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Abstract

In many common interactive scenarios, participants lack information about other
participants, and specifically about the preferences of other participants. In this
work, we model an extreme case of incomplete information, which we term games
with type ambiguity, where a participant lacks even information enabling him to form
a belief on the preferences of others. Under type ambiguity, one cannot analyze the
scenario using the commonly used Bayesian framework, and therefore he needs to
model the participants using a different decision model.
In this work, we present the MINthenMAX decision model under ambiguity. This
model is a refinement of Wald’s MiniMax principle, which we show to be too coarse
for games with type ambiguity. We characterize MINthenMAX as the finest refine-
ment of the MiniMax principle that satisfies three properties we claim are necessary
for games with type ambiguity. This prior-less approach we present her also follows
the common practice in computer science of worst-case analysis.
Finally, we define and analyze the corresponding equilibrium concept assuming all
players follow MINthenMAX. We demonstrate this equilibrium by applying it to
two common economic scenarios: coordination games and bilateral trade. We show
that in both scenarios, an equilibrium in pure strategies always exists and we analyze
the equilibria.

1 Introduction

In many common interactive scenarios participants lack information about other par-
ticipants, and specifically about the preferences of other participants. The extreme case
of such partial information scenario is termed ambiguity, and in our case ambiguity as to
the preferences of other participants. In these scenarios, not only does a participant not
know the preferences of other participants, but he cannot even form a belief on them (that
is, he lacks the knowledge to form a probability distribution over preferences). Hence, one
cannot analyze the scenario using the Bayesian framework, which is the common practice
for analyzing partial-information scenarios, and new tools are needed.1 Similarly, in the
computer science literature, many times algorithms, agents, and mechanisms are analyzed
without assuming a distribution on the input space or on the environment. In this paper,
we define and analyze equilibria under ambiguity regarding the information of other players,
namely their type, and we concentrate on equilibria of games with type ambiguity, i.e., games
with ambiguity regarding other players’ preferences. Our equilibria definition is based on
a refinement of Wald’s MiniMax principle, which corresponds to the common practice in
computer science of worst-case analysis.
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In Section 2, we define a general model of games with ambiguity, similar to Harsanyi’s
model of games with incomplete information [17],2 and derive from it the special case of
games with type ambiguity. In this model, the knowledge of Player i on Player j is repre-
sented by a set of types T . Player i knows that the type of Player j belongs to T , but has
no prior distribution on this set, and no information that can be used to construct one.

Next, we present a novel model for decisions under ambiguity: MINthenMAX prefer-
ences. We characterize MINthenMAX as a decision model in the general framework of
decision under partial information, as the unique finest preference that satisfies a few nat-
ural properties. Specifically, we claim these properties are satisfied by players when facing
games with type ambiguity, thereby justifying choosing MINthenMAX as the analysis tool.

Finally, we derive the respective equilibrium concept, dubbed MINthenMAX-NE, and
present some of its properties, both in the context of the general model of games with type
ambiguity and in two common economic scenarios’ models.

Wald’s MiniMax principle A common model for decision under ambiguity is the Min-
iMax principle presented by Wald [27], which we refer to as MIN preferences (in contrast to
the MINthenMAX preferences that we present).3 In this model, similarly to the worst-case
analysis in computer science, the preference of the decision maker over actions is based solely
on the set of possible outcomes (in games with type ambiguity, the possible outcomes are
the consequence of playing the game with the possible types of the other players). An action
a is preferred to another action b if the worst possible outcome (for the decision maker) from
taking action a is better than the worst outcome from taking action b. This generalizes the
classic preference maximization model: if there is no ambiguity, there is a unique outcome for
each action, and the MIN decision model coincides with preference maximization. The MIN
model has been used for analyzing the expected behavior in scenarios of decision under am-
biguity regarding some parameters of the environment, e.g., ambiguity regarding the distri-
bution of prizes (the multi-prior model) [16], and ambiguity of the decision maker regarding
his own utility [10]. MIN has also been used for analyzing interactive scenarios with ambigu-
ity, e.g., first-price auctions under ambiguity of both the bidders and the seller regarding the
ex-ante distribution of bidders’ values [9], and for designing mechanisms assuming ambiguity
of the players regarding the ex-ante distribution of other players’ private information [28].

As we show shortly, as part of the coordination games example, the MIN decision model
is too coarse and offers too little predictive value in some scenarios involving ambiguity
regarding other players. We show a natural scenario (a small perturbation of the battle of
the sexes game [19]), in which almost all action profiles are Nash equilibria according to
MIN. Hence, we are looking for a refinement of the MIN model that breaks indifferences in
some reasonable way in cases in which two actions result in equivalent worst outcomes. In
Section 3, we show that näıvely breaking indifferences by applying MIN recursively4 does not
suit scenarios with ambiguity regarding other players either. We present two game scenarios,
and we claim that they are equivalent in a very strong sense: a player cannot distinguish
between these two scenarios, even if he has enough information to know the outcomes of all
of his actions. Hence, we claim that a rational player should act the same way in these two
scenarios. Yet, we show that a player that follows the recursive MIN decision model does
not play the same way in the two scenarios. We claim that a decision model for scenarios
with type ambiguity should not be susceptible to this problem.

The MINthenMAX decision model In this work we suggest a refinement of Wald’s
MiniMax principle that is not susceptible to the above problems, and we term this preference

2As described, for example, in [21, Def. 10.37 p. 407].
3Wald measures actions by their losses while we analyze actions by their possible gains. This is the reason

that this rule, which aims to maximize the worst (minimal) gain, was named by Wald the MiniMax principle.
4I.e., when the decision maker faces two actions that have equivalent worst outcomes, he decides according

to the second-worst outcome, and so on.



MINthenMAX. According to MINthenMAX the decision maker (DM) picks an action having
an optimal worst outcome (just like under MIN), and breaks indifferences according to the
best outcome. We characterize MINthenMAX as the unique finest refinement of MIN that
satisfies three desired properties (Section 3): monotonicity in the outcomes, state symmetry,
and independence of irrelevant information. Monotonicity in the outcomes is a natural
rationality assumption stating that the DM (weakly) prefers an action a to an action b if in
every state of the world (in our framework, a state is a vector of types of the other players),
a results in an outcome that is at least as good as the outcome of b. State symmetry asserts
that the decision should not depend on the names of the states and should not change if the
names are permuted. Independence of irrelevant information asserts that the DM should
not suffer from susceptibility to irrelevant information bias, which we describe above. That
is, the DM’s decision should depend only on state information that is relevant to his utility.
Specifically, it requires that if two states of the world have the same outcomes for each of the
actions, the distinction between the two should be irrelevant for the DM, and his preference
over actions should not change in case he considers these two states as a single state. We
show that these properties characterize the family of preferences that are determined by only
the worst and the best outcomes of the actions. Moreover, we show that MINthenMAX
is the finest refinement of MIN in this family: for any preference P that satisfies the three
properties, if P is a refinement of MIN,5 then MINthenMAX is a refinement of P.

Equilibrium under MINthenMAX preferences In Section 2, we define MIN-NE to be
the equilibria under MIN preferences, that is, the set of action profiles in which each player
best-responds to the actions of other players, and similarly we define MINthenMAX-NE to
be the equilibria under MINthenMAX preferences.

We show that for every game with ambiguity, a MIN-NE in mixed strategies always exists
(Thm. 4). On the other hand, we show there are generic games with ambiguity in which the
set of MIN-NE is unrealistic and too large to be useful. This holds even for cases in which the
ambiguity is symmetric (all players have the same knowledge) and is only regarding other
players’ preferences. Here, once again is our motivation for studying the equilibria under
MINthenMAX. On the other hand, we present a simple generic two-player game with type
ambiguity for which no MINthenMAX-NE exists. We note that since MINthenMAX is the
unique finest refinement of MIN (which satisfies some properties), the equilibria of a game
with ambiguity under any other refinement of MIN is a super-set of the MINthenMAX-NE
set. Hence, one can think of MINthenMAX-NE as the set of equilibria that do not depend
on assumptions regarding the tie-breaking rule over MIN applied by the players.

We show that finding a MIN-NE is a PPAD-complete problem [25, 24], same as the
computational complexity of finding a Nash equilibrium when there is no ambiguity.

Applications of MINthenMAX-NE to economic scenarios To understand the benefits
of analysis using the MINthenMAX model, we apply MINthenMAX-NE to two well-studied
economic scenarios while introducing ambiguity: coordination games and bilateral trade
games. We show that in both scenarios, a MINthenMAX-NE in pure strategies always
exists, and we analyze these equilibria.

