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Abstract

Condorcet domains are sets of linear orders with the property that, whenever the
preferences of all voters belong to this set, the majority relation has no cycles. We
observe that, without loss of generality, such a domain can be assumed to be closed
in the sense that it contains the majority relation of every profile with an odd number
of individuals whose preferences belong to this domain. We show that every closed
Condorcet domain is naturally endowed with the structure of a median graph and
that, conversely, every median graph is associated with a closed Condorcet domain
(which may not be a unique one). Maximality of a Condorcet domain imposes ad-
ditional restrictions on the underlying median graph. We prove that among all trees
only the chains can be induced by maximal Condorcet domains, and we characterise
the chains that in fact do correspond to maximal Condorcet domains.

1 Introduction

The problem of finding and characterizing preference domains on which pairwise majority
voting never admits cycles—the so-called Condorcet domains—has a long history in social
choice theory. In their seminal contributions, Black [5] and Arrow [3] noticed that the domain
of all strict orders that are single peaked with respect to some underlying linear spectrum
form a Condorcet domain. Later, Sen [28] provided a characterization of Condorcet domains
in terms of the well-known condition of value restriction. Since this early work some progress
has been made in understanding the structure of Condorcet domains; see [1, 2, 6, 9, 10, 14,
15, 16] for important contributions, and [21] for an excellent survey. However, with the
exception of the paper of Danilov and Koshevoy [10], the bulk of the results established in
the literature pertain only to the special case of the so-called connected domains.

The present paper provides a unifying general approach by establishing a close connection
between Condorcet domains and median graphs (see a comprehensive survey about these
in [20]) on the one hand, and the well-studied class of single crossing domains on the other
hand (see [25, 17, 27], among others).

First, we observe that if one adds to a Condorcet domain of strict orders the (transitive)
majority relations of all profiles with an odd number of voters, one obtains again a Condorcet
domain. We may thus assume without loss of generality that Condorcet domains are closed
in the sense that pairwise majority voting among an odd number of individuals always
yields an order within the given domain. In particular, all maximal Condorcet domains are
necessarily closed. Our main result shows that

(i) every closed Condorcet domain on a finite set of alternatives equipped with its natural
neighborhood relation1 is a median graph, and

(ii) for every finite median graph there exists a set of alternatives and a closed Condorcet
domain on this set that is isomorphic to the given median graph.

1Two linear orders in a domain are neighbors if there is no other linear order in this domain that is
between them. An order is between two orders if it agrees with all binary comparisons on which the two
linear orders agree, cf. [18].



Our analysis is related to prior work by Nehring and Puppe [24], Demange [11] and
Clearwater et al. [7]. Nehring and Puppe [24] introduced a general notion of a median
space and demonstrate its usefulness in aggregation theory. Demange [11] showed that, if it
is possible to assign linear orders of a certain domain to the vertices of a median graph in such
a way that orders that lie on a shortest path between two other orders in the graph are also
between them in the Kemeny-Snell sense of betweenness ([19]), then the majority relation of
any profile with preferences from this domain admits no cycles, and, if the number of voters
in the profile is odd, coincides with the preferences of one voter from the domain (but not
necessarily participating in the selected profile). However, [11] takes both the median graph
and the preference profile as given and does not address the issue under which conditions the
required construction can indeed be carried out. Part (i) of our main theorem shows that in
fact every closed Condorcet domain (with its respective neighborhood relation) is a median
graph.2 Clearwater et al. [7] generalise the concept of classical single crossing domain to
single crossing domains on trees and consider several related algorithmic problems.

While all median graphs give rise to closed Condorcet domains, it is not true that every
median graph corresponds to a maximal Condorcet domain. It turns out that, in fact, certain
types of median graphs never enable maximality of the respective Condorcet domains. In
particular, we prove that among all trees only (some) forkless trees (chains) can be associated
with maximal Condorcet domains.

Condorcet domains, whose median graphs are chains, have been studied quite extensively
in economics under the name of single-crossing domains. They are characterized by the
single-crossing property which stipulates that the orders of the domain can be arranged in
a chain so that, for any ordered pair of alternatives, the set of all orders that rank one
alternative strictly above the other form an interval in this chain. It is well-known that
single-crossing domains have the representative voter property (cf. [26]), i.e., in any profile
with an odd number of voters whose preferences belong to the given domain there is one
voter whose preference order coincides with the majority relation.

A maximal single-crossing domain must obviously contain two completely reversed or-
ders. Interestingly, not all maximal single-crossing domains are maximal Condorcet do-
mains, i.e., typically it is possible to add further preference orders to a maximal single-
crossing domain without generating cycles in the majority relation of any profile. Here, we
provide a simple necessary and sufficient condition of when a maximal single-crossing do-
main is also a maximal Condorcet domain. The condition requires that the ‘switched’ pairs
of alternatives associated with any two consecutive orders of the domain have one element
in common.

