) = ~θ(t), which is a contradition.

If p2 = 1, from the assumption of Case 1.2 q2 = 0. So br = er for r = 1, 2, 3, 4. Then from
(8) we have p4 = −p3 − 2 and from (9) we have q4 = 0. Since p4 and q4 satisfy one of the four
conditions in Claim 3, we can show it must satisfy Condition 4. (q4 = 0 violates Condition 2. If it
satisfies Condition 1 or 3, then p4 = 0. Then dr = p4ar + q4 = 0, which is impossible.) So p4 = 1,
and p3 = −3. This is the case where ~ω(1) = ~ω(2) = ~ω(4) and ~ω(3) = 1 − 3~ω(1). For this case,
we use a3 as a1. After the transformation, we have ~ω(2) = ~ω(3) = ~ω(4) = 1−~ω(1)

3 . We claim that
this lemma holds for a more general case where pi + qi = 0 for i = 2, 3, 4. It is easy to check that
pi = − 1

3 and qi = 1
3 belongs to this case.

Claim 4 For all r = 1, 2, 3, 4, if

~θ(r) =


er
br
cr
dr

 =


er

p2er − p2

p3er − p3

−(1 + p2 + p3)er + (1 + p2 + p3)

 (11)

The model is identifiable.

Proof: We first show a claim, which is useful to the proof.

Claim 5 Under the settings of (11), −1 < p2, p3 < 0, −1 < p2 + p3 < 0.

Proof: From the definition of Plackett-Luce model, 0 < er, br, cr, dr < 1. From (11), we have
p2 = br

er−1 . Since br > 0 and er < 1, p2 < 0. Similarly we have p3 < 0 and −(1 + p2 + p3) < 0.
So −1 < p2 + p3 < 0. Then we have p2 > −1 − p3. So −1 − p3 < p2 < 0, p3 > −1. Similarly
we have p2 > −1.

�



F̂ Moments
1 1 1 1
e1 e2 e3 e4
e1b1
1−b1

e2b2
1−b2

e3b3
1−b3

e4b4
1−b4

e1b1c1
(1−b1)(1−b1−c1)

e2b2c2
(1−b2)(1−b2−c2)

e3b3c3
(1−b3)(1−b3−c3)

e4b4c4
(1−b4)(1−b4−c4)


~1

a1 � others
a2 � a1 � others
a2 � a3 � a1 � a4

In this case, we construct F̂ in the following way.
Define ~θ(b) the same way as in Case 1.1

~θ(b) = [
1

1− b1
,

1

1− b2
,

1

1− b3
,

1

1− b4
]

= [
1

1− p2e1 + p2
,

1

1− p2e2 + p2
,

1

1− p2e3 + p2
,

1

1− p2e4 + p2
]

And define

~θ(bc) =[
1

1− (p2 + p3)e1 + p2 + p3
,

1

1− (p2 + p3)e2 + p2 + p3
,

1

1− (p2 + p3)e3 + p2 + p3
,

1

1− (p2 + p3)e4 + p2 + p3
]

Further define

F∗ =


~1
~ω(1)

~θ(b)

~θ(bc)


We will show F̂ = T ∗ × F∗ where T ∗ has full rank.

The last two rows of F̂

erbr
1− br

= −er −
1

p2
+

1 + p2

p2(1− p2er + p2)

erbrcr
(1− br)(1− br − cr)

=
er(p2er − p2)(p3er − p3)

(1− p2er + p2)(1− (p2 + p3)er + p2 + p3)

=
p2p3er(er − 1)2

(1− p2er + p2)(1− (p2 + p3)er + p2 + p3)

=
p3(2p2 + p3)

p2(p2 + p3)2
+

p3

p2 + p3
er −

(1 + p2)

p2(1− p2er + p2)

+
p2(1 + p2 + p3)

(1− (p2 + p3)er + p2 + p3)(p2 + p3)2

So

F̂ =


~1
~ω(1)

− 1
p2
~1− ~ω(1) + 1+p2

p2
~θ(b)

p3(2p2+p3)
p2(p2+p3)2

~1 + p3
p2+p3

~ω(1) − 1+p2
p2

~θ(b) + p2(1+p2+p3)
(p2+p3)2

~θ(bc)





Then we have F̂ = T ∗ × F∗ where

T ∗ =


1 0 0 0
0 1 0 0

− 1
p2

−1 1+p2
p2

0
p3(2p2+p3)
p2(p2+p3)2

p3
p2+p3

− 1+p2
p2

p2(1+p2+p3)
(p2+p3)2


From Claim 5, we have −1 < p2 < 0 and −1 < p2 + p3 < 0, so 1+p2

p2
6= 0 and p2(1+p2+p3)

(p2+p3)2 6= 0.

