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Abstract It is proved that, among all restricted preference domains that guarantee consistency (i.e. tran-
sitivity) of pairwise majority voting, the single-peaked domain is the only minimally rich and connected
domain that contains two completely reversed strict preference orders. It is arqued that this result ex-
plains the predominant role of single-peakedness as a domain restriction in models of political economy
and elsewhere. The main result has a number of corollaries, among them a dual characterization of the
single-dipped domain; it also implies that a single-crossing (‘order-restricted’) domain can be minimally
rich only if it is a subdomain of a single-peaked domain. The conclusions are robust as the results apply
both to domains of strict and of weak preference orders, respectively.
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1 Introduction

A subset of preference orders on a finite set of alternatives is called single-peaked if there exists a left-to-
right arrangement of alternatives such that all upper contour sets are connected (‘convex’) with respect
to the given left-to-right arrangement of alternatives. The celebrated median voter theorem of Black
[1948] and Arrow [1951] states that the domain of all single-peaked linear orders with respect to a fixed
underlying spectrum of alternatives form a ‘Condorcet domain,’ i.e. pairwise majority voting with an odd
number of individuals each of whom has preferences from the given domain induces a transitive relation.
Moreover, the domain of all single-peaked preferences is minimally rich in the sense that every alternative
is on top of at least one preference ordering; it is connected in the sense that every two single-peaked
orders can be obtained from each other by a sequence of transpositions of neighboring alternatives such
that the resulting order remains single-peaked at each step; and it contains two completely reversed orders
(namely, the order that has the left-most alternative at the top and the order that has the right-most
alternative at the top).

This paper’s main result (Theorem 1) shows that, conversely, every minimally rich and connected
Condorcet domain which contains at least one pair of completely reversed orders must be single-peaked.!
As is easily seen, any single-peaked domain contains at most one pair of completely reversed orders.
We thus obtain as a corollary that, for any given pair of completely reversed orders, there is a unique
mazimal Condorcet domain that contains them and is minimally rich as well as connected: the domain
of all orders that are single-peaked with respect to either one of the given pair of completely reversed
orders (Corollary 1).

This result is remarkable in particular in view of the fact that quite a number of non-single-peaked
Condorcet domains have been identified in the literature, among others the domains satisfying Sen’s
‘value restriction’ condition (Sen [1966]) with the ‘single-dipped’ domain (Inada [1964]) as a special case,
the domains satisfying the so-called ‘intermediateness’ property (Grandmont [1978], Demange [2012]),
and the ‘order-restricted” domains identified by Rothstein [1990]; the latter domains are sometimes also
referred to as the domains with the single-crossing property (Gans and Smart [1996], Saporiti [2009],
Puppe and Slinko [2015]). Our analysis shows that none of these domains can jointly satisfy the three
conditions of minimal richness, connectedness and the inclusion of a pair of completely reversed orders
unless it is also single-peaked. In particular, a single-crossing domain can be minimally rich only if it is
at the same time single-peaked (Corollary 3), see also Elkind et al. [2014].

The purpose of the present analysis is not to justify the assumption of single-peakedness per se and,
in fact, the empirical evidence for single-peakedness is mixed, see the review of the literature below.
The main argument put forward here is that, among all domains that guarantee consistency of pairwise
majority voting, the single-peaked domain is distinguished by a remarkably simple set of additional
requirements: connectedness, minimal richness and the existence of two completely reversed orders. The
main conclusion to be drawn from the present analysis is therefore that, if a modeler wishes to guarantee
transitivity of the majority relation for any possible profile of agents’ preferences, then the assumption
of single-peakedness follows very naturally. In this sense, the present study may thus be interpreted as a
conditional defense of single-peakedness.?