The remainder of the paper is organized as follows. In the following Section 2, we in-
troduce the concept of Condorcet domain and observe some of its fundamental properties.
In particular, we show that closed Condorcet domains are exactly the median stable sub-
sets of the space of all strict orders on a given set of alternatives. Section 3 introduces
median graphs and states our main result establishing the correspondence between closed
Condorcet domains and median graphs. Section 4 provides the characterization of single
crossing domains, and discusses a weaker version of the single crossing property, namely,
single crossingness on trees. Section 5 addresses maximality of Condorcet domains, an is-
sue that has already received attention in the literature [21]. In particular, we prove that
trees different from paths are never associated with maximal Condorcet domains, and we
characterize the single crossing domains that are maximal Condorcet domains.

2Importantly, this median graph is in general not a subgraph of the graph corresponding to the nat-
ural neighborhood relation on the universal domain of all strict orders, see Section 3 below for detailed
explanation.



2 Preliminaries

In this section, we introduce the main notions of this paper: Condorcet domains, median
domains and median graphs. We show that the class of domains that are closed under
the operation of taking the majority relation for any of their profiles are precisely the
median stable subsets of the space of linear orderings endowed with the natural betweenness
relation. To the best of our knowledge, the central notion of this paper of a closed Condorcet
domain has not yet been formally introduced in the literature. On the other hand, a
majority of results in this section are not original. In Theorem 1 we gathered a number of
classical characterisations of Condorcet domains and Theorem 2 can be derived from the
analysis in Nehring and Puppe [24] who investigated a more general class of median spaces.
Nevertheless, we believe that our exposition, and, in particular, the new short proof of the
main characterization result, which is Theorem 2 below, will help to clarify and unify several
different approaches in the literature.

2.1 Condorcet Domains

Consider a finite set of alternatives X and the setR(X) of all linear (strict) orders (i.e., com-
plete, transitive and antisymmetric binary relations) on X. A subset D ⊆ R(X) will be
called a domain of preferences or simply a domain. A profile ρ = (R1, . . . , Rn) on D is an
element of the Cartesian product Dn for some number n ∈ N of ‘voters’, where the linear
order Ri represents the preferences of the ith voter over the alternatives from X. A profile
with an odd number of voters will simply be referred to as an odd profile. Frequently, we will
denote linear orders simply by listing the alternatives in the order of decreasing preference,
e.g., a linear order that ranks a first, b second, c third, etc., is denoted by abc . . ..

The majority relation associated with a profile ρ is the binary relation Pmaj
ρ on X such

that xPmaj
ρ y if and only if more than half of the voters rank x above y. Note that, according

to this definition, the majority relation is asymmetric and for any odd profile ρ and any two
distinct alternatives x, y ∈ X, we have either xPmaj

ρ y or xPmaj
ρ y. An asymmetric binary

relation P is acyclic if there does not exist a subset {x1, . . . , xm} ⊆ X such that x1Px2,
x2Px3, ... , xm−1Pxm and xmPx1. The class of all domains D ⊆ R(X) such that, for all n,
the majority relation associated with any profile ρ ∈ Dn is acyclic has received significant
attention in the literature, see the survey of [21] and the references therein. In the following,
we will refer to any such domain as a Condorcet domain.3

The following result prepares the ground for our analysis, providing some well-known
characterizations of Condorcet domains (cf. [21, p. 142]). In particular, condition d) below
is Sen’s ‘value restriction’; condition e) has been introduced by [29] as the ‘absence of a
Latin square’ (in other terminology, it requires the absence of a ‘Condorcet cycle’).

Theorem 1. Let X be finite, and let D ⊆ R(X) be a subset of the space of all linear orders
on X. The following statements are equivalent.

a) D is a Condorcet domain, i.e., the majority relation corresponding to every profile
over D is acyclic.

b) For every profile over D, the corresponding majority relation is a strict partial order
(i.e., irreflexive, transitive and asymmetric binary relation).

c) For every odd profile over D, the corresponding majority relation is a linear order,
i.e., an element of R(X).

3Fishburn [14] calls them acyclic sets of linear orders.



d) In any triple x, y, z ∈ X of pairwise distinct alternatives and any restriction of an
order from D to the set {x, y, z}, there exists one element in {x, y, z} that has either
never rank 1, or never has rank 2, or never has rank 3.

e) For no triple R1, R2, R3 ∈ D, and no triple x, y, z ∈ X of distinct alternatives
xR1yR1z, yR2zR2x and zR3xR3y are true simultaneously.

We will say that a Condorcet domain D is closed if the majority relation corresponding
to any odd profile over D is again an element of D, and we will say that a Condorcet domain
D is maximal if no Condorcet domain (over the same set of alternatives) is a proper superset
of D. The following simple observation will be very useful.

