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Abstract

We investigate the fairness of Bayesian estimators (BEs) by viewing them as (irresolute) voting
rules and evaluating their satisfaction of desirable social choice axioms. We characterize the
class of BEs that satisfy neutrality by the class of BEs with a neutral structure. We prove
that a BE with neutral structure is a minimax rule if it further satisfies parameter connectivity.
We prove that no BE satisfies strict Condorcet criterion. We also propose three new BEs of
natural frameworks and investigate their satisfaction of monotonicity and Condorcet criterion,
and computational complexity.

1 Introduction
Bayesian estimators have been widely applied in rank aggregation. For example, IMDb uses
Bayesian estimators to aggregate users’ votes to create the top-250 movie list [2]. However, users
have complaint that such mechanisms are “unfair” because the rank of a seemingly good film is not
high [1]. While this particular complaint may not be hard to address, ideally we would like to use
a fair rank aggregation method with high statistical efficiency. This raises the following important
questions.

Q1. How can we measure fairness of rank aggregation mechanisms?
Q2. How can we design fair Bayesian estimators by choosing different models and loss func-

tions?
Same questions arise in many other rank aggregation situations, especially those where the vot-

ing agents are human beings. For example, in political domains, important public decisions are
made by aggregating citizens’ votes; in low-stakes voting scenarios, friends vote to decide the place
for dinner; in crowdsourcing, online workers’ noisy answers are aggregated to estimate the correct
answer [22].

Q1 has been partially answered by social choice theory. Following Arrow’s celebrated impossi-
bility theorem [4], various kinds of measures on fairness, called axioms, have been formulated and
used to evaluate voting rules in political elections. For example, the anonymity axiom states that the
voting rule is insensitive to permutations over agents’ votes, which can be seen as fairness for vot-
ers; neutrality is a fairness condition for the alternatives; and Condorcet criterion (informally) states
that an obviously strong alternative should win, which is similar in spirit to the complaint by the
IMDb user. The axiomatic approach has gone beyond political elections to e.g. ranking systems [3],
recommender systems [25], and community detection [9].

While there has been a growing literature on statistical properties of commonly studied voting
rules, there is little work in the reverse direction, i.e. studying the satisfaction of social choice axioms
for commonly studied statistical estimators, especially Bayesian estimators. Recently Azari Soufiani
et al. [7] proposed a statistical decision-theoretic framework (framework for short) to obtain new vot-
ing rules as Bayesian estimators, and investigated the satisfaction of some axioms for two Bayesian
estimators. To the best of our knowledge, there is no general characterizations of satisfaction of
social choice axioms for Bayesian estimators.
Our Contributions. We study the satisfaction of axioms for Bayesian estimators (BEs) under the
framework proposed by Azari Soufiani et al. [7]. We answer Q2 for two well-studied axioms:
neutrality and strict Condorcet criterion. We characterize BEs that satisfy neutrality by the BEs of
neutral frameworks. Therefore, to design neutral BEs we only need to focus on neutral frameworks.
We also prove that no BE satisfies strict Condorcet criterion.



Anonymity Strict Condorcet Neutrality Minimax Condorcet Monotonicity Comp.
BEs

Y
(trivial)

N
(Thm. 4)

Y/N Y/N Y/N Y/N P/NP-hard

fϕMa

Y
(Thm. 2)

Y
(Thm. 1)

Y iff ϕ(1−ϕm−1)
1−ϕ ≤ 1

(Thm. 5)
Y [5] NP-hard [25]

gϕCo
Y iff ϕ ≤ 1

m−1

(Thm. 7)
Y

(Prop. 1)
P

(Thm. 6)

BE1,ϕ
Pair

Y iff ϕ ≤ 1
m−1

(Thm. 10)
Y

(Prop. 2)
P

(Thm. 9)
BE2,ϕ

Pair
N

(Thm. 10)

Table 1: Main results. m is the number of alternatives. ϕ is the dispersion parameter.

In addition, we prove that if a neutral framework satisfies parameter connectivity, then its BE
is a minimax rule, which means that the BE is optimal w.r.t. the worst-case frequentist expected
loss. We believe that this result is of independent interest but we do not claim it to be a main
contribution of this paper due to its similarity to Theorem 5 in [28]. We include this result just
for completeness.

We also analyze the satisfaction of Condorcet criterion, monotonicity, and computational com-
plexity for four classes of BEs. Each BE in each class is identified by a dispersion value 0 < ϕ < 1.
The first class has been studied before [30, 27, 7] while the remaining three classes are new. The
four classes are (1) fϕMa is the BE of Mallows’ model with the top loss function. Condorcet criterion
has been studied for fϕMa for ϕ > 1√

2
but the remaining cases are open [7]1. (2) gϕCo is the BE of

Condorcet’s model with the Borda loss function. (3) BE1,ϕ
Pair and (4) BE2,ϕ

Pair are the BEs of a new
model with different loss functions, where a parameter can be interpreted as the “strongest pairwise
comparison”. Our results are summarized in Table 1.

The second row in Table 1 are results for general BEs. A “Y/N” means that some Bayesian
estimators satisfy the axiom and some do not. For fϕMa, we prove a dichotomy theorem on its

satisfaction of Condorcet criterion: it satisfies Condorcet criterion if and only if ϕ(1−ϕm−1)
1−ϕ ≤ 1,

where m is the number of alternatives (Theorem 5). We also prove similar dichotomy theorems for
gϕCo and BE1,ϕ

Pair , where the threshold is 1
m−1 (Theorem 7 and 10). We would like to highlight two

new classes of BEs: gϕCo and BE1,ϕ
Pair , because they can satisfy all axioms studied in this paper (except

strict Condorcet criterion, which is not satisfied by any BE) and can be computed in polynomial
time.