The results presented here are robust as they generalize with some additional work, but using the same
underlying logic, to the case of weak preference orders, i.e. to the case in which individual preferences
may display indifferences. In this case, the domain of all (weakly) single-peaked weak orders does not
form a Condorcet domain in our sense since, even with an odd number of voters, the indifference relation
corresponding to pairwise majority voting may be intransitive. Moreover, the notion of connectedness
has to be suitably adapted since two ‘neighboring’ weak orders may differ in the ranking of more than
one pair of alternatives if one of these orders displays an indifference class with more than two elements.
Nevertheless, we still obtain that any connected, minimally rich Condorcet domain that contains (at
least) two completely reversed strict orders must be single-peaked with respect to either one of the pair

1In fact, as detailed in Section 2 below, the condition of connectedness can be substantially relaxed in this result to the
condition that there exist one path that connects a pair of completely reversed orders.

20f course, by contraposition, the same argument transforms potential doubts about the validity of single-peakedness
in specific contexts into corresponding doubts on the existence of consistent pairwise majorities at all in these contexts.



of completely reversed orders. The details of how this is achieved are, however, left to the full paper
version (see http://micro.econ.kit.edu/downloads/Charact-SP.pdf).

The above characterization result of the single-peaked domain implies a ‘dual’ characterization result
for the single-dipped domain in a straightforward way, both in the case of linear and and in the case of
weak orders. Specifically, any connected Condorcet domain containing two completely reversed orders
such that every alternative is the least preferred alternative for some order in the domain must be single-
dipped (see Theorem 2).

Relation to the literature

The literature on single-peaked preferences is abundant both in economics and political science. Their
application ranges from the Hotelling-Downs model of political competition to models of local public good
provision (for a modern treatment see, e.g., Austen-Smith and Banks [1998]). It is well-known that the
assumption of single-peakedness enables possibility results both in the theory of preference aggregation
(Black [1948], Arrow [1951]) and in the theory of strategy-proof social choice (Moulin [1980]). Moreover,
it has frequently been argued that the assumption of single-peakedness is reasonable in contexts in
which alternatives are naturally arranged according to an exogenous one-dimensional scale, e.g., in terms
of political views on a left-to-right spectrum, or in terms objective distance, temperature, etc. The
empirical evidence on single-peakedness is mixed. Some authors have argued that a tendency towards
single-peakedness may be assumed under certain circumstances, in particular when there is repeated
interaction and/or ‘deliberation’ (see, e.g., Spector [2000], DeMarzo et al. [2003], List et al. [2013]). Others
have cast doubt on the applicability of single-peakedness, in particular in cases where compromises are
difficult to reach and a search for them threatens to lead to a deadlock (Egan [2014]).

The paper in the literature that is closest to the present analysis is Ballester and Haeringer [2011].
These authors also provide an axiomatic characterization of the single-peaked domain (though only
in the case of linear orders).> However, the conditions employed by these authors are very different
in character from the ones used here. Specifically, Ballester and Haeringer [2011] use two families of
conditions. The first is the condition that among every triple of alternatives their should be at least one
that is never the worst of the three for any voter. This is one of Sen’s family of ‘value restrictions’ (Sen
[1966]), and it evidently amounts to assuming single-peakedness on all triples, hence it directly implies
transitivity of the majority relation. However, it is also known that single-peakedness on all triples (‘local
single-peakedness’) is not sufficient to guarantee single-peakedness globally (cf. Inada [1964]). Therefore,
additional conditions are needed to characterize the single-peaked domain. The important contribution
of Ballester and Haeringer [2011] is to show that the absence of a certain preference constellation on
all quadruples of alternatives does the job. By contrast, the present analysis only assumes transitivity
of the majority relation corresponding to every profile with an odd number of voters, and derives the
single-peakedness of the domain from the three conditions of connectedness, minimal richness and the
existence of two completely reversed orders (either of which then represents the underlying left-to-right
spectrum). The latter three conditions are global properties of a domain, hence the title of this paper.
By contrast, all conditions used by Ballester and Haeringer [2011] are ‘local’ conditions as they apply
simultaneously either to all triples or to all quadruples of alternatives. While the conditions of the present
analysis can be suitably adapted to yield a corresponding characterization of the weakly single-peaked
domain, it is not obvious how to appropriately formulate Ballester’s and Haeringer’s local conditions in
the case of weak orders.