Lemma 2.1. Let D be a Condorcet domain and R ∈ R(X) be the majority relation corre-
sponding to an odd profile over D. Then D∪{R} is again a Condorcet domain. In particular,
every Condorcet domain is contained in a closed Condorcet domain.

Proof. By Theorem 1 e), it suffices to show that D ∪ {R} does not admit three orders
R1, R2, R3 and three elements x, y, z ∈ X such that xR1yR1z, yR2zR2x and zR3xR3y.
Assume on the contrary that it does; then, evidently, not all three orders R1, R2, R3 belong
to D. Thus, one of them, say R3, is the majority relation of an odd profile ρ ∈ Dn.
Consider the profile ρ′ = (nR1, nR2, ρ) ∈ D3n that consists of n voters having the order
R1, n voters having the order R2 and the n voters of the profile ρ. Then voters of the
subprofile (nR1, nR2) will unanimously prefer y to z, which forces the majority relation

Pmaj
ρ′ corresponding to ρ′ to have the same ranking of y and z. At the same time, the

voters of this subprofile are evenly split in the ranking of any other pair of alternatives
from {x, y, z}. Hence, the majority relation Pmaj

ρ′ yields the cycle zPmaj
ρ′ xPmaj

ρ′ yPmaj
ρ′ z, in

contradiction to the assumption that D is a Condorcet domain. 2

This observation allows us to concentrate our attention on closed Condorcet domains
without loss of generality, and we do so for the rest of the paper. Note, in particular, that
by Lemma 2.1 all maximal Condorcet domains are closed.

2.2 Betweenness and Median Domains

The universal domain R(X) is naturally endowed with the following betweenness structure.
An order Q is between orders R and R′ if Q ⊇ R ∩ R′, i.e., Q agrees with all binary
comparisons in which R and R′ agree ([19]).4 The set of all orders that are between R and
R′ is called the interval spanned by R and R′ and is denoted by [R,R′]. The domain R(X)
endowed with this betweenness relation is referred to as the permutahedron.

A subset D ∈ R(X) of the permutahedron is called median stable if, for any triple of
elements R1, R2, R3 ∈ D, there exists an element Rmed = Rmed(R1, R2, R3) ∈ D, the median
order corresponding to R1, R2, R3, such that

Rmed ∈ [R1, R2] ∩ [R1, R3] ∩ [R2, R3].

Proposition 2.1. The median order of a triple R1, R2, R3 ∈ R(X), if it exists, is unique.

Proof. If a triple R1, R2, R3 admits two different median orders, say R and R′, these must
differ on the ranking of at least one pair of alternatives. Suppose they disagree on the
ranking of x and y. In this case, not all three orders of the triple agree on the ranking of x
versus y. Hence, exactly two of them, say R1 and R2, must agree on the ranking of x versus
y; but then, either R or R′ is not between R1 and R2, a contradiction. 2

4Some authors such as, e.g., Grandmont [18] and Demange [11] refer to orders that are between two
others in this sense as ‘intermediate’ orders.



In the following, we will refer to median stable subsets of R(X) as median domains.
Evidently, not every subset of R(X) is a median domain; for instance, the universal domain
R(X) itself is not a median domain whenever |X| ≥ 3. This can be verified by considering
any three orders of the form R1 = . . . a . . . b . . . c . . ., R2 = . . . b . . . c . . . a . . ., and R3 =
. . . c . . . a . . . b . . .. Since any linear order R in [R1, R3] has aRb, any linear order R in [R1, R2]
has bRc, and any linear order R in [R2, R3] has cRa, we obtain [R1, R2]∩[R1, R3]∩[R2, R3] =
∅ due to the transitivity requirement.

Prominent examples of median domains include the well-studied single crossing domains.

Example 1 (Classical single crossing domains). There are several equivalent descrip-
tions of single crossing domains (see, e.g., [17, 27]). The following will be useful for our
purpose. A domain D ⊆ R(X) is said to have the single crossing property if D can be
linearly ordered, say according to R1 > R2 > . . . > Rm, so that, for all pairs x, y of distinct
elements of X, the sets {Rj ∈ D | xRjy} and {Rj ∈ D | yRjx} are connected in the ordering
>. Thus, for each pair x, y of distinct elements, there is exactly one ‘cut-off’ order Rk such
that either (i) xRjy for all j ≤ k and yRjx for all j > k, or (ii) yRjx for all j ≤ k and xRjy
for all j > k. It is easily verified that, for any triple with Ri > Rj > Rk the median order
exists and coincides with the middle ordering, i.e., Rmed(Ri, Rj , Rk) = Rj .

The close connection between Condorcet domains and median domains to be established
in Theorem 2 below stems from the following simple but fundamental observation.