So T has full rank. Then rank(F∗) = rank(F̂).
If rank(F2

4) ≤ 3, then there is at least one column in F2
4 dependent of other columns. As all

rows in F̂ are linear combinations of rows in F2
4, rank(F̂) ≤ 3. Since rank(F∗) = rank(F̂), we

have rank(F∗) ≤ 3. Therefore, there exists a nonzero row vector ~t = [t1, t2, t3, t4], s.t.

~tF∗ = 0

Namely, for all r ≤ 4,

t1 + t2er +
t3

1− p2ar + p2
+

t4
1− (p2 + p3)er + p2 + p3

= 0

Let

f(x) = t1 + t2x+
t3

1− p2x+ p2
+

t4
1− (p2 + p3)x+ p2 + p3

g(x) = (1− p2x+ p2)(1− (p2 + p3)x+ p2 + p3)(t1 + t2x)

+ t3(1− (p2 + p3)x+ p2 + p3) + t4(1− p2x+ p2)

If any of the coefficients of g(x) is nonzero, then g(x) is a polynomial of degree at most 3. There
will be a maximum of 3 different roots. As the equation holds for all er where r = 1, 2, 3, 4. There
exists s 6= t s.t. es = et. Otherwise g(x) = f(x) = 0 for all x. We have

g(
1 + p2

p2
) =
−t3p3

p2
= 0

g(
1 + p2 + p3

p2 + p3
) =

t4p3

p2 + p3
= 0

From Claim 5 we know p2, p3 < 0 and p2 + p3 < 0. So t3 = t4 = 0. Substitute it into f(x) we
have f(x) = t1 + t2x = 0 for all x. So t1 = t2 = 0. This contradicts the nonzero requirement of
~t. Therefore there exists s 6= t s.t. es = et. According to (5)(6)(7) we have ~θ(s) = ~θ(t), which is a
contradition.

�

Case 1.3. p2 + q2 = 0.
If there exists i such that pi + qi = 1, then we can use ai as a2 and the proof is done in Case

1.2. It may still be possible to find another i such that pi, qi satisfy the following two conditions:

1. pi 6= 0 and qi 6= 1;

2. pi + qi 6= 0.

If we can find another i to satisfy the two conditions, then the proof is done in Case 1.1. Then we
can proceed by assuming that the two conditions are not satisfied by any i. We will prove that the
only possibility is pi + qi = 0 for i = 2, 3, 4.

Suppose for i = 3, 4, pi and qi violate Condition 1. If pi = 0, then qi > 0. If at least one of
them has qi = 1, then er + br + cr + dr > 1, which is impossible. If both alternatives violates



Condition 1 and p3 = p4 = 0, then 0 < q3, q4 < 1. According to (8) p2 = −1. As p2 + q2 = 0,
we have q2 = 1. From (9), q3 + q4 = 2, which is impossible. So there exists i ∈ {3, 4} such that
pi + qi = 0. Then from

∑
i θ
r
i = 1 we obtain the only case we left out, which is

er

br = p2er − p2

cr = p3er − p3

dr = −(1 + p2 + p3)er + (1 + p2 + p3)

This case has been proved in Claim 4.
Case 2: There exists ~ω(i) that is linearly independent of ~1 and ~ω(1). W.l.o.g. let it be ~ω(2). Define
matrix

G =

 ~1
~ω(1)

~ω(2)

 =

 1 1 1 1
e1 e2 e3 e4

b1 b2 b3 b4


The rank of G is 3. Since G is constructed using linear combinations of rows in F2

4, the rank of F2
4

is at least 3.
If ~ω(3) or ~ω(4) is independent of rows in G, then we can append it to G as the fourth row so that

the rank of the new matrix is 4. Then F2
4 is full rank. So we only need to consider the case where

~ω(3) and ~ω(4) are linearly dependent of ~1, ~ω(1), and ~ω(2). Let

~ω(3) = x3~ω
(1) + y3~ω

(2) + z3
~1 (12)

~ω(4) = x4~ω
(1) + y4~ω

(2) + z4
~1 (13)

where x3 + x4 = −1, y3 + y4 = −1, z3 + z4 = 1.