The present study also informs the literature that aims at identifying ‘large’ Condorcet domains,
see the excellent survey Monjardet [2009] and the more recent work on this topic by Danilov et al.
[2012], Danilov and Koshevoy [2013]. Indeed, our main result suggests that Condorcet domains with the
maximal number of elements on a given set of alternatives, the so-called mazimum Condorcet domains,
are most likely not minimally rich. This may seem particularly surprising, as it is known that that the
cardinality of a maximum Condorcet domain exceeds the cardinality of the domain of all single-peaked
domain considerably; for instance, with n alternatives a single-peaked domain has at most 2" ! elements,

3Strictly speaking, Ballester and Haeringer [2011] characterize the domain of all single-peaked profiles which is a slightly
different task.



while the cardinalities of the maximum Condorcet domains are 9, 20, 45, for n = 4,5, 6, respectively, and
these numbers are all attained by connected Condorcet domains containing a pair of completely reversed
orders. The general structure and precise cardinality of the maximum Condorcet domains for larger n
is unknown. However, it is known that the largest cardinality of a connected Condorcet domain on n
alternatives that contains two completely reversed orders always exceeds 2"~ !, see Fishburn [1997]. By
this paper’s main result, the corresponding domains can never be minimally rich.

We finally emphasize the implications of our analysis for the literature on the single-crossing property.
In the present finite framework, a domain is said to have the single-crossing property if the agents can be
arranged in a fixed linear order such that, for every pair of alternatives, if two voters prefer one alternative
to the other, then so do all agents that are between them in the given linear order of voters.* It has
frequently been noted that single-peakedness and the single-crossing property in this sense are logically
independent conditions, see, e.g., Saporiti [2009]. However, since every single-crossing domain can be
extended to a connected single-crossing domain containing two completely reversed orders, our main
result yields as a corollary that all minimally rich single-crossing domains must also be single-peaked,
i.e. a subset of the domain of all single-peaked orders. Since for n > 3, only proper subsets of the domain
of all single-peaked preferences can have the single-crossing property, this has the further interesting
consequence that no minimally rich single-crossing domain can be a maximal Condorcet domain.

2 Characterizing the single-peaked domain:
The case of strict preference orders

2.1 Statement of main result

Consider a finite set of alternatives X and the set P(X) of all linear (strict) orders (i.e., complete, transitive
and antisymmetric binary relations) on X. A subset D C P(X) will be called a domain of preferences or
simply a domain. A profile 1 = (P1,...,P,) on D is an element of the Cartesian product D™ for some
number n € N of ‘voters,” where the linear order P; represents the preferences of the ith voter over the
alternatives from X. A profile with an odd number of voters will simply be referred to as an odd profile.
Frequently, we will denote linear orders simply by listing the alternatives in descending order, e.g. the
linear order that ranks a first, b second, ¢ third, etc., is denoted by abc. . ..

The majority relation associated with a profile 7 is the binary relation P on X such that zP™aiy
if and only if more than half of the voters rank x above y. Note that, according to this definition, the
majority relation is asymmetric and for any odd profile 7 and any two distinct alternatives z,y € X, we
have either x P™&y or z PMy. The class of domains D C P(X) such that, for all odd n, the majority
relation associated with any profile 7 € D" is transitive has received significant attention in the literature,
see the excellent survey of Monjardet [2009] and the references therein. In the following, we will refer
to any such domain as a Condorcet domain. A domain D is called a maximal Condorcet domain if every
Condorcet domain (on the same set of alternatives) that contains D as a subset must in fact coincide
with D. It is well-known that any maximal Condorcet domain D is closed in the sense that the majority
relation of any odd profile from D is again an element of D (and not only of P(X)), cf. [Puppe and Slinko,
2015, Lemma 2.1].