Observation 1. A triple R1, R2, R3 ∈ R(X) admits a median order if and only if the
majority relation of the profile ρ = (R1, R2, R3) is acyclic, in which case the median order
Rmed(R1, R2, R3) and the majority relation of ρ coincide.

Proof. If the majority relation Pmaj
ρ is acyclic, and hence is an element of R(X), it belongs

to each interval [Ri, Rj ] for all distinct i, j ∈ {1, 2, 3}. Indeed, if both Ri and Rj rank x
higher than y, then so does the majority relation. Conversely, if R is the median of the
triple R1, R2, R3, then for any pair x, y ∈ X at least two orders from this triple agree on
ranking of x and y. Then R must agree with them, hence it is the majority relation for this
triple. 2

Corollary 1. Any closed Condorcet domain is a median domain.

Proof. Suppose D is a closed Condorcet domain and let R1, R2, R3 be any triple of order-
ings from D. The majority relation R corresponding to the profile (R1, R2, R3) ∈ D3 by
Theorem 1(c) is an element of R(X), and by the assumed closedness it is in fact an element
of D. By Observation 1, R is the median order of the triple R1, R2, R3. 2

A subset C ⊆ D of a domain D ⊆ R(X) will be called convex if C contains with any pair
R,R′ ∈ C the entire interval spanned by R and R′, that is, C is convex if

{R,R′} ⊆ C ⇒ [R,R′] ⊆ C.

A family F of subsets of a set is said to have the Helly property if the sets in any subfamily
F′ ⊆ F have a non-empty intersection whenever their pairwise intersections are non-empty,
i.e., if C ∩ C′ 6= ∅ for each pair C, C′ ∈ F′ implies ∩F′ 6= ∅. For us this property will be
important when F is the set of all convex subsets.

Proposition 2.2 (Helly property and median domains). A domain D is a median
domain if and only if D has the Helly property for convex subsets of D.

Proof. Let D be median domain and F be a family of convex subsets with pairwise non-
empty intersection. We proceed by induction over m = |F|. If m = 2, there is nothing to



prove, thus let m = 3, i.e., F = {C1, C2, C3}. Choose any ordering R1 ∈ C1 ∩C2, R2 ∈ C2 ∩C3
and R3 ∈ C3 ∩ C1, and consider the median order R = Rmed(R1, R2, R3). By convexity of
the sets C1, C2, C3 we have R ∈ C1∩C2∩C3 which, in particular, shows that ∩F is non-empty.

Now consider F = {C1, . . . , Cm} with m > 3 elements, and assume that the assertion
holds for all families with less than m elements. Then, the family {C1, C2, C3 ∩ . . . ∩ Cm}
constitutes a family of three convex subsets with pairwise non-empty intersections. By the
preceding argument, we thus have ∩F 6= ∅.

Conversely, consider a domain D such that any family of convex subsets of D has the
Helly property. Consider any three orders R1, R2, R3 ∈ D. Since, evidently, all intervals are
convex, the Helly property applied to the intervals [R1, R2], [R1, R3], [R2, R3] implies the
existence of a median. 2

For any domain D and any pair x, y ∈ X of alternatives, denote by VDxy the set of orders
in D that rank x above y, i.e.,

VDxy := {R ∈ D | xRy}.

Note that, for all distinct x, y ∈ X, the sets VDxy and VDyx form a partition of D. Also observe

that the sets of the form VDxy are convex for all pairs x, y ∈ X. We will now use the Helly
property applied to this family of convex sets to show that every median domain is a closed
Condorcet domain. The following is the main result of this section.

Theorem 2. The classes of median domains and closed Condorcet domains coincide, i.e.,
a domain is a median domain if and only if it is a closed Condorcet domain.

Proof. In the light of Corollary 1, it suffices to show that every median domain is a
closed Condorcet domain. Thus, let D be a median domain and consider an odd profile
ρ = (R1, . . . , Rn) ∈ Dn. For any two alternatives x, y ∈ X, let Uxy = {Ri | xRiy}, and
observe that obviously, Uxy ⊆ VDxy. Let z, w also be alternatives in X, not necessarily distinct

from x and y. If xPmaj
ρ y and zPmaj

ρ w, then Uxy ∩ Uzw 6= ∅ and hence VDxy ∩ VDzw 6= ∅. By
Proposition 2.2 we have ⋂

xPmaj
ρ y

VDxy 6= ∅,

hence there is a linear order in D that coincides with the majority relation of ρ.

2.3 Median Graphs

The term median graph was coined by Nebesky [23]. For a comprehensive survey on median
graphs see [20].