Claim 6 There exists i ∈ {3, 4} such that xi + zi 6= 0.

Proof: If in the current setting ∃i ∈ {3, 4} s.t. xi + zi 6= 0, then the proof is done. If in the current
setting x3 + z3 = x4 + z4 = 0, but ∃i ∈ {3, 4} s.t. yi + zi = 0, then we can switch the role of er
and br, namely

~ω(3) = y3~ω
(1) + x3~ω

(2) + z3
~1

~ω(4) = y4~ω
(1) + x4~ω

(2) + z4
~1

Then the proof is done. If for all i ∈ {3, 4} we have xi + zi = 0 and yi + zi = 0, then we switch
the role of er and cr and get

~ω(3) =
1

x3
(~ω(1) − y3~ω

(2) − z3
~1)

~ω(4) =
1

x4
(~ω(1) − y4~ω

(2) − z4
~1)

If 1−z3
x3
6= 0, namely z3 6= 1, the proof is done. Suppose z3 = 1, then x3 = y3 = −1. We have

~ω(3) = 1− ~ω(1) − ~ω(2). Then ~ω(4) = ~0, which is impossible. �

Without loss of generality let x3 + z3 6= 0. Similar to the previous proofs, we want to construct
a matrix G′ using linear combinations of rows from F2

4. Let the first 3 rows for G′ to be G. Then
rank(G′) ≥ 3. Since rank(F2

4) ≤ 3 and all rows in G′ are linear combinations of rows in F2
4, we

have rank(G′) ≤ 3. So rank(G′) = 3. This means that any linear combinations of rows in F2
4 is

linearly dependent of rows in G.



Consider the moment where a1 is ranked at the top and a2 is ranked at the second position. Then
[ e1b11−e1 ,

e2b2
1−e2 ,

e3b3
1−e3 ,

e4b4
1−e4 ] is linearly dependent of G. Adding ~ω(2) to it, we have

~θ(eb) = [
b1

1− e1
,

b2
1− e2

,
b3

1− e3
,

b4
1− e4

]

which is linearly dependent of G.
Similarly consider the moment that a1 is ranked at the top and a3 is ranked at the second position.

We obtain [ e1c11−e1 ,
e2c2
1−e2 ,

e3c3
1−e3 ,

e4c4
1−e4 ]. Add ~ω(3) to it, we get

~θ(ec) = [
c1

1− e1
,

c2
1− e2

,
c3

1− e3
,

c4
1− e4

]

which is linearly dependent of G.
Recall from (10)

~θ(e) = [
1

1− e1
,

1

1− e2
,

1

1− e3
,

1

1− e4
]

Then

~θ(ec) = [
x3e1 + y3b1 + z3

1− e1
,
x3e2 + y3b2 + z3

1− e2
,
x3e3 + y3b3 + z3

1− e3
,
x3e4 + y3b4 + z3

1− e4
]

= (x3 + z3)~θ(e) + y3
~θ(eb) − x3

~1

Because both ~θ(eb) and ~θ(ec) are linearly dependent of G, ~θ(e) is also linearly dependent of G. Make
it the 4th row of G′. Suppose the rank of G′ is still 3. We will first prove this lemma under the
assumption below, and then discuss the case where the assumption does not hold.