In addition to satisfaction of axioms, we also study the limiting cases of the three new BEs as
ϕ → 0 and ϕ → 1. While all classes converge to refinements of the Borda rule as ϕ → 1, they
converge to refinements of different rules as ϕ → 0. Interestingly, gϕCo converges to a refinement of
Copeland0.5 (Theorem 8) and for any ϕ ≤ 1

m−1 , BE1,ϕ
Pair is a refinement of maximin (Theorem 11).

Therefore, strictly speaking BE1,ϕ
Pair is not brand new. However, we believe that BE1,ϕ

Pair is a desirable
refinement of maximin due to it BE interpretation.
Related Work and Discussions. As discussed above our theorems on neutrality and strict Con-
dorcet criterion answer Q2 for the two axioms. We are not aware of other general results on satisfac-
tion of axioms for Bayesian estimators. In particular, Azari Soufiani et al. [7] studied the satisfaction
of some axioms for two classes of BEs but did not obtain general results for BEs.

Most previous work at the intersection of social choice and statistics focused on computational
aspects of the maximum likelihood estimators (MLEs) of various ranking models [14, 10, 15, 17,
29, 20, 24, 27, 5, 6, 16, 19]. The focuses of our work are different. We focus on Bayesian esti-
mators, which are more general than MLEs, and we focus on the satisfaction of axioms rather than
computation.

1The original paper has a typo on the direction of the inequality.



Minimax rule for various statistical models with continuous parameter spaces have been char-
acterized by Berger [8]. Choirat and Seri [12] provided a sufficient condition on discrete-parameter
models for MLEs to be minimax. In the social choice context, Caragiannis et al. [11] proved that the
uniformly randomized MLE has the least sample complexity w.r.t. Mallows’ model, which is equiv-
alent to minimaxity. We prove the minimaxity of Bayesian estimators (as irresolute voting rules) by
using a similar proof as the one for uniform Bayesian estimators [28].

Our work is also related to statistical justification of commonly studied voting rules. Conitzer
and Sandholm [14] studied whether some commonly studied voting rules can be rationalized as
MLEs of some statistical models. They showed that if a voting rule does not satisfy consistency,
then it cannot be an MLE. Pivato [26] further investigated voting rules that can be viewed as MLEs,
maximum a posteriori estimators, and Bayesian estimators. Our impossibility theorem on strict
Condorcet criterion can be used to prove that a voting rule cannot be justified a Bayesian estimator.
In Corollary 2, we show that a number of voting rules including Copeland1 and maximin are not
Bayesian estimators. On the other hand, we prove that some refinements of Copeland0.5 are BEs
(Theorem 8) and some refinements of maximin are BEs (Theorem 11). Previously it was only known
that a refinement of Kemeny is a BE [27] and a refinement of Tideman’s rule is a BE [16].

2 Preliminaries

Let A = {a1, . . . , am} denote a set of m alternatives and let L(A) denote the set of all linear
orders over A. Let n denote the number of agents. Each agent’s vote is a linear order in L(A). The
collection P of all agents’ votes is called a profile. An irresolute voting rule r maps each profile to
a non-empty set of winning alternatives. That is, r :

⋃∞
n=1 L(A)n → (2A \ {∅}).

For example, an irresolute positional scoring rule is characterized by a scoring vector ~s =
(s1, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm. For any alternative a and any linear order V , we let
~s(V, a) = sj , where j is the rank of a in V . Given a profile P , an irresolute positional scoring rule
chooses all alternatives a with maximum

∑
V ∈P ~s(V, a), where P is viewed as a multi-set of votes.

The Borda rule is a positional scoring rule with ~s = (m− 1,m− 2, . . . , 1).
For any profile P and any pair of alternatives a, b, we let P (a � b) denote the number of votes in

P where a is preferred to b. The weighted majority graph of P , denoted by WMG(P ) is a directed
weighted graph where the weight wP (a, b) on any edge a→ b is wP (a, b) = P (a � b)−P (b � a).
Clearly wP (a, b) = −wP (b, a).

Given 0 ≤ α ≤ 1, the Copelandα score of an alternative a in a profile P is the number of
alternatives beaten by a in head-to-head competitions plus αmultiplied by the number of alternatives
tied with a. Copelandα chooses all alternative with the maximum Copelandα score as the winners.
The maximin rule chooses all alternatives a with the maximum min-score. The min-score of a is
minb wP (a, b).

We will focus on the following axioms in this paper. An irresolute r satisfies
• anonymity, if r is insensitive to permutations over agents;
• neutrality, if r is insensitive to permutations over alternatives;
• monotonicity, if for any P , any a ∈ r(P ), and any P ′ that is obtained from P by only raising the
positions of a, we have a ∈ r(P ′);
• Condorcet criterion, if for any profile P , whenever a Condorcet winner a exists, it must be the
unique winner. That is, r(P ) = {a}. A Condorcet winner is an alternative that beats all other
alternatives in their head-to-head competitions;
• strict Condorcet criterion [18], if for any profile P , whenever the set of weak Condorcet winners
is non-empty, it must be the output of r. A weak Condorcet winner is an alternative that never loses
to any other alternative in their head-to-head competition.

Azari Soufiani et al. [7] defined a statistical decision-theoretic framework for social choice
(framework for short) to be a tuple F = (MA,D, L), where A is the set of alternatives, MA =



(Θ, ~π) is a parametric ranking model, D is the decision space, and L : Θ × D → R is a loss
function. MA = (Θ, ~π) has two parts: a parameter space Θ and a set of probability distributions
~π = {πθ : θ ∈ Θ} over L(A). Agents’ votes are generated i.i.d. according toMA, which means
that the sample space is L(A)n and is omitted for simplicity. In this paper we focus on frameworks
with finite parameter spaces and finite decision spaces.

We now recall two popular parametric ranking models. For any pair of linear orders V,W in
L(A), let Kd(V,W ) denote the Kendall-tau distance between V and W , which is the total number
of pairwise disagreements between V and W .