Let Γ = (V,E) be a connected graph. The distance d(u, v) between two vertices u, v ∈ V
is the smallest number of edges that a path connecting u and v may contain. While the
distance is uniquely defined, there may be several shortest paths from u to v. We say that
a vertex w is geodesically between the vertices u and v if w lies on a shortest path that
connects u and v or, which is the same, d(u, v) = d(u,w) + d(w, v). A (geodesically) convex
set in a graph Γ = (V,E) is a subset C ⊆ V such that for any two vertices u, v ∈ C all the
vertices of any shortest path between u and v in Γ lie entirely in C. A connected graph
Γ = (V,E) is called a median graph if, for any three vertices u, v, w ∈ V , there is a unique
vertex med(u, v, w) ∈ V which lies simultaneously on shortest paths from u to v, from u to
w and from v to w.

Figure 1 shows some examples of median graphs.



As we will see all of them are induced by maximal Condorcet domains on four alternatives.

To characterize the structure of an arbitrary median graph we recall the concept of
convex expansion. For any two subsets S, T ⊆ V of the set of vertices of the graph Γ, let
E(S, T ) ⊆ E denote the set of edges that connect vertices in S and vertices in T .

Definition 1. Let Γ = (V,E) be a graph. Let W1,W2 ⊂ V be two subsets with a non-empty
intersection W1 ∩W2 6= ∅ such that W1 ∪W2 = V and E(W1 \W2,W2 \W1) = ∅. The
expansion of Γ with respect to W1 and W2 is the graph Γ′ constructed as follows:

• each vertex v ∈W1 ∩W2 is replaced by two vertices v1, v2 joined by an edge;

• v1 is joined to all the neighbours of v in W1 \W2 and v2 is joined to all the neighbours
of v in W2 \W1;

• if v, w ∈W1 ∩W2 and vw ∈ E, then v1 is joined to w1 and v2 is joined to w2.

• if v, w ∈W1 \W2 or if v, w ∈W2 \W1, they will be joined by an edge in Γ′ if and only
if they were joined in Γ; if v ∈ W1 \W2 and w ∈ W2 \W1, they remain not joined
in Γ′.

If W1 and W2 are convex, then Γ′ will be called a convex expansion of Γ.

Example 2 (Convex expansion). In the graph Γ shown on the left of Figure 1 we set
W1 = {a, b, c, d} and W2 = {c, d, e, f}. These are convex and their intersection W1 ∩W2 =
{c, d} is not empty. On the right we see the graph Γ′ obtained by the convex expansion of
Γ with respect to W1 and W2.



The following important theorem about median graphs is due to Mulder [22].

Theorem 3 (Mulder’s convex expansion theorem). A graph is median if and only if
it can be obtained from a trivial one-vertex graph by repeated convex expansions.

3 Condorcet Domains and Median Graphs

This section contains the main results of this paper, which explicate the connection between
closed Condorcet domains and median graphs. In Subsection 3.1 we prove that every closed
Condorcet domain naturally induces a median graph. In Subsection 3.2 we show that, con-
versely, for every median graph one can construct a (non-unique) closed Condorcet domain
that induces the given graph.

3.1 Closed Condorcet Domains Induce Median Graphs

To each domain D ⊆ R(X) one can associate a graph ΓD on D as follows. Say that two
distinct orders R,R′ ∈ D are neighbors in D, or simply D-neighbors, if [R,R′]∩D = {R,R′},
and define ΓD to be the (undirected) graph on D that connects each pair of D-neighbors by
an edge. Note that ΓD is always connected, i.e., any two orders in D are connected by a path
in ΓD. Evidently, two D-neighbors need not be R(X)-neighbors, but two R(X)-neighbors
R,R′ are always D-neighbors whenever R,R′ ∈ D. For any D ⊆ R(X), the order Q is
ΓD-geodesically between the orders R and R′ if Q lies on a shortest ΓD-path that connects
R and R′. Finally, say that a domain D itself is connected if the graph ΓD is a subgraph of
ΓR(X), i.e., if all D-neighbors differ in the ranking of exactly one pair of alternatives.

The following theorem is central to our approach. It states that the natural betweenness
on a domain coincides with the geodesic betweenness of its induced graph for three natural
classes of domains: (i) all median domains (ii) all connected domains, and (iii) all domains
for which the associated graph is acyclic.

Theorem 4. The betweenness relation on a domain D ⊆ R(X) coincides with the geodesic
betweenness of the induced graph ΓD, i.e., for all R,R′, Q ∈ D,

Q ∈ [R,R′] ⇔ Q is ΓD-geodesically between R and R′, (1)

if one of the following conditions is satisfied:

(i) D is a Condorcet domain,

(ii) D is connected,

(iii) ΓD is acyclic (i.e., a tree).