Coordination games In coordination games, the players simultaneously choose a loca-
tion for a common meeting. All players prefer to choose a location that maximizes the
number of players they meet, but they differ in their tie-breaking rule, i.e., their preference
over the possible locations. This is a generalization of the game battle of the sexes [19,
Ch. 5, Sec. 3], and it models economic scenarios where the players need to coordinate a
common action, like agreeing on a meeting place, choosing a technology (e.g., cellular com-
pany), and locating a public good when the cost is shared, as well as Schelling’s focal point

5That is, for any two actions a and b, if a is strongly preferred to b according to MIN, then a is strongly
preferred to b according to P too.



experiments [26, p. 54–57]: the parachuters’ problem and meeting in NYC problem.
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For example, consider a linear street with four

possible meeting locations: LL, L, R, and RR (see
figure for the distances between the locations), and two players who choose locations simul-
taneously, trying to meet each other. Both players prefer the meeting taking place to not
taking place, but have different preferences over the meeting places (and both are indiffer-
ent regarding their action if the meeting does not take place). We also assume that the
preference of each player is by the distance to a location he is located in.6

Consider a scenario in which each player can be located in each of the four locations,
but each player does not know the location of the other; i.e., there is ambiguity regarding
the types of the players (and hence regarding their preference).

First, we notice that profiles in which both players choose, regardless of their types, the
same location are MINthenMAX-NE of the game. From the perspective of Player 2, if all
the types of Player 1 choose the same location, then choosing this location and meeting
Player 1 for sure is strictly preferred (regardless of the position of Player 2) to any other
choice, which would surely result in no meeting. The analysis for Player 1 is identical,
proving that these profiles are indeed MINthenMAX-NE.

Next, consider a case in which Player 1 goes either to LL or to RR (i.e., the locations
chosen by the types of Player 1 are these two locations). From Player 2’s perspective, all of
his actions are equivalent in terms of their worst outcome, as there is always a possibility of
not meeting Player 1 (when facing a type of Player 1 who chose a different location). Thus,
Player 2 chooses according to the best outcome for him. Only the actions LL and RR result
in a possibility to meet Player 1, i.e., meet one of the types of Player 1, and hence these
actions are strictly preferred to L and R, and so Player 2 will choose between LL and RR
according to his preference over them. Following this reasoning, we show that the profile in
which each type of each of the players goes to the location closest to him out of LL and RR is
MINthenMAX-NE, and that any other profile in which one of the players plays both LL and
RR (i.e., the locations played by his types are these two locations) is not MINthenMAX-NE.

This simple scenario also demonstrates the drawback of using the MIN model to analyze
games with type ambiguity. When Player 1 goes to either LL or RR, Player 2 is indifferent
between the worst outcomes of all of his actions, and so according to the MIN model Player 2
is indifferent between all of his actions. Hence, the profile in which each type goes to the
location farthest from him out of LL and RR is MIN-NE. This seems highly unrealistic:
we would expect a rational Player 2 of type LL to prefer playing LL to RR.7

We show that, in general, for every coordination game with type ambiguity the pure Nash
equilibria of the no-ambiguity case, in which all players choose the same unique location are
also MINthenMAX-NE.8 Note that the set of equilibria when there is no ambiguity does
not depend on the players’ types (which are only a tie-breaking rule between two locations
having the same number of other players). Yet, we get that ambiguity regarding the types
gives rise to new equilibria, which we characterize. We show that an equilibrium is uniquely
defined by a set of meeting locations (LL and RR in the example above) to be the action
profile in which each type of each player chooses his optimal location in this set. Finally, we
also characterize the equilibria for several cases in which we assume a natural homogeneity
constraint on the type sets. The constraint we choose, taking the type sets to be single-
peaked consistent w.r.t. a line, restricts the ambiguity regarding other players in a natural
way, and hence its impact on the set of equilibria is interesting.

6For example, the preference of a player located in L is L � R � LL � RR.
7In general, for a coordination game over m locations and n players s.t. each of them has at least t types,

more than (1− 1/mt−1)n-fraction of the pure action profiles are MIN-NE of the game.
8In general, if an action profile a is a Nash equilibrium for all the possible combinations of types, then a

is also a MINthenMAX-NE, since we expect the players to follow the profile when the information regarding
the types is irrelevant to their decision.



Bilateral trade The second scenario we analyze (in the full version) is bilateral trade.
These are two-player games between a seller owning an item and a buyer who would like to
purchase the item. Both players are characterized by the value they attribute to the item
(their respective willingness to accept and willingness to pay). In the mechanism that we
analyze, both players simultaneously announce a price and if the price announced by the
buyer is higher than the one announced by the seller, then a transaction takes place and
the price is the average of the two.9 For simplicity, we assume that a player has the option
not to participate in the trade.10

When there is no ambiguity, an equilibrium that includes a transaction consists of a
single price, which is announced by both players. When there is ambiguity regarding the
values, we show that in addition a new kind of equilibrium emerges. For instance, consider
the case in which the value of the buyer can be any value between 20 and 40 and the value of
the seller can be any value between 10 and 30. First, we notice that there are equilibria that
are based on one price as above,11 but in any such equilibrium there will be types (either
of the buyer or of the seller) that will prefer not to participate. If, for example, the price is
25 or higher, then there are types of the buyer that value the item at less than this price
and will prefer not to participate; similarly, for prices below 25 there are possible sellers
that value the item at more than 25 and hence will prefer not to participate. We show
also MINthenMAX-NE with two prices, 15 and 35, and in which both players participate
regardless of their type: the seller announces 35 if his value is higher than 15 and 15
otherwise, and the buyer announces 35 if his value is higher than 35 and 15 otherwise.12 In
this profile, a buyer that values the item at more than 35 prefers buying the item at either
price to not buying it, and hence he best-responds by announcing 35 and buying the item
for sure. A buyer that values the item at less than 35 prefers buying the item at 15 to not
buying it, and not buying the item to buying it at 35. The best worst-case outcome he can
guarantee is not buying the item (e.g., by announcing any value between 15 and his value).
Based on the worst outcome the buyer is indifferent between these announcement, hence
choosing between these announcements according to the best-outcome (i.e., meeting a seller
who announces 15), he best-responds by announcing 15. Similar analysis shows that also
the seller best-responds in this profile.

We characterize the set of MINthenMAX-NE for bilateral trade games, and in partic-
ular we show that for every bilateral trade game, an equilibrium consists of at most two
prices. As a corollary we characterize the cases for which there exists a full-participation
MINthenMAX-NE, i.e., equilibria in which both players choose to participate regardless of
their value (but their bid in these equilibria might depend on the value).

2 Model

We define a more general model - game with ambiguity13 and then derive from it
as a special case games with type ambiguity. A game with ambiguity is a vector〈
N ,
(
Ai
)
i∈N ,Ω,

(
ui
)
i∈N ,

(
T i
)
i∈N

〉
, where:

�

〈
N ,
(
Ai
)
i∈N

〉
is an n-player game form. That is,

N is a finite set of players N = {1, . . . , n}; and Ai is a finite set of actions of

9Our result also holds for a more general case than setting the price to be the average.
10This option is equivalent to the option of the seller declaring an extremely high price that will not be

matched (and similarly for the buyer).
11An equilibrium in which both players choose (as a function of their value) either to announce a price

common to both or not to participate.
12I.e., the seller announces the lower of the two if both are acceptable to him, and the higher otherwise;

And the buyer announces the higher of the two if both are acceptable to him, and the lower otherwise.
13For simplicity we define a finite game but the definitions extend to infinite cases as well. Our definitions

of preferences and results also extend under minor technical assumptions.



Player i, and we denote by A the set of action profiles ×i∈NAi.
� Ω is a finite set of states of nature.
� ui : Ω × A → < is a utility function for a Player i specifying his utility from every

state of nature and profile of actions. We identify ui with its linear extension to mixed
actions - ui : Ω×∆

(
Ai
)
→ <, where ∆

(
Ai
)

is the set of mixed actions over Ai.14

�

〈
N ,Ω,

(
T i
)
i∈N

〉
is an Aumann model of incomplete information. That is, T i is a

partition of Ω to a finite number of partition elements ( Ω = ∪̇ti∈T iti). We refer to
ti ∈ T i as a type of Player i.15

The above is commonly known by the players. A game proceeds as follows:
� Nature chooses (arbitrarily) a state of the nature ω ∈ Ω.
� Each player is informed about his own partition element ti ∈ T i satisfying ω ∈ ti.
� The players play their actions simultaneously: Player i, knowing his type ti, selects a

(mixed) action ai ∈ ∆
(
Ai
)
.

� Every player gets a payoff according to u: Player i gets ui (t, a), where a =(
a1, a2, . . . , a2

)
is the action profile, and t =

(
t1, t2, . . . , t2

)
is the type profile.

Notice that the difference between this model and the common model of games with incom-
plete information [17] (e.g., as described in [21, Def. 10.37 p. 407]), is that in the latter it is
assumed that the players also have posterior distributions on ti (or equivalently, they have
subjective prior distributions on Ω).

In this work we are interested in games with type ambiguity. In these games the states
of nature are the type vectors Ω = ×ni=1T i, so a player cannot deduce from his type in-
formation regarding the type of others. For this restricted model, we justify our choice of
MINthenMAX preferences. Note that we prove the existence of a mixed MIN-NE (Thm 4)
for every game with ambiguity.