Definition 1 (Mallows’ model with fixed dispersion [21]). Given 0 < ϕ < 1, the Mallows model
with fixed dispersion ϕ is denoted byMϕ

Ma = (L(A), ~π), where the parameter space is L(A) and
for any V,W ∈ L(A), πW (V ) = 1

Zϕ
Kd(V,W ), where Z is the normalization factor with Z =∑

V ∈L(A) ϕ
Kd(V,W ).

Let B(A) denote the set of all irreflexive, antisymmetric, and total binary relations over A. We
have L(A) ⊆ B(A) and the Kendall-tau distance can be easily extended to B(A) by counting the
number of pairwise disagreements.

Definition 2 (Condocet’s model [13, 30]). Given 0 < ϕ < 1, the Condorcet model is denoted by
Mϕ

Co = (B(A), ~π), where the parameter space is B(A) and for any W ∈ B(A) and V ∈ L(A),
πW (V ) = 1

Zϕ
Kd(V,W ), where Z is the normalization factor.

Next, we give three examples of loss functions. When Θ = D, the 0-1 loss function, denoted by
L0-1(θ, d), outputs 0 if θ = d, otherwise it outputs 1. When D = A and Θ is L(A) or B(A), the top
loss function, denoted by Ltop(θ, d), outputs 0 if for all other alternative c ∈ A, d � c in θ, otherwise
it outputs 1. The Borda loss function, denoted by LBorda(θ, d), outputs the number of alternatives
that are preferred to d in θ, that is, LBorda(θ, d) = #{c ∈ A : c �θ d}. All loss functions can be
naturally generalized to evaluate a subset D of D by computing the average loss of the decisions in
D. More precisely, for any D ⊆ D and any θ ∈ Θ, we let L(θ,D) =

∑
d∈D L(θ, d)/|D|.

Given a framework F , the Bayesian expected loss of d ∈ D given a profile P is ELF (d|P ) =∑
θ∈Θ Pr(θ|P )L(θ, d). The subscript F is often omitted without introducing confusions. In this

paper we focus on the uniform prior. The Bayesian estimator of F , denoted by BEF , takes a profile
P as input and outputs all decisions with minimum expected Bayesian loss. That is, BEF (P ) =
arg mind∈D EL(d|P ).

Let fϕMa denote the Bayesian estimator of the framework (Mϕ
Ma, Ltop). It was proved

by Azari Soufiani et al. [7] that fϕMa satisfy anonymity, neutrality, monotonicity, but fails to sat-
isfy the Condorcet criterion for some ϕ. Let gϕCo denote the Bayesian estimator of the framework
(Mϕ

Co, LBorda). We will study the satisfaction of axioms for gϕCo.
Given a framework F , a parameter θ ∈ Θ, n ∈ N, and a voting rule r, the frequentist loss

FLn(θ, r) is the expected loss of the output of r against θ for randomly generated profiles of n
votes. More precisely,

FLn(θ, r) =
∑
Pn∈L(A)n πθ(Pn)L(θ, r(Pn))

Definition 3 ([8]). Given a framework F = (MA,D, L), a voting rule r is minimax, if r ∈
arg minr∗ maxθ∈Θ FLn(θ, r∗).

That is, a minimax rule minimizes the worst-case frequentist loss among all deterministic or
randomized rules. A minimax rule can be seen as having the minimum sample complexity [11].

3 Neutral Frameworks and Minimaxity
We first define the neutrality of a framework for general decision spaces. Intuitively, a framework
F = (MA,D, L) is neutral if all of its three components are neutral w.r.t. permutations σ over A.



Because σ may not be well-defined for the parameter space and the decision space, we require the
existence of homomorphisms from the permutation group over A to the permutation groups over Θ
and D, respectively. Formally, we have the following definition.

Definition 4. A framework F = (MA,D, L) whereMA = (Θ, ~π) is neutral, if each permutation
σ over A is mapped to a permutation σΘ over Θ and a permutation σD over D that satisfy the
following conditions.

(i) Homomorphism. For any pair of permutations γ and β over A, (γ ◦ β)Θ = γΘ ◦ βΘ and
(γ ◦ β)D = γD ◦ βD.

(ii) Model neutrality. For any θ ∈ Θ, any V ∈ L(A), and any permutation σ over A, we have
πθ(V ) = πσΘ(θ)(σ(V )).

(iii) Loss function neutrality. For any θ ∈ Θ, any d ∈ D, and any permutation σ over A, we
have L(θ, d) = L(σΘ(θ), σD(d)).

Example 1. For any 0 < ϕ < 1, (Mϕ
Ma,A, Ltop), (Mϕ

Ma,A, LBorda), (Mϕ
Co,A, Ltop),

(Mϕ
Co,A, LBorda) are neutral, where σΘ = σD = σ.

The main theorem of this section states that if a neutral framework further satisfies the following
connectivity condition, then its Bayesian estimator is a minimax rule.

(iv) Parameter connectivity. For any pair θ1, θ2 ∈ Θ, there exists a permutation σ over A such
that σΘ(θ1) = θ2.

Theorem 1. For any neutral framework F that satisfies parameter connectivity and any n ∈ N,
BEF is a minimax rule.

Proof: The proof is similar to the proof of minimaxity for the uniform Bayesian estimators (Theo-
rem 5 in [28]) by noticing that any deterministic Bayesian estimator BEF can be seen as a random-
ized rule that chooses a single decision uniformly at random from the output of BEF . 2

It is not hard to verify that all models mentioned in Example 1 satisfy parameter connectiv-
ity. Therefore, their Bayesian estimators are minimax rules. In particular, fϕMa is a minimax rule
for (Mϕ

Ma, LTop). When the 0-1 loss function is used, the Bayesian estimator becomes maximum
likelihood estimator (MLE). Therefore, Theorem 1 immediately implies that MLE is minimax.