Theorem 4 will be proven using a result by Bandelt and Chepoi [4]. The statement
of this result requires some additional definitions, in particular, the notion of a geometric
interval operator. An interval operator on a (finite) set V is a mapping that assigns to each
pair (v, w) ∈ V × V a non-empty subset [v, w] ⊆ V , the interval spanned by v and w, such
that, for all v, w ∈ V , v ∈ [v, w] and [v, w] = [w, v]. An interval operator is called geometric
if it satisfies, in addition, the following properties: for all t, u, v, w ∈ V ,

[v, v] = {v}, (2)

u ∈ [v, w]⇒ [v, u] ⊆ [v, w], (3)

t, u ∈ [v, w] & t ∈ [v, u]⇒ u ∈ [t, w]. (4)



A pair v, w is called an edge if v 6= w and [v, w] = {v, w}. These edges form a graph Γ on
the vertex set V .

We first verify the geometricity of the natural interval operator induced by every domain
of orders. This will also give us an example of geometric operator.

Lemma 3.1. For any domain D ⊆ R(X), the interval operator that assigns to every pair
R,R′ ∈ D the interval [R,R′] ∩ D is geometric.

Proof. Properties (2) and (3) are easily verified. To verify (4), consider T,U, V,W ∈ D
as required in the antecedent. Let x, y ∈ X be such that xTy and xWy. We have to
show that then xUy. Since x, y were arbitrarily chosen, this would imply U ∈ [T,W ], as
desired. Assume, by contradiction, that yUx; then, we must have xV y since by assumption
T ∈ [V,U ]. But this contradicts the assumption that U ∈ [V,W ]. 2

We will also need the following lemma.

Lemma 3.2. Consider a geometric interval operator on V , and let u ∈ [v, w]. Then,
there exist pairwise distinct t1, . . . , tm ∈ [v, w] such that t1 = v, tm = w, tk = u for some
k ∈ {1, . . . ,m}, and such that

[t1, t2] ⊂ [t1, t3] ⊂ . . . ⊂ [t1, tm]

is a maximal chain. The graph induced by a geometric interval operator is connected.

Proof. The existence of a maximal chain of the required form follows at once from con-
dition (3). The pairs tktk+1 must form an edge for k = 1, . . . ,m − 1 by maximality of the
chain. Thus, any two vertices are connected by a path. 2

An interval operator is called graphic if, for all u, v, w ∈ V , u ∈ [v, w] if and only if u is
geodesically between v and w in the induced graph Γ; note that this is exactly condition (1)
in Theorem 4 above. An interval operator is said to satisfy the triangle condition if, for all
triples u, v, w ∈ V such that

[u, v] ∩ [v, w] = {v} and [v, w] ∩ [w, u] = {w} and [w, u] ∩ [u, v] = {u}, (5)

all three intervals are edges whenever one of them is. Observe that (5) can be satisfied only
if either all three elements u, v, w coincide, or are pairwise distinct. The following result is
due to [4, Th.1].

Proposition 3.1. Any geometric interval operator satisfying the triangle condition is
graphic.

We will apply Proposition 3.1 in the proof of Theorem 4. This proof shows, among
other things, that the triangle condition (5) is a powerful sufficient condition for an interval
operator to be graphic. This condition is satisfied in all three cases considered in Theorem 4
(sometimes vacuously).

Proof of Theorem 4(i). In case of a Condorcet domain, which by Theorem 2 is also a me-
dian domain, the triangle condition is vacuously satisfied, since by the median property there
can obviously be no triples of pairwise distinct elements satisfying (5). By Proposition 3.1
the equivalence (1) is satisfied for any median domain.

(ii). Next consider any connected domain D ⊆ R(X). There can exist triples satisfying
(5), but we shall show that in this case none of the three intervals can form an edge, hence
the triangle condition is again satisfied. Thus, suppose that the three pairwise distinct
orders U, V,W ∈ D satisfy (5) and, by contradiction, that one of the three intervals is an



edge, say [U, V ] = {U, V }. Since D is connected, there exists x, y ∈ X such that U and
V differ only in the ranking of x versus y, say xUy and yV x, while U and V agree in the
ranking of all other pairs of alternatives. There are two possibilities: either xWy or yWx.
In the first case, we have U ∈ [V,W ] and hence [U, V ]∩ [V,W ] ⊇ {U, V }; in the second case,
V ∈ [W,U ] and hence [W,U ] ∩ [U, V ] ⊇ {U, V }. In both cases, we obtain a contradiction to
assumption (5). By Proposition 3.1 the equivalence (1) is satisfied for D.

(iii). Finally, assume that D is such that ΓD is acyclic, i.e., a tree. As in part (i),
we show that there cannot exist triples satisfying (5) hence again the triangle condition
is satisfied vacuously.5 Assume, by way of contradiction, that the pairwise distinct orders
U, V,W ∈ D satisfy (5). By Lemma 3.2, there exists a path πUV in ΓD connecting U and V
that stays entirely in [U, V ]; in particular, πUV does not contain W . Similarly, there exists
a path πVW in ΓD connecting V and W and staying entirely in [V,W ], and a path πWU

connecting W and U and staying entirely in [W,U ]. But then the union πUV ∪ πVW ∪ πWU

forms a cycle, which contradicts the assumed acyclicity of ΓD. Thus, again, by Proposition
3.1 the equivalence (1) is satisfied for the domain D. 2

From Theorem 2 and Theorem 4(i), we immediately obtain

Theorem 5. The induced graph ΓD of any closed Condorcet domain D is a median graph.
Moreover the betweenness relation on a domain D coincides with the geodesic betweenness
of ΓD.