A strategy of a player states his action for each of his types σi : T i → ∆
(
Ai
)
. Given

a type profile t =
(
t1, . . . , tn

)
and a strategy profile σ =

(
σ1, . . . , σn

)
, we notate by t−i

the types of the players besides Player i and by σ−i
(
t−i
)

their actions under t and σ.

I.e., σ−i
(
t−i
)

=
(
σ1
(
t1
)
, . . . , σi−1

(
ti−1

)
, σi+1

(
ti+1

)
, . . . , σn (tn)

)
. We note that given

σ−i
(
t−i
)

the utility of Player i of a given type is not affected by the actions of other types
of Player i. Therefore, it is possible to model Player i choice of action as a vector of choice,
one for each of his types (best-responding to the others). We refer to these problems as the
decision process done by a type.

Preferences under Ambiguity

Decision theory ([19, Ch. 13], [15]) deals with scenarios in which a single decision maker
(DM) needs to choose an action from a given set A when his utility from an action a ∈ A
depends also on an unknown state of nature ω ∈ Ω, when his preference is represented by
a utility function u : A× Ω→ <. Player i (of type ti) looks for a response (an action) to a
profile σ−i. This response problem is of the same format as the DM problem: he needs to
choose an action while not knowing the state of nature ω (the types of his opponents t−i

and their actions σ−i
(
t−i
)

are derived from ω).
We define the two preference orders over actions, MIN and MINthenMAX, in the frame-

work of Decision Theory. We define them by defining the pair-wise comparison relation, and
it is easy to see this relation is indeed an order. The first preference we define corresponds
to Wald’s MiniMax decision rule [27].

14An implicit assumption here is that the players have a vNM preferences; They evaluate a mixed action
profile by its expectation. This does not restrict the modeling of preferences under ambiguity. Using the
terminology of Anscombe and Aumann [2], we distinguish between roulettes and horse races.

15For a full definition of Aumann’s model and its descriptive power, see (for example) [4, 5] and [21,
Def. 9.4 p. 323]. As described in [5] this model is equivalent to defining T i using signal functions or by
knowledge operators (the systematic approach).



Definition 1 (MIN preference). A DM strongly prefers an action a to an action a′ according
to MIN, if the worst outcome possible when playing a is preferred to the worst outcome of
playing a′.16 I.e., minω∈Ω u (a, ω) > minω∈Ω u (a′, ω).

The second preference we introduce is a refinement of the MIN preference, it breaks ties
in cases MIN states indifference between actions.

Definition 2 (MINthenMAX preference). A DM strongly prefers an action a to an action
a′ according to MINthenMAX, if either minω∈Ω u (a, ω) > minω∈Ω u (a′, ω), or when he
is indifferent between the two respective worst outcomes and he prefers the best outcome
of playing a to the best outcome if playing a′.17 I.e., min

ω∈Ω
u (a, ω) = min

ω∈Ω
u (a′, ω) and

max
ω∈Ω

u (a, ω) > max
ω∈Ω

u (a′, ω).

Returning to our framework of games with ambiguity, we define the corresponding best-
response correspondences: MIN-BR and MINthenMAX-BR. The best-response of a (type
of a) player is a function that maps any action profile of the others to the actions that
are optimal according to the preference. It is easy to see that a best-response according
to MINthenMAX is also a best-response according to MIN, that is, MINthenMAX-BR is a
refinement of MIN-BR. We show that the two best-response notions are well-defined and
exist for any (finite) game.18

Lemma 3. The correspondences pure MIN-BR, mixed MIN-BR, pure MINthenMAX-BR,
and mixed MINthenMAX-BR are non-empty.

Equilibria Under Ambiguity

Next we define the corresponding (interim) Nash equilibrium (NE) concepts as the profiles
of strategies in which each type best-responds to the strategies of the others. From the
definition of MINthenMAX it is clear that any equilibrium according to MINthenMAX is
also an equilibrium according to MIN. Hence we regard MINthenMAX-NE as an equilib-
rium selection notion or a refinement of MIN-NE, in cases in which we find MIN-NE to
unreasonable. Our main theorem for this section is showing that any game with ambiguity
has an equilibrium according to MIN (MIN-NE) in mixed strategies.

Theorem 4. Every game with ambiguity has a MIN-NE in mixed actions.

Proof idea: We take S to be the set of all profiles of mixed strategies of the types and
define the following set-valued function F : S → S. Given a strategy profile s, F (s) is the
product of the best-responses to s (according to MIN) of the different types. We prove the
existence of a mixed MIN-NE by applying Kakutani’s fixed point theorem [18] to F . A fixed
point of F is a profile s satisfying s ∈ F (s), i.e., each type best-responds to the others in
the profile s, so s is a MIN-NE.

Since the existence of MIN-NE is the result of applying Kaukutani’s fixed point theorem
on the best-response function,19 we get a characterization of the complexity of computing
MIN-NE.

16The MIN preference is representable by a utility function U (a) = minω∈Ω u (a, ω).
17The MINthenMAX preference is not representable by a utility function, from the same reason the

lexicographic preference over <2 is not representable by a function [20, Ch. 3.C, p. 46].
18This lemma can be easily extended to infinite number of states case by assuming some structure on the

actions set and the utility function.
19The best-response can be computed in polynomial time. BR (s) = argmaxσi minω∈Ω Ea∼σiCa,ω

for Ca,ω = u
(
ω, a, s−i

(
t−i (ω)

))
. The maximal value a player can guarantee himself, v∗ =

maxσi minω∈Ω Ea∼σiCa,ω , is the solution to the linear program: max v s.t. ∀w Ea∼σiCa,ω > v, that
can be solved in polynomial time. Given v?, BR (s) is the intersection of |Ω| hyperplanes of the form
Ea∼σiCa,ω > v∗.



Corollary 5. Finding a MIN-NE is in PPAD [25, 24]. Moreover, it is a PPAD-complete
problem since a private case of it, computing a Nash equilibrium, is a PPAD-hard prob-
lem [12].

Next we show that there are games that have no equilibrium according to MINthenMAX.
We show this is true even for a simple generic game – a two-player game with type ambiguity
on one side only.

Lemma 6. There are games for which there is no MINthenMAX-NE.

Proof. Let G be the following two-player game with two actions for each of the players.

The Row player utility is
L R

T 0 0
B −1 1

. The Column player is one the two types: either

L R
T 0 1
B 0 −2

or
L R

T 0 2
B 0 −1

(and the Row player does not know which).

Then, in the unique MIN-NE the first type of the Column player is mixing 1
2L+ 1

2R, the
second type of the Column player is playing R, and the Row player is mixing 2

3T + 1
3B (all

his mixed actions give him a worst-case payoff of 0). But this is not a MINthenMAX-NE
since the Row player prefers to deviate to playing B for the possibility of getting 1, and
hence the game does not have MINthenMAX-NE in mixed strategies.20

3 Axiomatization of MINthenMAX

We justify using equilibria under MINthenMAX preferences for the analysis of games
with type ambiguity by presenting three properties for decision making under ambiguity
and characterizing MINthenMAX as the finest refinement of MIN which satisfies them
(Thm. 10). We claim these properties are necessary for modeling decisions under ambiguity
regarding other players’ types, by that justifying our application of MINthenMAX-NE.

The framework

Let Ω be a finite set of states of nature. We characterize a preference, i.e., a total order, of
a decision maker (DM) over the set actions A where an action is a function a : Ω→ < that
returns a utility for each state of nature.

Our first two properties are natural and we claim that any reasonable preference under
ambiguity should satisfy them. The first property we present is the basic rationality as-
sumption - monotonicity. It requires if that an action a results in a higher or equal utility
than an action b in all states of nature, then the DM should weakly prefer a to b.

Axiom 7 (Monotonicity). For any two actions a and b, if a (ω) > b (ω) for all ω ∈ Ω, then
either the DM is indifferent between the two or he prefers a to b.

The second property, state symmetry, states that the DM should decide based on proper-
ties of the actions and not of the states. I.e., if we permute the states’ names, his preference

20A technical comment: The reason Kakutani’s theorem cannot be applied here (besides its result being
wrong) is twofold:

� The best-response set is not convex: Consider a player that needs to choose between two actions,

having a utility
L M R

T 0 1 2
B 0 2 1

, and faces one of three opponent’s types. Then, when facing

a profile of the opponent playing the three actions, respectively, he is indifferent between his two
options (Both give him 0 on the worst case and 2 on the best case), but strictly prefers the two pure
actions on any mixture of the two (giving him less than 2 in the best case).

� The best-response function is not upper semi continuous: In the example in the lemma, when the
Row player is facing one type playing the pure strategy R and other mixing

(
1
2

+ ε
)
L +

(
1
2
− ε

)
R,

his unique best-response is playing T for any ε > 0, but playing B for ε = 0.



should not change. Since we can assume that the states themselves have no intrinsic utility
beyond the definition of the actions, this property formalizes the property that the DM,
having ambiguity regarding the state, should satisfy the Principle of Insufficient Reason
and treat the states symmetrically.21

Axiom 8 (State symmetry). For any two actions a and b and a bijection ψ : Ω → Ω: if a
is preferred to b, then a ◦ ψ is preferred to b ◦ ψ (a ◦ ψ (ω) is defined to be a (ψ (ω))).