A domain D is single-peaked with respect to the linear order > on X if, for all P € D and all w € X, the
upper contour sets Up(w) := {y € X : yPw} are connected (‘convex’) in the order >, i.e. {z,z} C Up(w)
and z < y < z jointly imply y € Up(w). A domain D is simply called single-peaked if there exists some
linear order > such that D is single-peaked with respect to >. The domain of all orders that are single-
peaked with respect to the fixed order > on X is denoted by SP~ (X). If a domain is single-peaked with
respect to >, we will often call the linear order > the spectrum underlying the single-peaked domain.

A path in P(X) is subset {P1,..., Py} C P(X) with m > 2 such that for all j = 1,...,m — 1, the
two consecutive orders P; and P;1; differ in the ranking of exactly one pair z, y of (distinct) alternatives;

4This condition is related to but prima facie different from the well-known Spence-Mirrlees ‘single-crossing’ condition
which requires that agents’ types are unambiguously ordered according to their marginal rate of substitution uniformly
across the good space.



note in that case z and y must be adjacent alternatives in both orders P; and Pj;q. A pair of orders
which differ in the ranking of exactly one (adjacent) pair of alternatives will be called neighbors. A
domain D will be called connected if, for every pair P, P’ € D of distinct orders in D, there exists a path
{P1,..., Py} that connects P and P’ (i.e. P, = P and P,, = P’) and that lies entirely in D (i.e. P; € D
forall j=1,...,m).

Two orders P and P™ are called completely reversed if P and P™ rank the alternatives in X in
exactly the opposite order, i.e. for all distinct x and y, Py < not(zP™y). Note that by the completeness
assumption, two orders P, PV € P(X) are completely reversed if and only if Py < yP™x. A domain
is said to have maximal width if it contains at least one pair of completely reversed orders.> The following
property may look artificial at first, but turns out to be conceptually very natural. Say that a domain
D C P(X) is semi-connected if it contains two completely reversed orders P and P™ and an entire
path connecting them (cf. [Danilov et al., 2012, p.938]). Evidently, semi-connectedness implies maximal
width, and is implied by, but logically weaker than, the conjunction of connectedness and maximal width.
Finally, a domain D will be called minimally rich if, for every alternative x € X, there exists an order
P € D such that P has z as the top alternative.

The following characterization of the single-peaked domain is this paper’s main result.

Theorem 1. a) For every linear order > on X, the domain SP~(X) of all single-peaked orders with
respect to > is a connected and minimally rich Condorcet domain with mazimal width. (In partic-
ular, SP~(X) is semi-connected.)

b) Conversely, let D C P(X) be a semi-connected and minimally rich Condorcet domain. Then, D is
single-peaked.

Except perhaps for the connectedness, the properties of the domain of all single-peaked orders stated
in part a) are straightforward to verify. Clearly, the two completely reversed orders are > itself and its
reverse. Note that a single-peaked domain can contain at most one pair of completely reversed orders,’
therefore such a pair uniquely determines a corresponding maximal single-peaked domain, and we have
the following corollary.

Corollary 1. Let D C P(X) be a mazimal Condorcet domain that is (semi-)connected, minimally rich
and contains the pair P, P™ of completely reversed orders, then D = SP~(X) where the spectrum > is
given by either P or P™V,

Figure 1 below depicts the (unique) maximal single-peaked domain containing the pair abed and deba
of completely reversed orders on the set X = {a,b, ¢, d} (the domain consists of the orders marked in red
color).

Fig. 1: A mazimal single-peaked domain on X = {a,b,c,d}.

5Domains with that property are called ‘normal’ in Danilov and Koshevoy [2013].
6This follows, e.g., immediately from Fact 2.2 below.