Assumption 1: Suppose ~1, ~ω(1), ~θ(e) are linearly independent.
Then ~ω(2) is a linear combination of ~1, ~ω(1) and ~θ(e). We write ~ω(2) = s1 + s2~ω

(1) + s3
~θ(e)

for some constants s1, s2, s3. We have s3 6= 0 because ~ω(2) is linearly independent of ~1 and ~ω(1).
Elementwise, for r = 1, 2, 3, 4 we have

br = s1 + s2er +
s3

1− er
(14)

Let

G′′ =

[
G
~θ(eb)

]
~θ(eb) is linearly dependent of G. There exists a non-zero vector ~h = [h1, h2, h3, h4] such that
~h ·G′′ = 0. Namely h1

~1 + h2~ω
(1) + h3~ω

(2) + h4
~θ(eb) = 0. Elementwise, for all r = 1, 2, 3, 4

h1 + h2er + h3br + h4
br

1− er
= 0 (15)

where h4 6= 0 because otherwise rank(G) = 2. Substitute (14) into (15), and multiply both sides of
it by (1− er)2, we get

(h1 + h2er + h3br)(1− er)2 + h4(s1 + s2er)(1− er) + h4s3 = 0

Let
f(x) = (h1 + h2er + h3br)(1− er)2 + h4(s1 + s2er)(1− er) + h4s3

We claim that not all coefficients of x are zero, because f(1) = h4s3 6= 0 (s3 6= 0 and h4 6= 0 by
assumption). Then there are a maximum of 3 different roots, each of which uniquely determines br
by (14). This means that there are at least two identical components. Namely ∃s 6= t s.t. ~θ(s) = ~θ(t).



If Assumption 1 does not hold, namely ~θ(e) is a linear combination of ~1 and ~ω(1), let

1

1− er
= p5er + q5 (16)

Define
f(x) =

1

1− x
− p5x− q5

If f(x) has only 1 root or two identical roots between 0 and 1, then all columns of G have identical
er-s. This means ~ω(1) is dependent of ~1, which is a contradiction. So we only consider the situation
where f(x) has two different roots between 0 and 1, denoted by u1 and u2 (u1 6= u2). Because
e1, e2, e3, e4 are roots of f(x), there must be at least two identical er’s, with the value u1 or u2.

Substitute (16) into ~θ(eb), we have ~θ(eb) = [b1(p5e1+q5), b2(p5e2+q5), b3(p5e3+q5), b4(p5e4+
q5)], which is linearly dependent of G. So there exists nonzero vector ~γ1 = [γ11, γ12, γ13, γ14] such
that

γ11 + γ12er + γ13br + γ14br(p5er + q5) = 0

From which we get
(γ13 + γ14p5er + γ14q5)br = −(γ11 + γ12er) (17)

We recall that er = u1 or er = u2 for r = 1, 2, 3, 4. Since u1 6= u2, there exists i ∈ {1, 2} s.t.
γ13 + γ14p5ui + γ14q5 6= 0. W.l.o.g. let it be u1. If at least two of the er’s are u1, without loss
of generality let e1 = e2 = u1. Then using (17) we know b1 = b2 = −(γ11+γ12u1)

(γ13+γ14p5u1+γ14q5) . From

(12)(13) we can further obtain c1 = c2 and d1 = d2. So ~θ(1) = ~θ(2), which is a contradiction.
If there is only one of the er’s, which is u1, w.l.o.g. let e1 = u1 and e2 = e3 = e4 = u2. We con-

sider the moment where a2 is ranked at the top and a1 the second, which is [ e1b11−b1 ,
e2b2
1−b2 ,

e3b3
1−b3 ,

e4b4
1−b4 ].

Add ~ω(1) to it and we have ~θ(be) = [ e1
1−b1 ,

e2
1−b2 ,

e3
1−b3 ,

e4
1−b4 ], which is linearly dependent of G. So

there exists nonzero vector ~γ2 = [γ21, γ22, γ23, γ24] such that

γ21 + γ22er + γ23br + γ24
er

1− br
= 0 (18)