The last property we present is independence of irrelevant information. This property
requires that if the DM considers one of the states of natures as two, by considering some a
new parameter, his preference should not change. We show the desirability of this property
to games with type ambiguity by the following example. Consider the following variant of
Battle of the Sexes game between Alice and Bob that need to decide on a joint activity
- either a Bach concert (B) or a Stravinsky concert (S). Taking the perspective of Alice,
assume she faces one of two types of Bob: BobB that she expects to chooseB or BobS

that she expects to choose S. Assume that Alice prefers B, so her valuation of actions is:
BobB BobS

B : 2 0
S : 0 1

(0 if they do not meet and 2 or 1 if they jointly go to a concert). But

there might be other information Alice does not know regarding Bob. In case he prefers (and
chooses) S, she also does not know his favorite soccer team.22 So she might actually think

on the situation as
BobB BobS? BobS†

B : 2 0 0
S : 0 1 1

. Since this new soccer information is irrelevant

to the game, it should not change the action of a rational player. Notice that is case Alice
chooses according to the recursive MIN rule we described in the introduction, she will choose
according to the second-worst outcome and hence choose B in the first scenario and S in
the second scenario. We find a decision model of a rational player which is susceptible to
this problem ill-defined.

Axiom 9 (Independence of irrelevant information). Let a and b be two actions on Ω s.t.
a 4 b, and let ω̂ ∈ Ω be a state of nature. Define a new state space Ω′ = Ω∪̇

{̂̂ω} and
let a′ and b′ be two actions on Ω′ satisfying a′ (ω) = a (ω) and b′ (ω) = b (ω) for all states
ω ∈ Ω \ {ω̂}, a′

(̂̂ω) = a′ (ω̂) = a (ω̂) , and b′
(̂̂ω) = b′ (ω̂) = b (ω̂). Then a′ 4 b′.

We show that MINthenMAX is the finest refinement of MIN that satisfies the above
three axioms.

Theorem 10. MINthenMAX is the unique preference that satisfies
� Monotonicity
� State symmetry
� Independence of irrelevant information
� It is a refinement of MIN.23

� It is the finest preference that satisfies the above three properties. That is, it is a
refinement of any preference that satisfies the above properties.

4 Coordination games

In this section we study a second application of MINthenMAX-NE to an economic sce-
nario: Analyzing coordination games with type ambiguity. These games model scenarios in
which the participants prefer to coordinate their actions with others, e.g., due to positive

21This property rules out any subjective expectation maximization preference, except for expectation
according to the uniform distribution.

22Of course, favorite soccer team is clear in case he prefers Bach.
23That is, for any two actions a and b, if a is strongly preferred to b by a DM holding a MIN preference,

then a is strongly preferred to b by a DM holding a MINthenMAX preference.



externalities. For example, choosing a meeting place (a generalization the game battle of
the sexes [19, Ch. 5, Sec. 3]), choosing a cellular company, and placing a public good or
bad when the cost is shared. We analyze coordination games in which all players prefer to
maximize the number of other players they coordinate with (and indifferent regarding their
identity), but they might differ in their tie-breaking rule between two maximizing actions.

Definition 11 (Coordination games with type ambiguity24). A (finite) coordination game
of n players over m locations is a game in which all players have the set set of actions of size
m (and we refer to the actions as locations), and the preference of each player (his type)
over the action profiles is defined by a strict (ordinal) preference α over the locations in the
following way: Player i, holding a preference α over the locations, strongly prefers an action
profile a =

(
a1, . . . , an

)
∈ A to an action profile b =

(
b1, . . . , bn

)
∈ A if either he meets more

players under a than under b (
∣∣{j 6= i

∣∣ aj = ai
}∣∣ > ∣∣{j 6= i

∣∣ bj = bi
}∣∣) or if he meets the

same (non-zero) number of players under both profiles and he prefers the meeting location
in a to the one in b (ai is preferred to bi according to α). I.e., the set of types of Player i,
T i, is a set of strict preferences over the m locations. In particular, a player is indifferent
between the outcomes in which he does not meet any of the other players.

We show that every MINthenMAX-NE profile a is uniquely defined by the set of locations
chosen in a, L (a) =

{
l
∣∣ ∃i ∈ N , ti ∈ T i s.t. Player i of type ti plays l in the profile a

}
:

Lemma 12. Let G be a coordination game and let L be a non-empty set of locations. There
exists a MINthenMAX-NE profile a s.t. L (a) = L if and only if for all i the mapping
f i : T i → L that maps a type to his best location in L is onto.

Moreover, the action profile a in which every type of every player chooses his best location
in L is the unique pure MINthenMAX-NE that satisfies L (a) = L.

Abusing notation, we say that a location set L is a MINthenMAX-NE (L ∈
MINthenMAX-NE (G)), if there exists a MINthenMAX-NE profile a s.t. L (a) = L. An
immediate corollary from the lemma is that any location set L ∈ MINthenMAX-NE satisfies
|L| 6 mini

∣∣T i∣∣, and in particular, if there is no ambiguity for the type of at least one player

(∃i s.t.
∣∣T i∣∣ = 1), then the only MINthenMAX-NE are the ones in which all types of all

players choose the same location. Notice that for any vector of type sets
{
T i
}

an action pro-
file in which all types of all players choose the same location is always a MINthenMAX-NE.
In these profiles, any deviation of a (type of a) player results in the deviator not meeting
any of the other players and hence hurting him.

From now on we assume that
∣∣T i∣∣ > 1 for all i (there is real ambiguity regarding

the preference each of the players), and study the equilibria (location sets) according to
MINthenMAX. We analyze the non-trivial equilibria that emerge due to the type ambiguity.
We call an equilibrium profile a non-trivial if |L (a)| > 1,25 and call a location set non-trivial
if it includes at least two locations.

Coordination Games with single-peaked consistent preferences

Next, we study the equilibria of coordination games under type ambiguity for several special
cases in which the type sets satisfy some natural constraints. In this work, we present cases
in which the set of preferences ∪iT i is single-peaked consistent with regard to a line.

Definition 13 (single-peaked consistent preferences with regard to a line [7]). A preference
α over a set of locations S ⊆ < is said to be single-peaked with regard to <, if there exists a

24Most of the current literature (e.g., [26, p. 54–74], [19, p. 90–91], [23, p. 15–16]) deal with two-player
coordination games (games in which the best-response of a player is to copy the other player’s action). We
use the same name here for multi-player (generalized) coordination games, which capture the same kind of
scenarios.

25I.e., there exist at least two different locations that each of them is chosen by some type of some player.



utility function f : < → < s.t. for any two locations y and z, y is preferred to z if f (y) > f (z)
(i.e., f represents α); the top ranked location x? in α is the unique maximizer of f ; and for
any two locations y and z, if x? < y < z or x? > y > z, then y is preferred to z.

A set of preferences over a set of locations S is single-peaked consistent w.r.t. a line,
if there exists an embedding function e : S → < (which we refer to as the order of the
locations) s.t. for any preference α in the set, e (α) is single-peaked with regard to <.

For ease of presentation, we state the results for S ⊆ < (so the embedding is the identity
function). For example, consider the scenario of decision on locating a common good on a
linear street. It is known that each player holds an ideal location (his location), and that his
preference is monotone in the path between this ideal location to the common good. Yet,
there might be ambiguity regarding the ideal location, or regarding the preference between
locations that are not on the same side of the ideal location (e.g, the preference might be a
function of properties of the path).

We interpret the single-peakedness assumption as constraining the game in two different
ways. First, it constrains the type ambiguity in a natural way: Player i knows the order
over the locations (common to all types of Player j), and hence he has some information
he can use to anticipate the action of other players. Second, this assumption limits the
disagreement between the players (as captured by the characterization of Arrow [3, p. 77]),
since they agree on the underlining order of locations. Hence, we expect to get more strict
characterizations utilizing the single-peaked assumption.26 Note that a set of single-peaked
consistent preferences might be single-peaked with regard to more than one order of the
locations (i.e., an embedding).27 In cases ∪iT i is single-peaked consistent w.r.t. several
orders of the locations (which can be thought of stronger homogeneity constraint), our
results hold w.r.t. any of the orders, giving rise to stricter characterizations.

In the examples we describe below, we limit the ambiguity further (adding more infor-
mation on players), but not adding to the inter-player agreement.

The first case we analyze is when assuming no ambiguity regarding the players’ ideal
location. That is, for every player there exists a location (his ideal location) x? shared by
all his type in T i. We show that in this case there can be at most two locations in the
equilibrium set, one more extreme to the right than any of the ideal locations and one more
extreme to the left than any of them.

Lemma 15. Let G be a coordination game with single-peaked consistent preferences s.t.
there is no ambiguity regarding the players ideal locations, and let xi be Player i’s ideal
location. Then any (non-trivial) MINthenMAX-NE L satisfies that there exist two different
locations α and β s.t. L = {α, β} and α < mini x

i 6 maxi x
i < β.