Note that in the sufficiency part b) it is not asserted that D must contain all orders that are single-
peaked with respect to some given linear order (and this does in fact not follow); on the other hand, due
to the semi-connectedness, any domain satisfying the conditions of Theorem 1b) must contain at least
#X - (#X —1)/2 + 1 elements (because every ordered pair of alternatives has to be switched at least
once on any path connecting two completely reversed orders).

We discuss the meaning and significance of the characterizing conditions in Theorem 1 in the next
subsection. We will also show by means of concrete examples that the characterization of the single-
peaked domain provided by Theorem 1 is tight in the sense that each condition in part b) is indeed
necessary to obtain the conclusion.

2.2 Discussion

The conditions imposed on preference domains in Theorem 1 will now be discussed. In particular, we
demonstrate by means of examples that each condition in part b) is necessary to obtain the single-
peakedness of the domain. A secondary purpose of this subsection is to illustrate the great diversity of
the class of (maximal) Condorcet domains.

2.2.1 Consistency of majority voting

The condition of consistency of pairwise majority voting lies of at the heart of the present analysis
and ‘defines’ the problem. Transitivity of the majority relation (for odd profiles) is certainly a strong
requirement but, as already noted in the introduction, the goal here is not to justify it but to study its
implications. Clearly, the condition that D be a Condorcet domain is necessary for the conclusion that
D is single-peaked. For instance, the universal domain P(X) evidently satisfies all other conditions in
Theorem 1b), but the universal domain is clearly not single-peaked.

2.2.2 Maximal width: The existence of two completely reversed orders

One may think of a domain as the description of a ‘society.” Under this interpretation, the existence of
two orders in the domain that are completely reverses of each other is a condition of maximal ‘width’ of
opinions. The underlying society is required to admit the most extreme opinions with respect to at least
one dimension. As with the other conditions in Theorem 1, the maximal width condition describes a
substantial requirement.” On the other hand, it is not evident whether there are natural classes of maximal
Condorcet domains that violate the maximal width condition. Figure 2 illustrates the necessity of the
maximal width condition in Theorem 1b) by displaying a Condorcet domain of P(X) on X = {a,b, ¢, d}
that is not single-peaked but connected as well as minimally rich. The connectedness and minimal richness
of the depicted domain (the red marked orders) is evident. To verify that it is not single-peaked, note
first that a and d are the only two alternatives that occur at the bottom of each marked order. Since
abed is a member, this implies that if the domain is to be single-peaked with respect to >, we must have
either a > b >c > dord > c>0b> a. However, in either case the contained order bdca, for instance,
would not qualify as single-peaked.

The fact that the domain depicted in Fig. 2 is indeed a Condorcet domain can be easily inferred from
part iv) of the following well-known result.®

Fact 2.1. Let D C P(X) with X finite. The following statements are equivalent.

i) D is a Condorcet domain, i.e. the majority relation corresponding to every odd profile on D is an
element of P(X).

7Also mathematically, it has significant consequences. Indeed, it is well-known that, together with the consistency
of majority voting, maximal width implies that the domain can be embedded in a distributive lattice (cf. Abello [1991],
Chameni-Nembua [1989], Monjardet [2009], Danilov and Koshevoy [2013], Puppe and Slinko [2015]).

8See, e.g. [Monjardet, 2009, p. 142]). Condition iii) is Sen’s [1966] ‘value restriction’ and condition iv) has been introduced
by Ward [1965] as the ‘absence of a Latin square’ (in other terminology, it requires the absence of a ‘Condorcet cycle’;
cf. Condorcet, 1785). In light of this condition, Condorcet domains of (linear) orders are sometimes referred to as ‘acyclic
sets of linear orders’ (e.g. by Fishburn [1997]).




ii) The majority relation corresponding to every profile on D is acyclic.”

iii) In any triple x,y,z € X of pairwise distinct alternatives, there exists one element that either never
has rank 1, or never has rank 2, or never has rank 8 in the restrictions of the orders in D to the
set {x,y,z}.

iv) For no triple Py, Py, Py € D, and no triple x,y,z € X of pairwise distinct alternatives one has
cPiyPz, yPozPox and zPsxPsy.