Corrollary 1. For any neutral framework F = (MA,A, L0-1), its MLE (that outputs all alterna-
tives with the maximum likelihood) is a minimax rule.

As shown in the following example, not all Bayesian estimators of neutral frameworks satisfy
minimaxity.

Example 2. LetA = {a, b}. Consider a framework (M, L) for two alternatives whereM = (Θ, ~π)
combines two Mallows’ models with dispersion parameter 0.6 and 0.7 respectively. Formally, let
Θ = {0.6, 0.7} × {a � b, b � a}. For each (ϕ,W ) ∈ Θ, π(ϕ,W ) is the same as πW in Mallows’
model with dispersion ϕ. For any W ∈ L(A) and c ∈ A, we let L((0.6,W ), c) = Ltop(W, c) and
L((0.7,W ), c) = 1− Ltop(W, c).

It can be verified that F is neutral by letting γΘ be a permutation that only applies to the second
component of the parameter (the ranking). Let n = 1. When the vote is a � b, the posterior
distribution is the following.

Parameter (0.6, a � b) (0.6, b � a) (0.7, a � b) (0.7, b � a)

Post. Prob. 1
3.2

0.6
3.2

1
3.4

0.7
3.4

Loss for a 0 1 1 0

Therefore, EL(a|{a � b}) = 0.6
3.2 < 0.7

3.4 = EL(b|{a � b}). Therefore, BEF (a � b) = a.
Similarly BEF (b � a) = b.

When the ground truth parameter is (0.7, a � b), the frequentist expected loss of BEF is 1
1.7 >

1
2 .

We note that the worst-case frequentist loss of the voting rule that always outputA is 1
2 , which means

that BEF is not a minimax rule. 2



4 General Results on Satisfaction of Axioms
To analyze the satisfaction of axioms of Bayesian estimators, in the rest of this paper we focus on
a special class of frameworks where the decision space is A. We let F = (MA, L) denote such
a framework where the decision space is omitted. For neutral frameworks, we further require that
σA = σ.

Theorem 2. The Bayesian estimator of any neutral framework satisfies neutrality.

Proof: Let S(A) denote the set of all permutations overA. It suffices to prove that the expected loss
function is insensitive to permutations. For any neutral framework F , any profile P , any alternative
a, and any γ ∈ S(A), we have

EL(a|P ) =
∑
θ∈Θ

Pr(θ|P )L(θ, a) ∝
∑
θ∈Θ

Pr(P |θ)L(θ, a)

=
∑
θ∈Θ

Pr(γ(P )|γΘ(θ))L(γΘ(θ), γ(a)) ∝
∑
θ∈Θ

Pr(γΘ(θ)|γ(P ))L(γΘ(θ), γ(a))

=EL(γ(a)|γ(P ))

2

Theorem 3. If the Bayesian estimator BEF of a framework F satisfies neutrality then there exists a
neutral framework F∗ such that BEF∗ = BEF .

Proof: The proof is by construction. For any neutral BEF for F = (MA, L) we first construct a
new modelM∗A to “neutralize”MA. LetM = (Θ, ~π). We defineM∗A = (Θ∗, ~π∗) as follows. We
recall that S(A) denote the set of all permutations over A.
• Let Θ∗ = Θ × S(A). More precisely, for each θi ∈ Θ and each σ ∈ S(A), let 〈θ, σ〉 =

{〈θ, σ〉 : θ ∈ Θ}. Let Θ∗ =
⋃
σ∈S(A)〈θ, σ〉. That is, Θ∗ can seen as m! copies of Θ, one for each

permutation over A. ΘI can be seen as the original Θ, where I is the identity permutation.
• For any V ∈ L(A), any σ ∈ S(A), and any θ ∈ Θ, we let

π〈θ,σ〉(V ) = πθ(σ(V )) (1)

In particular, we have π〈θ,I〉(V ) = πθ(V ). We now define a framework F∗ = (M∗A, L∗) where
L∗ is a “neutralized” extension of L to Θ∗. More precisely, for any a ∈ A, any σ ∈ S(A), and any
θ ∈ Θ, we let

L∗(〈θ, σ〉, a) = L(θ, σ(a)) (2)

Let BE∗ denote the Bayesian estimator of F∗. Next, we prove that BE∗ = BEF . For any profile P
and any alternative a, we have

ELF∗(P, a) =
∑
θ∈Θ

∑
σ∈S(A)

Pr(〈θ, σ〉|P )L(〈θ, σ〉, a)

=
∑
θ∈Θ

∑
σ∈S(A)

PrM∗A(〈θ, σ〉)
PrM∗A(P )

Pr(P |〈θ, σ〉)L(〈θ, σ〉, a)

=
1

m!|Θ|PrM∗A(P )

∑
θ∈Θ

∑
σ∈S(A)

Pr(σ(P )|θ)L(θ, σ(a))

=K1

∑
θ∈Θ

∑
σ∈S(A)

PrM(σ(P ))

PrM(θ)
Pr(θ|σ(P ))L(θ, σ(a))

=K2

∑
σ∈S(A)

PrM(σ(P ))ELF (σ(P ), σ(a))



In the above calculations K1 and K2 are constants given P . For any a ∈ BEF (P ), due to the
neutrality of BEF , for any σ ∈ S(A), we have σ(a) ∈ BEF (σ(P )), which means that for any
alternative b ∈ A we have ELF (σ(P ), σ(a)) ≤ ELF (σ(P ), σ(b)). Therefore, for any alternative
b, ELF∗(P, a) ≤ ELF∗(P, b), which means that BEF (P ) ⊆ BEF∗(P ). On the other hand, for
any b 6∈ BEF (P ) and any a ∈ BEF (P ), we have ELF (P, a) < ELF (P, b), which means that
ELF∗(P, a) < ELF∗(P, b). Therefore, BEF∗(P ) ⊆ BEF (P ). This proves that BEF∗ = BEF .