Let

f(x) = γ21 + γ22u2 + γ23x+ γ24
u2

1− x
g(x) = (1− x)f(x) = (1− x)(γ21 + γ22u2 + γ23x) + γ24u2

If any coefficient of g(x) is nonzero, then g(x) has at most 2 different roots. As g(x) = 0 holds for
b2, b3, b4, ∃s 6= t s.t. bs = bt. Since es = et = u2, from (12)(13) we know cs = ct and ds = dt. So
~θ(s) = ~θ(t). Otherwise we have g(x) = f(x) = 0 for all x. So

g(1) = γ24u2 = 0

Since 0 < u2 < 1, we have γ24 = 0. Substitute it into f(x) we have f(x) = γ21+γ22u2+γ23x = 0
holds for all x. So we have γ21 + γ22u2 = 0 and γ23 = 0. Substitute γ23 = γ24 = 0 into (18) we
get γ21 + γ22er = 0, which holds for both er = u1 and er = u2. As u1 6= u2, we have γ22 = 0.
Then we have γ21 = 0. This contradicts the nonzero requirement of ~γ2. So there exists s 6= t s.t.
~θ(s) = ~θ(t), which is a contradiction.
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Claim 1 Given a random utility model M(~θ), for any parameter ~θ and any As ⊆ A, we let ~θs
denote the components of ~θ for alternatives in As, and let Vs be a full ranking over As (which is a
partial ranking over A). Then we have Pr(Vs|~θ) = Pr(Vs|~θs).
Proof: Let ms be the number of alternatives in As. Let SX1>X2>···>Xms denote the subspace of
Rms where X1 > X2 > · · · > Xms . W.l.o.g. let Vs be a1 � a2 · · · � ams . Then we have

Pr(Vs|~θ) =

∫
SX1>X2>···>Xms×R

m−ms
µ(~x|~θ)d~x

=

∫ ∞
−∞

∫ ∞
xms

· · ·
∫ ∞
x2

∫ ∞
−∞
· · ·
∫ ∞
−∞

µm(xm) . . . µ1(x1)dxms+1 · · · dxmdx1 . . . dxms

=

∫ ∞
−∞

∫ ∞
xms

· · ·
∫ ∞
x2

µms(xms)µms−1(xms−1) . . . µ1(x1)dx1dx2 . . . dxms

=

∫
SX1>X2>···>Xms

µ(~xs|~θs)d~x = Pr(Vs|~θs)
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Theorem 4 Algorithm 1 is consistent w.r.t. 2-PL, where there exists ε > 0 such that each parameter
is in [ε, 1].
Proof: We will check all assumptions in Theorem 3.1 in [9].

Assumption 3.1: Strict Stationarity: the (n × 1) random vectors {vt;−∞ < t < ∞} form a
strictly stationary process with sample space S ⊆ Rn.

As the data are generated i.i.d., the process is strict stationary.
Assumption 3.2: Regularity Conditions for g(·, ·): the function g : S ×Θ→ Rq where q <∞,

satisfies: (i) it is continuous on Θ for each P ∈ S; (ii)E[g(P, ~θ)] exists and is finite for every θ ∈ Θ;
(iii) E[g(P, ~θ)] is continuous on Θ.

Our moment conditions satisfy all the regularity conditions since g(P, ~θ) is continuous on Θ and
bounded in [−1, 1]9.

Assumption 3.3: Population Moment Condition. The random vector vt and the parameter vector
θ0 satisfy the (q × 1) population moment condition: E[g(P, θ0)] = 0.

This assumption holds by the definition of our GMM.
Assumption 3.4 Global Identification. E[g(P, ~θ′)] 6= 0 for all ~θ′ ∈ Θ such that ~θ′ 6= θ0.
This is proved in Theorem 2.
Assumption 3.7 Properties of the Weighting Matrix. Wt is a positive semi-definite matrix which

converges in probability to the positive definite matrix of constants W .
This holds because W = I .
Assumption 3.8 Ergodicity. The random process {vt;−∞ < t <∞} is ergodic.
Since the data are generated i.i.d., the process is ergodic.
Assumption 3.9 Compactness of Θ. Θ is a compact set.
Θ = [ε, 1]9 is compact.
Assumption 3.10 Domination of g(P, ~θ). E[supθ∈Θ ||g(P, ~θ)||] <∞.
This assumption holds because all moment conditions are finite.
Theorem 3.1 Consistency of the Parameter Estimator. If Assumptions 3.1-3.4 and 3.7-3.10 hold

then θ̂T
p→ θ0
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