We finally note that the domain depicted in Fig. 2 is in fact a marimal Condorcet domain.'?

Fig. 2: A connected and minimally rich Condorcet domain
without a pair of two completely reversed orders.

2.2.3 (Semi-)Connectedness

Continuing with the metaphor of a domain representing a society, connectedness has a clear meaning as
well: it must be possible to reach any admissible opinion from any other admissible opinion by a series
of minimal changes in the corresponding rankings while staying in the domain at each step. This may be
viewed as a ‘homogeneity’ condition which forbids that opinions are clustered around a few ‘representative’
opinions. Figure 3 illustrates this; it depicts a maximal Condorcet domain on X = {a, b, ¢, d} that satisfies
all conditions of Theorem 1b) except semi-connectedness.

The ‘society’ corresponding to this domain is clustered around the opinion that the pair of alternatives
{a,b} dominates the pair {c,d} (the 4-cycle in the front) and the opposite opinion that the pair {c,d}
dominates the pair {a,b} (the 4-cycle in the back). That the depicted domain is a maximal Condorcet
domain follows again easily using Fact 2.1; that it is not single-peaked follows at once from the fact that
it violates the following simple (and well-known) necessary condition for single-peakedness.

Fact 2.2. Suppose that D C P(X) is single-peaked. Then there are at most two alternatives in X which
can occur at the bottom of any order in D.!

The conditions of connectedness and also its weakening to semi-connectedness are arguably the most
substantial and restrictive conditions used in Theorem 1b) (on top of the consistency of majority voting).
Indeed, the minimally rich Condorcet domain displayed in Fig. 3 is only one instance of a general procedure
that yields ‘large’ Condorcet domains that are neither connected nor even semi-connected, Fishburn’s
so-called replacement scheme (Fishburn [1997]). The scheme takes two Condorcet domains Dy C P(X7)

9An asymmetric binary relation P is acyclic if there does not exist a subset {z1,...,zm} C X such that z; Pza,
roPx3,..., Tm—1Pxm and xym Pxy.

10The verification of this statement is straightforward if somewhat tedious.

Note that this condition is clearly not sufficient for single-peakedness as the domain depicted in Fig. 2 shows.



and Dy C P(X3) on two disjoint sets of alternatives and replaces one alternative, say « € Xj, in each
of the orders in D; by each of the orders in Dy to obtain a new Condorcet domain Dy * Dy on the set
(X1 \ {z}) U X5. Tt is easily verified that the domain D; * Dy is not semi-connected. On the other
hand, D; * Dy evidently is minimally rich whenever both D; and D5 are, and it contains two completely
reversed orders whenever both Dy and Dy do. Whether the replacement scheme is important for economic
applications is open to debate.

Fig. 3: A non-(semi-)connected, minimally rich Condorcet domain
containing pairs of completely reversed orders.

2.2.4 Minimal richness

Minimal richness has a straightforward interpretation as well: no alternative should a priori be ruled out
as the individually most desired choice. The condition is termed ‘minimal’ here because in the literature
much stronger ‘richness’ conditions have been imposed.!? Note that the domain of all single-peaked
preferences with respect to some fixed linear order > on X in fact also satisfies a stronger richness
condition, namely that each alternative occurs not only sometimes as the best but also as the second-best
alternative.

Despite its innocuous appearance, the minimal richness condition has quite some bite as well, as
illustrated by the two domains depicted in Figure 4. Both domains are maximal, connected Condorcet
domains and contain the pair abed and deba of completely reversed orders. Evidently, neither domain is
minimally rich, and by Fact 2.2 above, neither domain is single-peaked. That the depicted domains are
indeed Condorcet domains follows again from Fact 2.1, and their respective maximality can be verified
in a straightforward way.