We now verify the neutrality of F∗. For any γ ∈ S(A), we let γA = γ. For any σ ∈ S(A) and
any θ ∈ Θ, we define

γΘ∗(〈θ, σ〉) = 〈θ, σ ◦ γ−1〉 (3)

(i) Homomorphism. Clearly for any γ, β ∈ S(A) we have γA ◦ βA = (γ ◦ β)A. For any
〈θ, σ〉 ∈ Θ∗, we have

γΘ∗ ◦ βΘ∗(〈θ, σ〉) = 〈θ, σ ◦ β−1 ◦ γ−1〉 = 〈θ, σ ◦ (γ ◦ β)−1〉 = (γ ◦ β)Θ∗(〈θ, σ〉)

Therefore, γΘ∗ ◦ βΘ∗ = (γ ◦ β)Θ∗ .
(ii) Model neutrality. For any 〈θ, σ〉 ∈ Θ∗, any V ∈ L(A), and any γ ∈ S(A), we have

π〈θ,σ〉(V ) = πθ(σ(V )) by Equation (1).

πγΘ∗ (〈θ,σ〉)(γ(V )) = π〈θ,σ ◦ γ−1〉(γ(V )) Equation (3)

=πθ(σ ◦ γ
−1(γ(V ))) Equation (1)

=πθ(σ(V )) = π〈θ,σ〉(V )

(iii) Loss function neutrality. For any 〈θ, σ〉 ∈ Θ∗, a ∈ A, and γ ∈ S(A), we have

L∗(γΘ∗(〈θ, σ〉), γ(a))

=L∗(〈θ, σ ◦ γ−1〉, γ(a)) Equation (3)

=L(θ, σ ◦ γ−1(γ(a))) Equation (2)
=L(θ, σ(a)) = L∗(〈θ, σ〉, a) Equation (2)

2

Theorem 4. No Bayesian estimator satisfies strict Condocet criterion.

Proof: For the sake of contradiction suppose a Bayesian estimator r of F = (MA, L) satisfies strict
Condorcet criterion whereMA = (Θ, ~π).

We first prove that for any profile P , if alternatives a and b are tied in their head-to-head compe-
tition, then the expected loss for a must be the same as the expected loss for b.

Lemma 1. Suppose r = BEF satisfies strict Condorcet criterion. For any profile P and any pair of
alternatives (a, b), if wP (a, b) = 0 then EL(a|P ) = EL(b|P ).

Proof: For any distribution π over Θ, let Sπ = {S1, . . . , Sp} denote the partition of Θ into equivalent
classes according to π, where p is the number of equivalent classes. That is, for any S ∈ Sπ and
any θ1, θ2 ∈ S, we have π(θ1) = π(θ2). Let Tπ denote the total order over Sπ such that for any pair
S, S′ ∈ Sπ , we have S �Tπ S′ if and only if the π value of parameters in S is strictly larger than
the π value of parameters in S′.

For any profile P , let SP denote SPr(·|P ). That is, SP is the partition of Θ according to the
posterior distribution over Θ given P . TP is defined similarly. The next lemma states that for any
profile P and any pair of co-winners (a, b), the total loss of a and b within each equivalent class in
SP must be the same. For any S ⊆ Θ, we let L(S, a) =

∑
θ∈S L(θ, a).

Lemma 2. Suppose r = BEF satisfies strict Condorcet criterion. For any profile P and any S ∈
SP , if there are at least two weak Condorcet winners {a, b} in P , then L(S, a) = L(S, b).



Proof: For the sake of contradiction suppose the lemma does not hold for a profile P where {a, b}
are two weak Condorcet winners. Let TP = S1 � S2 � · · · � Sp. Let Si denote the highest-
ranked equivalent class in TP such that the total loss of a and the total loss of b on Si are different.
W.l.o.g. suppose L(Si, a) > L(Si, b). For any natural number k, it follows that a and b are also
weak Condorcet winners in kP , whose weighted majority graph is exactly WMG(P ) times k. We
next show that when k is sufficiently large, EL(a|kP ) > EL(b|kP ). For any i ≤ p, let θi ∈ Si be
an arbitrary parameter in Si.

EL(a|kP ) =
∑
θ∈Θ

Pr(θ|kP )L(θ, a) ∝
∑
θ∈Θ

Pr(θ|P )kL(θ, a)

=

p∑
i=1

∑
θ∈Si

Pr(θ|P )kL(θ, a) =

p∑
i=1

Pr(θi|P )kL(Si, a)

Because for any i′ > i we have Pr(θi|P ) > Pr(θi′ |P ), there exists k ∈ N such that ( Pr(θi|P )
Pr(θi+1|P ) )k >∑p

l=i+1(L(Sl,a)−L(Sl,b))

L(Si,a)−L(Si,b)
. Therefore, for such k we have

∑p
i=1 Pr(θi|P )kL(Si, a) >∑p

i=1 Pr(θi|P )kL(Si, b) ∝ EL(b|kP ). This means that b cannot be a co-winner in r(kP ), which
contradicts the assumption that r satisfies strict Condorcet criterion. 2

For any pair of partitions S1 and S2 of Θ, we let S1 ⊕ S2 denote the coarsest partition of Θ that
refines both S1 and S2. That is, S1 ⊕ S2 = {S1 ∩ S2 : S1 ∈ S1, S2 ∈ S2} \ {∅}.

Lemma 3. For any statistical model and any pair of profiles P1, P2, there exists k ∈ N such that
SkP1∪P2 = SP1 ⊕ SP2 .