This condition is tight. Any set L satisfying the above condition is a MINthenMAX-NE
of the game in case the type sets T i are rich enough.28

Proof. Notice that the result is equivalent to requiring that for every player i there is at
most one location α in L s.t. α < xi and at most one location β in L s.t. xi < β. Assume for
contradiction that there are two locations in L either in

(
−∞, xi

]
or in

[
xi,∞

)
. Then one

26Constraining the disagreement by single-peaked consistency is a common assumption in the social choice
literature, and it is known to have an impact on characterizations, e.g., of preference aggregation rules [8],
and of facility location mechanisms [22].

27Example 14. The preferences 1 � 2 � 3 � 4 � 5, 2 � 1 � 3 � 4 � 5, 2 � 3 � 1 � 4 � 5, and
3 � 2 � 1 � 4 � 5, are single-peaked w.r.t. the following four orders (and their inverse): 1−2−3−4−5,
5−1−2−3−4, 5−1−2−3−4, and 5−4−1−2−3.

Escoffier et al. [13] proved that for any number of locations n and r 6 2n−1, there exist 1
r

2n−1 different
preferences that are single-peaked consistent w.r.t r different orders (for the tight bounds see [13]).

28In particular, if for all players T i is the set of all single-peaked preferences with top xi, these are all the
(non-trivial) MINthenMAX-NE.



of them must be on the path between x and the other, and hence preferred to it regardless
of the type of Player i, contradicting L being an equilibrium.

In order to prove tightness, given a set L = {α, β} as above, for any player i there are
single-peaked preferences with xi at the top in which α is preferred to β, and there are
single-peaked preferences with xi at the top in which β is preferred to α. If the set T i
includes both a type that prefers α to β, and a type that prefers β to α, then the mapping
f i : T i → L that maps a type to his preferred location in L is onto. Hence, if this condition
is satisfied by all type sets, then L is a MINthenMAX-NE.

We see that under this homogeneity constraint, the (non-trivial) equilibria are
constrained to be two extreme locations. This result can be interpreted as the
power of extreme players in these scenarios. Note that when the types are single-
peaked w.r.t. several orders, the equilibria should satisfy the above characterization
w.r.t. all of them. For instance, consider the scenario of two players and type sets
T 1 = T 2 = {2 � 1 � 3 � 4 � 5 , 2 � 3 � 1 � 4 � 5} (a subset of the set of preferences of
Example 14). These preferences are single-peaked w.r.t. the order 5−1−2−3−4, but L = {4, 5}
is not a MINthenMAX-NE although satisfying the property of the lemma because both
types prefer 4 to 5 and will not choose 5, and indeed {4, 5} does not satisfy the property
w.r.t. the order 1−2−3−4−5.

The second case we analyze is having ambiguity regarding the ideal location only, and
assuming a structure on the preferences. A simple example of such structure is Euclidean
preferences. A Euclidean preference is uniquely derived from its ideal location by order-
ing the locations according to their distance from the ideal location. Notice that also this
restriction can be stated as homogeneity constraint on the preferences given the common
embedding: it can be stated as a common metric on the locations set shared by all prefer-
ences.

Lemma 16. Let G be a coordination game on the real line s.t. all players have Eu-
clidean preferences. Then a (non-trivial) location set L = {l1 < l2 < · · · < lk} is a
MINthenMAX-NE if and only if for every player i there are types derived by possible
ideal locations x1 < x2 < · · · < xk s.t. for t = 1, 2, . . . , k − 1: any location m satisfy-
ing m ∈ argmaxp |d (p, lt)− d (p, lt+1)|,29 is (strictly) between xt and xt+1.

A special case of the lemma is when there are exactly two types of each player, derived
by two possible ideal locations xi < yi. In this scenario we get that a (non-trivial) location
set L is a MINthenMAX-NE if and only if there exist two locations α and β s.t. L = {α, β},
and any location m satisfying m ∈ argmaxp |d (p, α)− d (p, β)| is (strictly) between xi and yi

for all players. Hence, a (non-trivial) MINthenMAX-NE exists if and only if the intersection
of the segments

(
xi, yi

)
is non-empty.

Proof. ⇒: Let L = {l1 < l2 < · · · < lk} be an equilibrium and let i be a player. Since L is
an equilibrium, there are types of Player i,30 x1 < x2 < · · · < xk, s.t. Player i chooses lt
when his type is xt. In particular, for t < k his preference between lt and lt+1 when his
type is xt is different from his preference when his type is xt+1. Hence, xt and xt+1 lie on
different sides of the median between lt and lt+1.
⇐: Following the same reasoning, if L satisfies the property of the lemma, then Player i of
type xt prefers lt to any other location in L, hence L is an equilibrium.

29I.e., m is the median between lt and lt+1.
30We identify between the types and their ideal locations.
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A Bilateral trade

In order to demonstrate this new notion of equilibrium, MINthenMAX-NE, we apply it to
two economic scenarios that have type ambiguity. The first scenario we analyze is bilateral
trade games. Bilateral trade is one of the most basic economic models, which models many
common scenarios. It describes an interaction between two players, a seller and a buyer.
The seller has in his possession a single indivisible item that he values at vs (e.g., the
cost of producing the item), and the buyer values the item at vb. We assume that both
values are private information, i.e., each player knows only his own value, and we would like
to study the cases in which the item changes hands in return for money, i.e., a transaction
occurs.31 Chatterjee and Samuelson [11] presented bilateral trade as a model for negotiations
between two strategic agents, such as settlement of a claim out of court, union-management
negotiations, and of course a negotiation on transaction between two individuals and trade
in financial products. The important feature they note is that an agent, while certain of
the potential value it places on the transaction, has only partial information concerning the
value of the other player.32 Bilateral trade, and moreover a multi-player generalization of
it - double auction,33 is also of a theoretical importance. These models have been used as
a tool to get insights on how to organize trade between buyers and sellers, as well as study
how prices are determined in markets.

In this section we assume that there is ambiguity regarding the values of the players (their
type), and study trading mechanisms, i.e., procedures for deciding whether the item changes
hands, and how much the buyer pays for it. We assume that the players are strategic, and
hence a mechanism should be analyzed by its expected outcomes in equilibrium.

We concentrate on a family of simple mechanisms (a generalization of the bargaining
rules of Chatterjee and Samuelson [11]): The seller and the buyer post simultaneously their
respective bids, as and ab, and if as 6 ab the item is sold for x (as, ab), for x being a known
monotone function satisfying x (as, ab) ∈ [as, ab]. For ease of presentation, we add to the
action sets of both players a “no participation” action ⊥, that models the option of a player
not to participate in the mechanism, i.e., there is no transaction whenever one of the players
plays ⊥. This simplifies the presentation by grouping together profiles in which a player
chooses extreme bids that would not be matched by the other player. Hence, the utilities
of a seller of type vs and a buyer of type vb from an action profile (as, ab) are (w.l.o.g., we
normalize the utilities of both players to zero in case there is no transaction):

us (vs; as, ab) =


as 6 ab x (as, ab)− vs
as > ab 0

as = ⊥ ∨ at = ⊥ 0

ub (vb; as, ab) =


as 6 ab vb − x (as, ab)

as > ab 0

as = ⊥ ∨ at = ⊥ 0

Under full information (the values vs and vb are commonly known), there is essentially
only one kind of equilibrium: one-price equilibrium. If vs 6 vb, the equilibria in which there
is a transaction are all the profiles (as, ab) s.t. as = ab ∈ [vs, vb] (i.e., the players agree on

31There is another branch of the literature on bilateral trade, which studies the process of bargaining
(getting to a successful transaction). Since we would like to study the impact of ambiguity, we restrict our
attention to the outcome.

32For instance, in haggling over the price of a used car, neither buyer nor seller knows the other’s walk-away
price.

33In double auction [14], there are several sellers and buyers, and we study mechanisms and interactions
matching them to trading pairs.



a price), and the equilibria in which there is no transaction are all profiles in which both
players choose not to participate regardless of their type.

Introducing type ambiguity, we define the seller type set Vs and the buyer type set Vb,
where each set holds the possible valuations of the player for the item. We show that under
type ambiguity, there are at most three kinds of equilibria, and we characterize fully the
equilibria set. We show that in addition to the above no-transaction equilibria and one-price
equilibria, we get a new kind of equilibrium - two-prices equilibria. In such an equilibrium,
both the seller and the buyer always participate (i.e., both players participate regardless of
their valuations), and bid one of two possible prices pL and pH . For some type sets, Vs and
Vb, these two-prices are the only full-participation equilibria, i.e., equilibria in which both
players choose to announce a price and participate regardless of their value.

Lemma 17. 34

Let G be a bilateral trade game defined by a price function x (as, ab) and two type sets
Vs and Vt, both having a minimum and maximum.35 Then all the MINthenMAX-NE of G
are of one the following classes:

1. No transaction equilibria (These equilibria exist for any two sets Vs and Vb)
In these equilibria, both players do not participate (play ⊥, or play a bid too extreme
for all types of the other player) regardless of their valuations.