Note that not all median domains are connected, as exemplified by the domain to the left
of Fig. 3. It is also worth noting that Theorem 4 does not imply that D is a median domain
whenever the associated graph ΓD is median graph. A counterexample is the domain D in
the middle of Fig. 3 which is not a median domain despite the fact that its induced graph
ΓD is a median graph. However, we have the following corollary.

Corollary 2. Let D ⊆ R(X) be a connected domain. Then, D is a median domain if and
only if the induced graph ΓD is a median graph.

Proof. The induced graph of any median domain is a median graph by Theorem 4(i).
Conversely, if D is connected the geodesic median of any triple of vertices with respect to
ΓD is also the median with respect to the betweenness in D by Theorem 4(ii). Thus, if ΓD
is a median graph, D is a median domain. 2

Example 3. (Condorcet domains and their graphs.) The five Condorcet domains on four
alternative given below are maximal and their corresponding graphs are listed in Figure 1:

(a) abcd; bacd; bcad; bcda; bdca; dbca; dcba;

(b) abcd; bacd; bcad; cbad; bcda; cbda; cdba; dcba;

(c) abcd; abdc; bacd; badc; bdac; bdca; dbac; dbca; dcba;

(d) abcd; bacd; bcad; cbad; dabc; dbac; dbca; dcba;

(e) abcd; abdc; bacd; badc; cdab; dcab; cdba; dcba.

Here is what we can prove about graphs of maximal Condorcet domains.

Theorem 6. Let D be a maximal Condorcet domain. If ΓD is a tree, it is, in fact, a chain.

5Note, however, that we cannot use part (i) directly since we do not know yet whether D is a median
domain.



Proof. Let D be a maximal Condorcet domain, and assume that ΓD is a tree but not a
chain. Then there exists a vertex R in ΓD of degree at least 3. Consider now any three
neighbors of R in ΓD, say R1, R2 and R3. It is possible to show that D is connected,
hence there are three distinct ordered pairs (xi, yi), i = 1, 2, 3, of alternatives such that
Ri = R \ {(xi, yi)} ∪ {(yi, xi)}. We will say that Ri is obtained from R by switching the
pair of adjacent alternatives (xi, yi). Moreover, since in every pair (xi, yi), i = 1, 2, 3, the
alternatives are adjacent in R, there must exist at least two pairs that have no alternative
in common, say {x1, y1} ∩ {x2, y2} = ∅.

Now let R′ be the order that coincides with R except that both pairs (x1, y1) and (x2, y2)
in R′ are switched, i.e., y1R

′x1 and y2R
′x2, and consider the domain D∪{R′}. Since x1, y1

and x2, y2 are neighbors in each of the orders R, R1, R2, R′, for every three alternatives
{a, b, c} no new order among them appears in R′ which has not yet occurred in R, R1,
or R2. Hence, by Theorem 1d), D ∪ {R′} is a Condorcet domain. By the maximality
of D, this implies R′ ∈ D. But in this case, the graph ΓD evidently contains the 4-cycle
{R,R1, R

′, R2}, contradicting the assumed acyclicity ΓD. Hence, there cannot exist a vertex
of degree 3 or larger, i.e., ΓD is a chain. 2

3.2 Every Median Graph is Induced by Some Closed Condorcet
Domain

Theorem 7. For every (finite) median graph Γ = (V,E) there exists a closed Condorcet
domain D ⊆ R(Y ) on a finite set of alternatives Y with |Y | ≤ |V | such that ΓD = Γ.

Proof. We apply Mulder’s theorem. Since the statement is true for the trivial graph
consisting of a single vertex, arguing by induction, we assume that the statement is true
for all median graphs with k vertices or less. Let Γ′ = (V ′, E′) be a median graph with
|V ′| = k+1. By Mulder’s theorem Γ′ is a convex expansion of some median graph Γ = (V,E)
relative to convex subsets W1 and W2, where |V | = ` ≤ k. By induction there exists a
domain D ⊆ R(X) with |X| ≤ k such that ΓD is isomorphic to Γ with the mapping v 7→ Rv
associating a linear order Rv to a vertex v ∈ V .