Proof: We let P ∗ = kP1 ∪ P2 for a sufficiently large k such that the “gap” between two equiv-
alent classes in kP is large enough that the only effect of P2 is to refine the equivalent classes in
kP . More formally, we choose k ∈ N such that for any θ1, θ2 ∈ Θ, Pr(θ1|P1)k Pr(θ1|P2) >
Pr(θ2|P1)k Pr(θ2|P2) if and only if one of the following two conditions hold: (1) Pr(θ1|P1) >
Pr(θ2|P1), or (2) Pr(θ1|P1) = Pr(θ1|P2) and Pr(θ1|P2) > Pr(θ2|P2). 2

For any a, b ∈ A, let Lab denote the set of all rankings where a � b. Let Pab denote the set of
all two-agent profiles where one vote comes from Lab and the other vote comes from Lba. That is,

Pab = {{V1, V2} : V1 ∈ Lab, V2 ∈ Lba}

Let Sab denote the finest partition of Θ that refines all partitions induced by profiles in Pab. That
is, Sab = ⊕Pab. By Lemma 3, there exists a profile Pab such that SPab = Sab.

Lemma 4. Suppose r = BEF satisfies strict Condorcet criterion. For any a, b ∈ A and any
S ∈ Sab, we have L(S, a) = L(S, b).

Proof: Let P ∗ be an arbitrary profile with the following conditions. (1) wP∗(a, b) = wP∗(b, a) = 0.
(2) For any c 6∈ {a, b}, we have wP∗(a, c) > 0 and wP∗(b, c) > 0. By Lemma 3, there exists a
sufficiently large k ∈ N such that both conditions still hold for kP ∗ ∪ Pab, and SkP∗∪Pab = Sab.
The latter is because P ∗ can be seen as the union of |P ∗|/2 profiles in Pab, which means that Sab is
a refinement of SkP∗ . The lemma follows after Lemma 2. 2

We note that for any a, b ∈ A, any profile P where wP (a, b) = 0 can be seen as the union of
|P |/2 profiles in Pab. This means that Sab is a refinement of SP . Therefore, any S ∈ SP must be
the union of some equivalent classes in Sab. By Lemma 4 we have that L(S, a) = L(S, b). We have
EL(a|P ) =

∑
S∈SP Pr(θS |P )L(S, a) =

∑
S∈SP Pr(θS |P )L(S, b) = EL(b|P ), where θS denote

an arbitrary element in S. This proves Lemma 1. 2

Consider any profile P where wP (a, b) = wP (b, c) = 0, wP (a, c) = 2, a and b are the only two
weak Condorcet winners, and c loses to all other alternatives in head-to-head competitions. Such a
profile exists due to McGarvey’s theorem [23]. By Lemma 1, EL(a|P ) = EL(b|P ) = EL(c|P ).



However, because r satisfies strict Condorcet criterion, c 6∈ r(P ), which is a contradiction. 2

A direct corollary is that any voting rule that satisfies strict Condorcet criterion cannot be the BE of
any framework.

Corrollary 2. Copeland1, maximin, Black’s function,2 Dodgson’s function, Young’s function, Con-
dorcet’s function, and Fishburn’s function cannot be the Bayesian estimator of any framework.

5 New Bayesian Estimators As Voting Rules
The following theorem solves the open question about the satisfaction of Condorcet criterion for
fϕMa [7].

Theorem 5. fϕMa satisfies Condorcet criterion if and only if ϕ(1−ϕm−1)
1−ϕ ≤ 1.

Proof: The “if part”: suppose ϕ(1−ϕm−1)
1−ϕ ≤ 1. Let P be a profile where a is the Condorcet winner.

For any c, d ∈ A, we let A−c = A \ {c} and A−cd = A \ {c, d}. For any c ∈ A, let Lc denote the
set of all rankings where c is ranked at the top. For any profile P , let P |−a denote its restriction on
A−a. We have 1− EL(c|P ) =

∑
V ∈Lc Pr(V |P ) ∝

∑
V ∈Lc Pr(P |V ) ∝

∑
V ∈Lc ϕ

Kd(P,V ).
Fix b 6= a. For any ranking V−ab ∈ L(A−ab), we let Q(V−ab) denote the set of m− 1 rankings

over A \ {a} obtained by inserting b to V−ab without changing the relative positions of other alter-
natives. Let J(V−ab) ∈ L(A−a) be the ranking in Q(V−ab) with the minimum Kentall-tau distance
from P |−a. If there are multiple such rankings, let J(V−ab) be the one where b is ranked at the
highest position.

Let H : Lb → La denote the following mapping. For any b � V−b ∈ Lb we first look at V−ab
and decide the best position to insert b, then put a at the top, where V−ab is obtained from V−b by
removing a. Formally, H(b � A−b) = a � J(V−ab).

It follows that for any pair of rankings V,W ∈ Lb, where the only difference is the position
of a, we have H(V ) = H(W ). Therefore, for any V ∈ H(Lb), H−1(V ) contains exactly m − 1
rankings in Lb that correspond to the m − 1 positions of a (from the second position to the m-th
position—the first position is occupied by b). For each 2 ≤ i ≤ m, let Wi ∈ H−1(V ) denote the
ranking where a is ranked at the i-th position.

Kd(P,Wi) =Kd(P |−a, (Wi)−a) +
∑
d�Wia

P (a � d) +
∑
a�Wid

P (d � a)

≥Kd(P |−a, J((Wi)−ab)) +
∑
d 6=a

P (d � a) + i− 1 = Kd(P, V ) + i− 1 (4)

Inequality (4) is because a is the Condorcet winner, which means that for any d 6= a we have
#P (a � d) ≥ #P (d � a) + 1. Therefore, for each V ∈ H(Lb) we have∑

W∈H−1(V )

ϕKd(P,W ) ≤ (ϕ+ · · ·+ ϕm−1)ϕKd(P,V ) =
ϕ(1− ϕm−1)

1− ϕ
ϕKd(P,V )

Therefore, ∑
W∈Lb

ϕKd(P,W ) ≤ ϕ(1− ϕm−1)

1− ϕ
∑

V ∈H(Lb)

ϕKd(P,V )

<
ϕ(1− ϕm−1)

1− ϕ
∑
V ∈La

ϕKd(P,V ) ≤
∑
V ∈La

ϕKd(P,V )

2Definitions of these rules except Copeland and maximin can be found in [18], where it was proved that they satisfy strict
Condorcet criterion.