2. One-price equilibria (These equilibria are defined only when minVs 6 maxVb. I.e.,
when an ex-post transaction is possible.)
In a one-price equilibrium, both the seller and the buyer choose to participate for some
of their types. It is defined by a price p ∈ [minVs,maxVb] s.t. the equilibrium strategies
are:

The seller bids p for valuations vs 6 p, and ⊥ otherwise (the second clause might
be vacuously true).
The buyer bids p for valuations vb > p, and ⊥ otherwise (the second clause might
be vacuously true).

Hence, the outcome is

XXXXXXXXXXBuyer
Seller

Low: vs 6 p High: vs > p

Low: vb < p no transaction no transaction
High: vb > p p no transaction

3. Two-prices equilibria (These equilibria are defined only when minVs 6 minVb and
maxVs 6 maxVb. I.e., when there is a value for the seller s.t. an ex-post transaction
is possible for any value of the buyer, and vice versa)
In a two-prices equilibrium, all types of both the seller and the buyer choose to partic-
ipate, and their bids depend on their valuation. It is defined by two prices pL < pH s.t{

minVs 6 pL < maxVs 6 pH
pL 6 minVb < pH 6 maxVb

and the equilibrium strategies are:

The seller bids pL for valuations vs 6 pL, and pH otherwise.
The buyer bids pH for valuations vb > pH , and pL otherwise.

Hence, the outcome is

PPPPPPPPBuyer
Seller

Low: vs 6 pL High: vs > pL

Low: vb < pH pL no transaction
High: vb > pH x (pL, pH) ∈ (pL, pH) pH

Proof idea: It is easy to verify that these profiles are indeed equilibria. We will prove that
these are the only equilibria.

34This result is also valid, and even more natural, for infinite type sets.
35We state the result here for the case when both sets have a minimal valuation and a maximal valuation.

Dropping this assumption does not change the result in an essential way (some of the inequalities are changed
to strict inequalities).



Assume for contradiction there is another MINthenMAX-NE profile of actions (i.e.,
bids or ⊥), (as, ab). We define Ps to be the set of bids that are bid by the seller, i.e.,
Ps = {as (vs) | as (vs) 6= ⊥}, and similarly we define Pb = {ab (vb) | as (vb) 6= ⊥}. Both
these sets are not empty since (as, ab) is not a no-transaction equilibrium. First, we notice
that if Ps is of size one, i.e., whenever the seller participates he announces p, then if the
buyer chooses to participate (based on his valuation) he chooses to match p in order to
minimize the price (and vice versa). Analyzing the valuations for which they choose to
participate, proves this profile is a one-price equilibrium. Now, assume that both these sets
are of size at least two. If both players participate regardless of their value (never choose
⊥), then the worst and best cases for a player are facing the highest and lowest bidder of
the other player. Hence his best-response will be to match one of the two, and we get a
two-prices equilibrium. If the seller chooses whether to participate based on his value, i.e.,
there is a value vs for which he chooses ⊥ , then the buyer cannot guarantee himself more
than zero (for instance, if he meets vs), so he will choose one of the actions that guarantee
him zero on the worst case (e.g., ⊥), and will break ties among these actions by the best
case (meeting the lowest bidding type of the seller). Hence, given his value, the buyer either
chooses ⊥, or matches the lowest bidding type of the seller. This proves this equilibrium is
either a no-transaction equilibrium or a one-price equilibrium. The case in which the buyer
chooses whether to participate based on his value is symmetrical.

We find it interesting that the set of equilibria depends on the possible types of the
players, and not on the price mechanism x (as, ab). In addition to the two classic equilib-
ria, no-transaction equilibria and one-price equilibria, we get a new kind of equilibrium.
We see that in this equilibrium each of the players announces one of two bids, essentially
announcing whether his value is above some threshold or not. This decision captures the
(non-probabilistic) trade-off a player faces, whether to trade for sure, i.e., with all types of
the other player, or to get a better price. E.g., the buyer decides whether to bid the high
price and buy the item for sure, but maybe paying more than his value; or to bid the low
price, buying at a lower price, but taking the risk of not buying at all. Since MINthenMAX
is a function of the worst-case and best-case outcomes only, it does not seem surprising that
we get this dichotomous trade-off and at most two bids (messages) for a player in equilib-
rium. This might capture scenarios in which a participant needs to choose which of two
markets to attend, e.g., florists that choose whether to sell in a highly competitive auction,
or in an outside market, while not knowing the demand for this day. In a continuation work,
we follow this story, and analyze double auctions with several buyers and sellers, in order
to check this intuition.

B Proof of Lemma 3 (Best-response is well-defined)

This lemma can be easily extended to infinite number of states case by assuming some
structure on the actions set and the utility function.

Lemma. The correspondences pure MIN-BR, mixed MIN-BR, pure MINthenMAX-BR, and
mixed MINthenMAX-BR are non-empty.

Proof. We prove the lemma in the more general decision theory framework. We show that
if there are finitely many states of the nature and finitely many pure actions, there is always
at least one optimal mixed action. Since the number of players and the number of types of
each player are finite, a player faces one of a finite number of profiles (states of the nature)
and we get the desired result.

The existence of an optimal pure action is trivial since there are finitely many pure
actions. Next, we prove the existence of optimal mixed actions. The set of optimal actions
according to MIN OptActMIN is



OptActMIN = argmax
σ∈∆(A)

minω∈Ω u (σ, ω) .

For every state of the nature ω ∈ Ω, u (σ, ω) is a continuous function in σ (it is a linear
transformation). minω∈Ω u (σ, ω) is also continuous in σ as the minimum for finitely many
continuous functions. Hence, argmaxa∈σ∈∆(A) minω∈Ω u (σ, ω) is non-empty as the maxima
of a continuous function over a simplex. Moreover, OptActMIN is a compact set.

Similarly, the set of optimal actions according to MINthenMAX, OptActMINthenMAX =
argmaxa∈OptActMIN

maxω∈Ω u (σ, ω), is non-empty since OptActMIN is compact and
maxω∈Ω u (σ, ω) is continuous in σ.

C Proof of Theorem 4 (MIN-NE existence)

Theorem. Every game with ambiguity has a MIN-NE in mixed actions.

Proof. We prove the existence of a mixed MIN-NE by applying Kakutani’s fixed point
theorem [18]36 to the following set S and set-valued function F . We set S ⊆ <K to be the
set of all profiles of mixed strategies of the types,37 i.e., a cross product of the corresponding
simplexes. Given a strategy profile s, we define F (s) to be the product of the best-response
correspondences of the different types to the profile s.

Clearly, S is a convex compact non-empty set. We proved (Lemma 3) that the best-
response always exists and hence F (s) is non-empty for all s ∈ S. We show that the
best-response correspondence of a type is an upper semi-continuous function (and hence
also F ) by applying Berge’s Maximum theorem [6, Thm. 2, p. 116]38 to39

f
(
σi, s

)
= min
ω∈Ω

u
(
ω, σi, s−i

(
t−i (ω)

))
We notice that the best-response of a type of Player i to a strategy profile s ∈ S is the
maxima over his mixed strategies σi of f

(
σi, s

)
; that u is a linear function in σi and in s;

and that f
(
σi, s

)
is a continuous function in s and σi. Hence, we get that the best-response

is an upper semi-continuous correspondence.
Next, we show that for any profile s and a type of Player i, the best-response set is convex,

and hence also F (s) is a convex set. In order to prove the convexity of the best-response
set, let σ and τ be two best-responses and let

m = min
ω∈Ω

u
(
ω, σi, s−i

(
t−i (ω)

))
be their worst-case value. For any convex combination ζ of σ and τ , on one hand we get
that

min
ω∈Ω

u
(
ω, ζi, s−i

(
t−i (ω)

))
6 m

from the optimality of σ, and on the other hand

u
(
ω, ζi, s−i

(
t−i (ω)

))
> m for all ω ∈ Ω.

36Let S ⊆ <n be a non-empty compact convex set. Let F : S→ S be a set-valued upper semi-continuous
function on S such that F (s) is non-empty and convex for all s ∈ S. Then F has a fixed point, i.e. a point
s ∈ S such that s ∈ F (s).

37for K being the sum of the number of types over the players.
38If f : X × Y → < is a continuous function, then the mapping µ : X → Y defined by µ (x) =

argmaxy∈Y f (y) is a upper semi-continuous mapping.
(The statement of the theorem is taken from [1, Lemma 17.31, p. 570])

39Where t−i (ω) are the types Player i is facing according to ω, and s−i
(
t−i (ω)

)
are their actions according

to s.



since we assumed this lower-bound both on σ and on τ . Hence,

min
ω∈Ω

u
(
ω, ζi, s−i

(
t−i (ω)

))
= m

and ζ is a best-response.
By applying Kakutani’s fixed point theorem we get that there is a profile s s.t. s ∈ F (s).

That is, in the profile s every type best-responds to the others, so s is a MIN-NE.