To obtain a new domain D′ such that ΓD′ is isomorphic to Γ′ we clone an arbitrary
alternative x ∈ X and introduce a clone y /∈ X of x.6 The mapping v 7→ R′v that associates
vertices of Γ′ to linear orders will be constructed as follows. If v is a vertex of W1 \W2,
to obtain R′v we replace x with xy in Rv, placing x higher than y, and to obtain R′u for
u ∈W2 \W1 we replace x by yx in Ru, placing y higher than x. Let v now be in W1∩W2. In
the convex expansion this vertex is split into v1 and v2. To obtain R′v1 we clone the linear
order Rv replacing x by xy and to obtain R′v2 we clone the same linear order Rv replacing
x by yx. The number of alternatives has increased by one only, so it is not greater than
|V ′| = `+ 1 ≤ k + 1.

To complete the induction step, we have to show that the betweenness relation in D′ is
exactly as in the expansion Γ′ of Γ. First, we need to show that there is no edge between R′u
and R′v if v ∈ W1 \W2 and u ∈ W2 \W1. This follows from the fact that Ru and Rv were
not neighbors in ΓD. Hence there was a linear order Rw ∈ [Ru, Rv] between them. In D′
this linear order will be cloned to R′w and, no matter how we place x and y there, we obtain
R′w ∈ [R′u, R

′
v], hence R′u and R′v are not neighbors in ΓD′ as well. Secondly, we have to

check that R′v1 and R′v2 are linked by an edge. This holds because these orders differ in the
ranking of just one pair of alternatives, namely x and y, hence they are neighbors in ΓD′ .
To prove that the betweenness relation in D′ is exactly as in Γ′ we need to consider several
cases. For example, let u ∈W1 \W2 and v ∈W2 \W1, and let us prove that all linear orders

6We say that x and y are clones if they are neighbors in any linear order of the domain, cf. [12, 13].



on a shortest path between u and v are between R′u and R′v. As we have shown, W1 \W2

and W2 \W1 are disconnected, hence any shortest path between u and v will contain an
edge e = w1w2 with w ∈ W1 ∩W2. There is a corresponding path in Γ, where the edge
e is contracted to w, and all linear orders on that path are between Ru and Rv. The way
we placed y in these linear orders will not disturb the betweenness since all linear orders
between R′u and Rw1 (inclusive) will place x above y, and all others will place y above x.
The other cases follow similarly. 2

It is worth noting that [8] showed that for a median graph with k vertices we might need
exactly k alternatives to construct a closed Condorcet domain. The star-graph represents
the worst case scenario.

The next result exactly specifies when a maximal single crossing domain is a maximal
Condorcet domain. To formulate the result, observe that in a maximal single crossing
domain every edge corresponds to exactly one pair x, y ∈ X of distinct alternatives such
that all orders on one side of the given edge rank x above y, and all orders on the other
side rank y above x (if there were more pairs of this kind we could extend the ordering by
putting an additional vertex on this edge as we have done in the proof of Theorem 6 above.
Let us call such pair the switching pair of the given edge.

Theorem 8. A single crossing domain D ⊆ R(X) constitutes a maximal Condorcet domain
if and only if it satisfies the following three conditions: (i) D is connected, (ii) D contains
two completely reversed orders, and (iii) the switching pairs of any two adjacent edges of
ΓD have one element in common.

Proof. Necessity of conditions (i) - (iii) has already been observed in the main text. Their
sufficiency follows using [16, Th. 2] and [30, Lemma 2.2]. The argument requires some
elementary facts from group theory. Let us start with noting that the symmetric group Sn
is generated by the permutations s1 = (1 2), . . . , sn−1 = (n−1n), i.e., any other permutation
is a product of these.

Consider a word w = a1a2 · · · an with n symbols (presently, it does not matter which
symbols we take but later they will be 1, 2, 3, . . . , n). A permutation σ from Sn acts on w as
wσ = aσ(1)aσ(2) · · · aσ(n). In particular, si swaps the ith and (i+ 1)th symbols of the word
whatever they are. Let ω be the permutation such that ω(i) = n− i, i.e., the permutation
that reverses all the symbols, i.e., wω = anan−1 · · · a1. We are interested in presentations
of ω of the form:

ω = si1si2 · · · sik , (6)

where

1. k = n(n− 1)/2, and

2. when si1si2 · · · sik acts on w = 12 · · ·n it swaps each pair (i, j) exactly once.

[16] call (6) a maximal reduced decomposition. If we identify the word a1a2 · · · an with the
linear order a1 < a2 < . . . < an, [16] show that linear orders w0 = 12 · · ·n, w1 = wsi1 , . . . ,
wk = wsi1si2 · · · sik encode a maximal chain in the weak Bruhat order.

Two maximal chains (maximal reduced decompositions) are equivalent if they can be
obtained from each other by using relations sisj = sjsi with |i − j| > 1. [16] showed that
the permutations visited by an equivalence class of maximal reduced decomposition form a
maximal Condorcet domain.

In our case the maximal chain is the only one in the equivalent class since (6) does not
have neighboring si and sj with |i− j| > 1.
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