Therefore, we have 1− EL(a|P ) > 1− EL(b|P ), which means that a is the unique winner.
The “only if part”: suppose ϕ(1−ϕm−1)

1−ϕ > 1. For any odd number k ∈ N we consider the
a profile Pk whose weighted majority graph is the same as in Figure 1. The existence of P ∗ is
guaranteed by McGarvey’s theorem [23]. More precisely, in Figure 1 the weight on the edges from
a to all other alternatives is 1; the weight on the edges from b to all other alternatives (except a) is
k; for any 3 ≤ i1 < i2 < m, the weight on ai1 → ai2 is k.

a b

a3 ama4 …

k
1

1
11 k k

k

Figure 1: The WMG of Pk for odd k.

Let Va = a � b � a3 � · · · � am and for each 2 ≤ i ≤ m, let V ib be the ranking obtained from

Va by moving a to the i-th position. It is not hard to check that limk→∞

∑
V ∈La ϕ

Kd(Pk,V )

ϕKd(Pk,Va)
= 1 and

limk→∞

∑
V ∈Lb ϕ

Kd(Pk,V )∑m
i=2 ϕ

Kd(Pk,V ib )
= 1. We note that for each 2 ≤ i ≤ m, Kd(Pk, V

i
b ) = Kd(Pk, Va) +

i− 1. This means that

lim
k→∞

∑
V ∈Lb ϕ

Kd(Pk,V )∑
V ∈La ϕ

Kd(Pk,V )
= lim
k→∞

∑m
i=2 ϕ

Kd(Pk,V
i
b )

ϕKd(Pk,Va)
= ϕ+ · · ·ϕm−1 =

ϕ(1− ϕm−1)

1− ϕ
> 1

Therefore, there exists odd k ∈ N such that EL(b|Pk) < EL(a|Pk), which means that a cannot be
the winner. Because a is the Condorcet winner in Pk, fϕMa does not satisfy Condorcet criterion. 2

Theorem 6. For any profile P , gϕCo(P ) = arg maxa∈A
∑
c6=a

1
1+ϕwP (a,c) .

Proof: For anyW ∈ B(A) and any pair of alternatives a, b, let IW (a � b) = 1 if a �W b; otherwise
IW (a � b) = 0. It follows that m− 1−LBorda(W,a) =

∑
b6=a IW (a � b). Let Ba�b denote the set

of all rankings over A where a � b.

m− 1− EL(a|P ) =
∑

W∈B(A)

Pr(W |P )(m− 1− LBorda(W,a))

=
∑

W∈B(A)

Pr(W |P )
∑
c6=a

IW (a � c) =
∑
c 6=a

∑
W∈Ba�c

Pr(W |P )

Following similar calculations as in [16, 7], we have∑
c6=a

∑
W∈Ba�c

Pr(W |P ) ∝
∑
c6=a

ϕP (c�a)
∏

{b,d}:{b,d}6={a,c}

(ϕP (b�d) + ϕP (d�b))

∝
∑
c6=a

ϕP (c�a)

ϕP (c�a) + ϕP (a�c) =
∑
c 6=a

1

1 + ϕwP (a,c)

Therefore, for any pair of alternatives (a, b), EL(a|P ) ≤ EL(b|P ) if and only if
∑
c6=a

1
1+ϕwP (a,c) ≥∑

c6=b
1

1+ϕwP (b,c) . This proves the theorem. 2

Proposition 1. For all 0 < ϕ < 1, gϕCo satisfies monotonicity.



Proof: For any profile P , any a ∈ gϕCo(P ) and any profile P ′ obtained from P by raising the positions
of a without changing relative positions of other alternatives. It is not hard to check that for any
b 6= a, wP ′(a, b) > wP (a, b), and the weights of edges not involving a do not change. Therefore,
for any b 6= a,

∑
c6=a

1

1+ϕwP ′ (a,c)
>
∑
c 6=a

1
1+ϕwP (a,c) ≥

∑
c6=b

1
1+ϕwP (b,c) >

∑
c6=b

1

1+ϕwP ′ (b,c)
. It

follows from Theorem 6 that a ∈ gϕCo(P ′). 2

Theorem 7. gϕCo satisfies the Condorcet criterion if and only if ϕ ≤ 1
m−1 .

Proof: The “if” part. Let P be any profile where a is the Condorcet winner. This means that for any
c 6= a, wP (a, c) ≥ 1. By Theorem 6 we have

∑
c6=a

1
1+ϕwP (a,c) ≥ m−1

1+ϕ . For any b 6= a, we have∑
c6=a

1
1+ϕwP (a,c) <

1
1+ϕ−1 +m−2. When ϕ ≤ 1

m−1 , we have 1
1+ϕ−1 +m−2 ≤ m−1

1+ϕ . Therefore,
a is the unique winner.

The “only if” part is proved by considering the profile Pk whose WMG is in Figure 1. 2

Theorem 8. As ϕ→ 0, gϕCo converges to a refinement of Copeland0.5. As ϕ→ 1, gϕCo converges to
a refinement of Borda.