D Proof of Theorem 10 (Axiomatization of MINthenMAX)

Theorem. MINthenMAX is the unique preference that satisfies
� Monotonicity
� State symmetry
� Independence of irrelevant information
� It is a refinement of MIN.40

� It is the finest preference that satisfies the above three properties. That is, it is a
refinement of any preference that satisfies the above properties.

Proof. In order to prove this theorem we use the following lemma (proved next) that any
preference that satisfies the first three properties can be defined using the worst (minimal)
and best (maximal) outcomes of the actions.

Lemma 18. Any preference that satisfies monotonicity, state symmetry, and independence
of irrelevant information, can be defined as a function of the worst and the best outcomes
of the actions.

Using this lemma, we turn to prove the characterization of MINthenMAX.
It is easy to verify that MINthenMAX indeed satisfies the first four properties. We note

that the uniqueness is an immediate consequence of the uniqueness of a finest refinement
and prove that indeed MINthenMAX is a finest refinement. Let P be an arbitrary refine-
ment of MIN that satisfies Monotonicity, state symmetry, and Independence of Irrelevant
Information. Let a and b be two actions s.t. a DM holding a P preferences strongly prefers
a to b, and we’ll show that a is preferred to b also by a DM holding a MINthenMAX pref-
erence. Applying Lemma 18, we get that P can be defined using the minimal and maximal
outcomes. We denote the respective minimal and maximal outcomes of a by ma and Ma,
and of b by mb and Mb.

Assume for contradiction that a DM holding a MINthenMAX preference weakly prefers
b to a. Since P is a refinement of MIN, it cannot be that mb > ma, and hence we get that
mb = ma and Mb > Ma. Both P and MINthenMAX can be defined as a function of the
minimal and maximal outcome, so with no loss of generality we can assume that a and b
result in the same minimal outcome ma is some state ωm, result in their respective maximal
outcomes in the same state ωM , and result in the same intermediate outcomes in all other
states. Since P is monotone, we get that a DM holding a P preference weakly prefers b to
a and by that get a contradiction.

D.1 Proof of lemma

Lemma. Any preference that satisfies monotonicity, state symmetry, and independence of
irrelevant information, can be defined as a function of the worst and the best outcomes of
the actions.

Proof. For this proof it is easier to use the following property that is equivalent (when Ω is
finite) to state symmetry.

40That is, for any two actions a and b, if a is strongly preferred to b by a DM holding a MIN preference,
then a is strongly preferred to b by a DM holding a MINthenMAX preference.



Axiom. For any action a and bijection ψ : Ω → Ω, the DM is indifferent between a and
a ◦ ψ.

Let a and a′ be two actions over the states set Ω s.t. minω∈Ω a (ω) = minω∈Ω b (ω) and
maxω∈Ω a (ω) = maxω∈Ω b (ω). We show that the DM is indifferent between the two, and
notice that this will prove the lemma. Assuming this claim, given any two pairs of actions:
a and a′ that have the same minimal and maximal outcome, and b and b′ that have the
same minimal and maximal outcome, a is preferred to b if and only if a′ is preferred to b′,
because the DM is indifferent between a and a′, and between b and b′.

Assume for contradiction that (w.l.o.g) the DM strictly prefers a′ to a. Since the pref-
erence satisfies state symmetry, we can assume that a and a′ are co-monotone, that is, for
any two states ω and ω′, the actions satisfy that (a (ω)− a (ω′)) (a′ (ω)− a′ (ω′)) > 0. We
denote by m and M the minimal and maximal outcomes of a and by ωm and ωM the two
respective states of nature.

ωm other states ωM
a m ∈ [m,M ] M
a′ m ∈ [m,M ] M

We define two new actions over Ω. An action b that results in m in all states besides
ωM and M otherwise, and an action b′ that results in M in all states besides ωm and m
otherwise.

ωm other states ωM
a m ∈ [m,M ] M
b m m M
a′ m ∈ [m,M ] M
b′ m M M .

Due to monotonicity the DM (weakly) prefers a to b, and b′ to a′, and hence the DM

strictly prefers b′ to b. Next, we define an auxiliary space Ω̂ = {ωm, ωo, ωM} and two actions
on it c and c′ by unifying the middle states into one as follows:

ωm ωo ωM
c m m M
c′ m M M .

Since the preference satisfies Independence of Irrelevant Information we get that the DM
strictly prefers c′ to c. Now we define a new action c′′ (see below), and by the state symmetry
property we get that also c′′ is strictly preferred to c.

ωm ωo ωM
c m m M
c′ m M M
c′′ M M m .

Using a collapsing argument similar to the one above, we get that for the following
collapsed space and two actions

ωm ωM
d m M
d′′ M m ,

d′′ is strictly preferred to d, but this contradicts the state symmetry property.



E Proof of Lemma 17 (Bilateral trade games)

Lemma. Let G be a bilateral trade game defined by a price function x (as, ab) and two type
sets Vs and Vt, both having a minimum and maximum.41 Then all the MINthenMAX-NE
of G are of one the following classes:

1. No transaction equilibria (These equilibria exist for any two sets Vs and Vb)
In these equilibria, both players do not participate (play ⊥, or play a bid too extreme
for all types of the other player) regardless of their valuations.

2. One-price equilibria (These equilibria are defined only when minVs 6 maxVb. I.e.,
when an ex-post transaction is possible.)
In a one-price equilibrium, both the seller and the buyer choose to participate for some
of their types. It is defined by a price p ∈ [minVs,maxVb] s.t. the equilibrium strategies
are:

The seller bids p for valuations vs 6 p, and ⊥ otherwise (the second clause might
be vacuously true).
The buyer bids p for valuations vb > p, and ⊥ otherwise (the second clause might
be vacuously true).

Hence, the outcome is

XXXXXXXXXXBuyer
Seller

Low: vs 6 p High: vs > p

Low: vb < p no transaction no transaction
High: vb > p p no transaction

3. Two-prices equilibria (These equilibria are defined only when minVs 6 minVb and
maxVs 6 maxVb. I.e., when there is a value for the seller s.t. an ex-post transaction
is possible for any value of the buyer, and vice versa)
In a two-prices equilibrium, all types of both the seller and the buyer choose to partic-
ipate, and their bids depend on their valuation. It is defined by two prices pL < pH s.t{

minVs 6 pL < maxVs 6 pH
pL 6 minVb < pH 6 maxVb

and the equilibrium strategies are:

The seller bids pL for valuations vs 6 pL, and pH otherwise.
The buyer bids pH for valuations vb > pH , and pL otherwise.

Hence, the outcome is

PPPPPPPPBuyer
Seller

Low: vs 6 pL High: vs > pL

Low: vb < pH pL no transaction
High: vb > pH x (pL, pH) ∈ (pL, pH) pH

Proof. We will prove that these profiles are equilibria (MINthenMAX-NE) and that they
are the only equilibria.

� No-transaction profiles
In these profiles for at least one of the players does not participate (⊥, or bids an
extreme bid) regardless of his type.
A player, facing a profile in which all the types of the other player do not participate,
is indifferent between all his actions (all of them result in no-transaction for sure),
and hence he best-responds. Facing any other profile, at least for some of his types
(e.g., the maximal value for the buyer, and minimal value of the seller), choose to
participate. Hence, the only no-transaction profile that is an equilibrium, is when
both players do not participate.

� One-price profiles
In these profiles, both the seller and the buyer choose to participate for some of their

41We state the result here for the case when both sets have a minimal valuation and a maximal valuation.
Dropping this assumption does not change the result in an essential way (some of the inequalities are changed
to strict inequalities).



types, and when they choose to participate, both bid the same price p.

First, we prove that given a one-price profile as described in the lemma, it is indeed
an equilibrium.
Consider a seller of type vs facing a profile in which there are types of the buyer that
choose p and (maybe) others that choose not to participate.

– If vs 6 p: He prefers bidding p to any bid as < p, because both bids will result
in a transaction with the same types of the buyer, but as will result in a lower
price (Monotonicity of MINthenMAX).
He prefers bidding p to any bid as > p, because as will result in no-transaction
with all types of the buyer, while p results in a profitable transaction with some
of them (Monotonicity of MINthenMAX).
We notice that since p > minVs there are types of the seller that bid p.

– If vs > p: Any bid that results in a transaction with some types of the buyer,
will be at a price lower than vs, and hence the transaction will be a losing one.
Hence, he prefers not to participate at all (Monotonicity of MINthenMAX).

Similarly, consider a buyer of type vb facing a profile in which there are types of the
seller that choose p and (maybe) others that choose not to participate.

– If vb < p: Any bid that results in a transaction with some types of the seller,
will be at a price higher than vb, and hence the transaction will be a losing one.
Hence, he prefers not to participate at all (Monotonicity of MINthenMAX).

– If vb > p: He prefers bidding p to any bid ab > p, because both bids will result
in a transaction with the same types of the seller, but as will result in a higher
price (Monotonicity of MINthenMAX).
He prefers bidding p to any bid as < p, because as will result in no-transaction
with all types of the seller, while p results in a profitable transaction with some
of them (Monotonicity of MINthenMAX).
We notice that since p 6 maxVb there are types of the buyer that bid p.