Interestingly, among all maximal connected Condorcet domains on X = {a,b,c,d} with maximal
width, the domain on the left hand side of Fig. 4 has the minimal number of elements (in this case,
#X - (#X —-1)/2+1=4-3/2+1=7) and the domain on the right hand side has the mazimal number
of elements. In fact, the domain depicted on the r.h.s. of Fig. 4 has the maximal number of elements
among all Condorcet domains on a set of four alternatives, namely 9 (Monjardet [2009]). A Condorcet
domain with the maximal number of elements is sometimes referred to as a maximum Condorcet domain.
It is known that for #X < 6, the maximal number of elements of a Condorcet domain is attained by
connected domains with maximal width,'® and that the maximal number of elements of such domains

12Qur terminology follows Aswal et al. [2003] and Chatterji and Sen [2011]; the latter work also discusses domains violating
the minimal richness requirement. Stronger richness conditions have been used, e.g., in Chatterji et al. [2013], Nehring and
Puppe [2007]).

3For #X = 3,4,5,6, the maximum Condorcet domains are connected and have 4, 9, 20, 45 elements, respectively
(Fishburn [1997, 2002]). For #X = 7, the maximal number of elements of a connected Condorcet domain is 100 (Galambos
and Reiner [2008]), but it is not known whether this is also the maximal number of elements among all Condorcet domains
on a set with 7 elements.



always exceeds the number of elements of any single-peaked domain (Monjardet [2009]). Theorem 1b)
thus implies that these domains are never minimally rich, and that the maximal cardinality of a semi-
connected and minimally rich Condorcet domain is 2#X~!, the number of all single-peaked orders with
respect to some fixed linear order of X.

Fig. 4: Two connected but not minimally rich Condorcet domains
containing a pair of completely reversed orders.

The strength of the minimal richness condition, at least when imposed jointly with semi-connectedness,
can also be inferred from the following immediate corollary of Theorem 1b) and Fact 2.2.

Corollary 2. Let #X > 3. There does not exist a semi-connected and minimally rich Condorcet domain
on X such that every alternative in X is worst for some order in D.

Note that the domain depicted in Fig. 3 above satisfies all conditions in Corollary 2 except for the
semi-connectedness.

2.3 A dual characterization of the single-dipped domain

Theorem 1 above entails a ‘dual’ characterization of the single-dipped domain in a straightforward way,
as follows.

Theorem 2. a) For every linear order > on X, the domain 8D is a connected Condorcet domain
with mazimal width such that every alternative in X is the worst alternative for some order.

b) Conversely, let D C P(X) be a semi-connected Condorcet domain such that every alternative in X
is the worst alternative for some order in D. Then, D is single-dipped.

2.4 A corollary for single-crossing domains

Our analysis has an important implication for a class of domains known as ‘single-crossing’ domains. A
domain D C P(X) is a single-crossing domain if it can be written in the form D = {Py,..., P,,} such
that, for all ordered pairs (x,y) € X x X, the set {P € D : Py} is ‘connected’ in {1,...,m}, i.e., for all
z,y € X, xPjy and xPyy with j < [ implies Py for all k € {j,...,l}, and yP;z and yPz with j <!
implies yPyx for all k € {j,...,1}. This property has been introduced in the literature by Rothstein
[1990] under the name of ‘order-restriction.” It underlies the analysis in Roberts [1977], Gans and Smart
[1996], and is employed frequently under the name of ‘single-crossing property’ (see, e.g., Saporiti [2009)]).
It is well-known that all single-crossing domains are Condorcet domains (Rothstein [1990, 1991]).



Corollary 3. Let D C P(X) be a single-crossing domain. If D is minimally rich, then it is single-peaked.
If every alternative in X is worst in at least one order in D, then D is single-dipped.