Proof: For any profile P any pair of alternatives a, b we have

limϕ→0
1

1+ϕwP (a,b) =

 1 if wP (a, b) > 0
0.5 if wP (a, b) = 0
0 otherwise

Therefore, for any alternative a, limϕ→0

∑
c6=a

1
1+ϕwP (a,c) is its Copeland0.5 score, which means

that the winners must also be winners under Copeland0.5.
For any k > 0, when ε→ 0, we have 1

1+(1−ε)k = 1
2 (1+ kε

2 +o(ε)) and 1
1+(1−ε)−k = 1

2 (1− kε
2 +

o(ε)). Therefore, for any alternative a,
∑
c6=a

1
1+ϕwP (a,c) = m−1

2 + 1
4 (
∑
c6=a wP (a, c))(1 − ϕ) +

o(1− ϕ). We note that
∑
c 6=a wP (a, c) equals to twice the Borda score of a in P minus n(m− 1).

Therefore, as ϕ→ 1 the gϕCo winners must be Borda winners. 2

We propose a new class of ranking models and frameworks as follows.

Definition 5. For any 0 < ϕ < 1 we defineMϕ
Pair as follows. The parameter space Θ = {θbc : b 6=

c ∈ A}. For any V ∈ L(A) we let πθbc(V ) ∝
{

1 if b �V c
ϕ otherwise .

Let L1(θbc, a) =

{
1 if a = c
0 otherwise and L2(θbc, a) =

{
0 if a = b
1 otherwise . Let F1,ϕ

Pair =

(Mϕ
Pair, L1) and F2,ϕ

Pair = (Mϕ
Pair, L2).

That is, the parameters in Mϕ
Pair correspond to pairwise comparisons between alternatives. A

parameter θbc can be interpreted as “b � c is the strongest pairwise comparison”. The first loss
function states that the loss of a is 1 if and only if a is the less preferred alternative in the parameter.
The second loss function states that the loss of a is 0 if and only if a is the preferred alternative in
the parameter.
Mϕ

Pair might be of independent interest. In this paper we focus on the satisfaction of axioms for
the two Bayesian estimators and leave further exploration of the model for future work. We note
that given ϕ, the normalization factor for all θbc are the same.

Theorem 9. The Bayesian estimator BE1,ϕ
Pair of F1,ϕ

Pair is arg mina∈Θ

∑
b6=a ϕ

wP (a,b)/2. The Bayesian
estimator BE2,ϕ

Pair of F2,ϕ
Pair is arg maxa∈Θ

∑
b 6=a ϕ

wP (b,a)/2.

Proof: For any profile P and any alternative a, the expected loss of a under F1,ϕ
Pair is calculated as

follows.

EL1(a|P ) =
∑
b6=c

Pr(θbc|P )L1(θbc, a) ∝
∑
b6=a

Pr(P |θba) ∝
∑
b 6=a

ϕP (a�b)



The theorem for BE1,ϕ
Pair follows after the fact that wP (a, b) = P (a � b) − P (b � a) = 2P (a �

b)− n. The calculation for F2,ϕ
Pair is similar. 2

It is easy to check that both F1,ϕ
Pair and F2,ϕ

Pair satisfy neutrality and parameter connectivity. There-
fore, their Bayesian estimators satisfy neutrality and minimaxity.

Corrollary 3. BE1,ϕ
Pair and BE2,ϕ

Pair satisfy neutrality and minimaxity (w.r.t. to F1,ϕ
Pair and F2,ϕ

Pair , respec-
tively).

Proposition 2. BE1,ϕ
Pair and BE2,ϕ

Pair satisfy monotonicity.

Proof: The proof is similar to the proof of Theorem 1. We note that raising the position of a will
increase the weight on some edges a → b. Weights on other edges do not change. Monotonicity of
both rules can be verified by applying Theorem 9. 2

Theorem 10. BE1,ϕ
Pair satisfies Condorcet criterion if and only if ϕ ≤ 1

m−1 . For all 0 < ϕ < 1,
BE2,ϕ

Pair does not satisfy Concorcet criterion.

Proof: The “if” part for BE1,ϕ
Pair follows after Theorem 11 because when ϕ < 1

m−1 , BE1,ϕ
Pair is a

refinement of maximin and any refinement of maximin satisfies Condorcet criterion.
The “only if” part for BE1,ϕ

Pair and the non-satisfaction for BE2,ϕ
Pair are proved by considering the

profile Pk whose weighted majority graph is in Figure 1 and let k →∞. 2

For any profile P , the maximax rule to chooses all alternatives with the maximum weight on at
least one outgoing edge in the weighted majority graph. That is, the rule is arg maxa maxb wP (a, b).

Theorem 11. For any ϕ ≤ 1
m−1 , BE1,ϕ

Pair is a refinement of maximin, and BE2,ϕ
Pair is a refinement of

maximax. As ϕ→ 1, both rules converge to refinements of Borda.

Proof: By Theorem 9, for any ϕ ≤ 1
m−1 , for any alternative a,

∑
b6=a ϕ

wP (a,b)/2 is mainly de-
termined by minb 6=a wP (a, b)/2, which is half of a’s min-score. It follows that all winners under
BE1,ϕ

Pair must be maximin winners. Similarly,
∑
b6=a ϕ

wP (b,a)/2 is determined by minb 6=a wP (b, a)/2,
which corresponds to maxb 6=a wP (a, b)/2. It follows that the winner under BE2,ϕ

Pair must be maximax
winners.

For any ε > 0, we have
∑
b6=a(1 − ε)wP (a,b)/2 = m − 1 −

∑
b6=a

wP (a,b)
2 ε + o(ε). Similar to

the proof of Theorem 8, the minimizers of this function as ε → 0, which is BE1,ϕ
Pair as ϕ → 1, must

be Borda winners. The proof for BE2,ϕ
Pair is similar. 2

6 Future Work
There are many direction for future work. Can we answer Q2 in the Introduction for other desirable
axioms such as homogeneity? What axioms do BEs satisfy as preference functions (social welfare
functions) or randomized rules? Are there any BEs that are refinements of other commonly stud-
ied rules, especially Copelandα for α 6∈ {0.5, 1}, STV, and ranked pairs? What are other natural
frameworks and which axioms do their BEs satisfy?
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