Next, we prove that any single-price profile other than those described in the lemma,
cannot be an equilibrium.
First we claim, that in equilibrium it cannot be that the prices of participating types
of one of the sides vary, while all types of the other player bid the same. If there is
a unique price p bid by participating types of the seller, based on the analysis above,
all participating types of the buyer bid p. Similarly, if there is a unique price p bid by
participating types of the buyer, all participating types of the seller bid p.
Hence, in a single-price profile, there exists a price p s.t. both some types of the seller
and some types of the buyer choose p, and all other types (might be an empty set)
choose not to participate.
If p ∈ [minVs,maxVb], by the analysis above, we see there is only one single-price
equilibrium supporting p.
If p /∈ [minVs,maxVb], by the analysis above, either all types of the buyer or all types
of the seller choose not to participate. In either case this is a no-transaction profile.

� All-participating profiles
In these profiles, all types of both the seller and the buyer choose to participate (did
not choose ⊥).

First we prove that given an all-participating profile as described in the lemma as
two-prices equilibria, it is indeed an equilibrium.
Consider a seller of type vs facing a profile in which all the types of the buyer partic-
ipate, and let pL be the infimum of the bids chosen by types of the buyer and pH the



supremum of the bids.
– If vs 6 pL: He prefers bidding pL to any bid as < pL, because both bids will

result in a transaction with all types of the buyer, but as will result in a lower
price with each of them (Monotonicity of MINthenMAX).
He prefers bidding pL to any bid as > pL, because as will result in no-transaction
with some types of the buyer, while pL results in a non-losing transaction with
all of them (MINthenMAX extends MIN).

– If vs > pL and vs 6 pH : He prefers bidding pH to any bid as < pH , because
when facing the types of the buyer that bid ab ∈ [as, pH ], both bids will result in
a transaction, but as will result in a lower price, and when facing other types of
the buyer (that bid less than as), both result in no-transaction (Monotonicity of
MINthenMAX).
He prefers bidding pH to any bid as > pH , because as results in no-transaction
with all types of the buyer, while pH results in a non-losing transaction with
some types of the buyer (Monotonicity of MINthenMAX).

We notice that since in the profiles of the lemma satisfy minVs 6 pL < maxVs 6 pH ,
all the types of the seller participate, there are types of the seller that bid pL, and
there are types that bid pH .
Similarly, consider a buyer of type vb facing a profile in which all the types of the seller
participate, and let pL be the infimum of the bids chosen by types of the seller and
pH the supremum of the bids.

– If vb < pH and vb > pL: He prefers bidding pL to any bid ab < pL, because ab
results in no-transaction with all types of the seller, while pL results in a non-
losing transaction with some types of the seller (Monotonicity of MINthenMAX).
He prefers bidding pL to any bid ab > pL, because when facing the types of the
seller that bid as ∈ [pL, ab], both bids will result in a transaction, but ab will
result in a higher price, and when facing other types of the seller (that bid more
than ab), both result in no-transaction (Monotonicity of MINthenMAX).

– If vb > pH : He prefers bidding pH to any bid ab < pH , because ab will result
in no-transaction with some types of the seller, while pH results in a non-losing
transaction with all of them (MINthenMAX extends MIN).
He prefers bidding pH to any bid ab > pH , because both bids will result in a
transaction with all types of the seller, but ab will result in a higher price with
each of them (Monotonicity of MINthenMAX).

We notice that since in the profiles of the lemma satisfy pL 6 minVb < pH 6 maxVb,
all the types of the buyer participate, there are types of the buyer that bid pL, and
there are types that bid pH .

Next, we prove that any all-participating non single-price profile, other than the above,
cannot be an equilibrium.
In an all-participating non single-price profile, all the types of both the buyer and
seller participate, and for both players, not all their types choose the same price.
If there is a type of the buyer whose value is lower than any of the prices bid by types
of the seller, then this type prefers not to participate, so it cannot be an equilibrium.
Any other type of the buyer bids either the supremum of the infimum of the prices bid
by types of the seller. Given that types of the buyer bid one of two prices, if there is
a type of the seller whose value is higher than both prices, then this type prefers not
to participate, and the profile is not an equilibrium. Otherwise, the types of the seller
also bid these two prices and we get the profile is of the type described in the lemma.

� Last, we show that all other profiles are not equilibria of the game.
Assume towards a contradiction that a is an equilibrium profile of the game that is



not one of the above profile types.
Clearly, for a match of any pair of types of the seller and the buyer, the utility of
neither of them cannot be negative, because he can guarantee himself to get at least
zero against all types of the other player by choosing ⊥.
Assume there is a type vs of the seller that chose ⊥. Then for any participating type vb
of the buyer, vb cannot guarantee himself to get a utility greater than zero (his utility
from being matched with vs) in the worst case. Hence, he breaks the tie between all
the bids ab 6 vb, all giving him zero in the worst case, according to the best case which
is being matched with the lowest bid of a participating type of the seller. Hence, we
get a contradiction by showing the profile is a one-price profile.
Similarly, assume there is a type vb of the buyer that chose ⊥. Then for any partici-
pating type vs of the seller, vs cannot guarantee himself to get a utility greater than
zero (his utility from being matched with vb) in the worst case. Hence, he breaks the
tie between all the bids ab > vs, all giving him zero in the worst case, according to the
best case which is being matched with the highest bid of a participating type of the
buyer. Hence, we get a contradiction by showing the profile is a one-price profile.

F Proof of Lemma 12 (Coordination games)

Lemma. Let G be a coordination game and let L be a non-empty set of locations. There
exists a MINthenMAX-NE profile a s.t. L (a) = L if and only if for all i the mapping
f i : T i → L that maps a type to his best location in L is onto.

Moreover, the action profile a in which every type of every player chooses his best location
in L is the unique pure MINthenMAX-NE that satisfies L (a) = L.

Proof. The case |L| = 1 is trivial. Let l be the location in L. The only profile satisfying
L (a) = L is when all players choose l regardless of their type, and this is an equilibrium.
The mappings f i are onto, and hence the lemma is proved for this case.

From now on, we assume that |L| > 2. Given a profile a we define Li (a) to be the set
of locations chosen in a by Player i,

Li (a) =
{
l
∣∣ ∃ti ∈ T i s.t. Player i of type ti plays l in the profile a

}
,

so L (a) = ∪i∈NLi (a).
⇒: Assume there exists an equilibrium a s.t. L (a) = L.

First we claim that for all players,
∣∣Li (a)

∣∣ > 1. Assume towards a contradiction, there

is a non-empty set of players S s.t. i ∈ S ⇐⇒
∣∣Li (a)

∣∣ = 1, and let p be a player in S and
l the location chosen by p.

If |S| = 1, then for any of the other players the only action guaranteeing them to meet
another player is choosing l, and hence all players choose l regardless of their type. I.e.,
L (a) = {l} and we get a contradiction.

If |S| > 1, then any of the players can guarantee himself to meet another player on the
worst case, and hence will choose a location in ∪i∈SLi (a). Since all players aim to maximize
the number of other players they meet on the worst-case, it cannot be that two players in
S choose differently (both maximize the number of other players from S that choose like
them). Hence,

∣∣∪i∈SLi (a)
∣∣ = 1 and we get that |L (a)| = 1. Contradiction.

Hence, for all players,
∣∣Li (a)

∣∣ > 1. Player i of type ti ∈ T i cannot guarantee himself to
meet other players, and hence he will choose the best location according to his type among
the locations in ∪j 6=iLj (a) that maximize the number of other players he might meet -
m (l) = #

{
j 6= i

∣∣ l ∈ Lj (a)
}

.
Next, we prove that for all players Li (a) = L (a). Assume for contradiction there exists

Player p s.t. Lp (a) ( L (a). Let l ∈ Lp (a) be a location chosen by p, and let l′ be a location
and p′ a player s.t. l′ ∈ Lp′ (a) \ Lp (a). Since Player p (of some type) chose l, we get that



the number of players j 6= p that chose l is at least as large as the number of players j 6= p
that chose the location l′. Taking the viewpoint of Player p′ we get that the number of
players j 6= p′ that chose l is strictly larger than the number of players j 6= p′ that chose
the location l′. But this is a contradiction to l′ ∈ Lp′ (a) .

Hence, we get that in a, Player i of type ti ∈ T i choose the best location according to
his type among the locations in L (in all of them he meets no-one in the worst-case and
everyone else in the best case). That is, Player i plays according to the function f i, and
L = Li = Im (f), so f is onto. Notice that we also get this profile is the unique equilibrium
s.t. L (a) = L.
⇐: Assume the functions f i are onto. It is easy to verify that in the profile a in which
Player i plays according to f i, Player i best-responds (for all i). - None of his actions
guarantees him to meet some other player in the worst case; if he plays an action a /∈ L, he
does not meet another player even in the best-case; if he plays an action a ∈ L, he meets
all other players in the best-case; hence, he best-responds playing according to f i.
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