Proof. Every single-crossing domain D can be extended to a semi-connected single-crossing domain D* D
D (note that we are not asserting that D* is a maximal Condorcet domain). Indeed, if D = { Py, ..., P}
has the single-crossing property, then so does the domain {P;, ..., Py, Pyt1} where Py 1 = 1"“’ (we allow
that Pyy1 = P;). We can now fill possible ‘gaps’ in the sequence P4, ..., Py, Pry1 as follows. If P; and P,
differ in the ranking of more than one pair of alternatives, at least one of these pairs must be an adjacent
pair in P;. Then, we can add the order P] that switches exactly this pair and agrees with P; in the
ranking of all other pairs, and consider the domain { P, P, P,,...}. Continuing in this fashion, we obtain
a semi-connected and single-crossing domain D* O D. Evidently, if D is minimally rich, so is D*; and if
every alternative is worst in at least one order in D, then the same property holds for D*. Since every
single-crossing domain is a Condorcet domain, we thus obtain by Theorem 1b) that D*, and hence also
D, is single-peaked if D is minimally rich. Similarly, if D has every alternative at the bottom of some
order, then D*, and hence also D, is single-dipped by Theorem 2b). 0

Remark. The semi-connected domain D* constructed in the proof of Corollary 3 is in fact a mazimal
single-crossing domain in the sense that no proper superdomain of D* can be single-crossing. The maximal
single-crossing domains are sometimes referred to as maximal chains in the literature, since they indeed
correspond to the maximal chains in the so-called ‘weak Bruhat order’ (Abello [1991], Chameni-Nembua
[1989], Galambos and Reiner [2008], Monjardet [2009]). Note that the maximal single-crossing domains
are in general not maximal as Condorcet domains. For instance, all paths connecting the orders abcd
and dcba in the single-peaked domain in Fig. 1, as well as in the maximum domain on the right hand
side of Fig. 4 correspond to maximal single-crossing domains; but evidently, these maximal paths do not
form maximal Condorcet domains. On the other hand, the maximal single-crossing domain on the left
hand side of Fig. 4 is also maximal as Condorcet domain; a simple necessary and sufficient condition
for the maximality (as Condorcet domain) of a maximal single-crossing domain is given in [Monjardet,
2007, p. 79] and Puppe and Slinko [2015]. The fact that every single-crossing profile of linear orders in
which every alternative is at the top of at least one voter must be single-peaked has also been observed
by Elkind et al. [2014].

Conclusion

How restrictive is the assumption of single-peakedness as a domain restriction? In this paper it is argued
that single-peakedness follows very naturally from transitivity of the majority relation for all odd profiles
under a few simple and reasonable conditions of richness and connectedness. But transitivity of the
majority relation for every odd profile is clearly a very demanding condition. As is well-known, its full
strength is not needed in order to derive possibility results in social choice theory. For instance, the
existence of non-dictatorial Arrovian aggregators and/or strategy-proof social choice functions can be
demonstrated under much weaker domain restrictions (Kalai and Muller [1977]). Also in this context,
richness and/or connectedness assumptions have frequently been imposed, and variants of the single-
peakedness condition have been found to play an important role in the derivation of possibility results
(Nehring and Puppe [2007], Chatterji et al. [2013], Chatterji and Massé [2015]). It seems a worthwhile
task for future research to explore whether, and how, the present methodology can contribute to our
understanding of the weaker domain restrictions that still enable consistent preference aggregation and/or
non-dictatorial strategy-proof social choice. One lesson that can already be drawn from the present
analysis is that each of the conditions of (semi-)connectedness, minimal richness, and the presence of two
completely reversed orders substantially restrict the combinatorial space of possibilities. Even if these
conditions are justifiable by the specific context or application at hand, they cannot be considered mere
‘technical’ requirements.
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