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Abstract

District-based elections, in which voters vote for a district representative and those

representatives ultimately choose the winner, are vulnerable to gerrymandering,

i.e., manipulation of the outcome by changing the location and borders of dis-

tricts. Many countries aim to limit blatant gerrymandering, and thus we introduce

a geographically-based manipulation problem, where voters must vote at the ballot

box closest to them.

We show that this problem is NP-complete in the worst case. However, we present

a greedy algorithm for this problem, and using it on the real-world data from the

2015 Israeli and British elections, we show that many parties are potentially able to

make themselves victorious using district manipulation. Moreover, we show that the

relevant variables here are not vote share, nor even seat share, but more likely some

form of geographic dispersion.

1 Introduction

Voting mechanisms are commonly used to select a single option from a multitude of options.
However, in some cases, an intermediary step is used. In many parliamentary democracies,
the public votes for a representative of their district,1 and those representatives choose
the executive authority. For example, the electoral college in US presidential elections and
Westminster-system parliaments (UK, Canada, Australia, etc.) work in this way. The
technique is not unique to electoral contexts, but manifests itself in many systems which
have an organizational structure: companies divided into divisions, in which each division
makes a recommendation, and then division heads reach a �nal decision; collections of
sensors interpreting input, in which each subgroup of sensors reports its understanding to a
central processing unit, etc.

One of the major issues facing district-based parliamentary systems is the ability of
participants in the system to manipulate it by determining the districts, in�uencing the
outcome (so one's opponents are either a minority in many districts, or their majorities
are very centralized in very few districts containing a high concentration of them). In US
political jargon, this is commonly termed gerrymandering, after Massachusetts governor
Elbridge Gerry, who was accused in 1812 of creating a salamander shaped district in the
Boston area to bene�t his party. US political parties have used this technique to manipulate
elections for years [21, 8], and due to its use to disenfranchise African-American voters in
some states, the US Voter Rights Act of 1965 included provisions that required district
changes in several states to be approved by federal authorities [32].

In response to accusations of such manipulations, a call for more �rational� districting
has been heard from many quarters [20, 34]. This is commonly understood to include a
system in which voters are close to the rest of their district [34]. In a sense, voters should
always go to a ballot box (or central area) that is closest to them, not one that is further

1Various terms are used for this: districts in the US, constituencies in the UK, ridings in Canada, etc.
In this work we shall use the term district.



away. Moreover, this is a recurring problem, since setting of district boundaries is not a one-
time event�due to population movement, district boundaries are constantly changing, and
countries adopt mechanisms to make sure they are updated (in the US, a constitutionally
mandated census triggers this; in the UK, parliament asks the Electoral Commission to do
this, etc.).

However, as this paper will make clear, even in settings that seek a �rational� district
division, manipulations are still possible. We consider the problem using both theoretical
and empirical tools. As one of the �rst papers in computational social choice to include
a spatial component, we examine the complexity of designing voting districts in which all
voters vote in the ballot box nearest to them. We show that the complexity of �nding a
geographical division to make a preferred candidate win is NP-complete.

However, we present a greedy algorithm that is able to �nd some of the possible manip-
ulations. We use this algorithm, combined with ballot box information from both the 2015
Israeli election and the 2015 UK election, to show how di�erent geographic divisions would
result in di�erent winners.

2 Related Work

The e�ects of voting districts on election outcomes has been widely debated, particularly in
the US, where gerrymandering became an issue in the early 19th century, and in the UK,
where the existence of �rotten boroughs�2 caused an outcry from the 18th century onwards,
which was remedied in successive reform bills, from 1832 and onward.

Academic research in this �eld has dealt with the historical aspect [6, 4], the sociological
aspect [25], and the legal aspect, in particular following the Voting Rights Act of 1965,
focusing on particular countries (though mainly the US) [32, 21, 14].

However, the main area where this topic has been explored is in political science [8].
This analysis mainly delved into data of past elections [10, 26, 27, 22, 23, 18], along with
statistical assumptions [33]; it tried to determine when gerrymandering occurs, and how to
calculate some of its properties in the case of two parties. Some work was done to examine
the di�erence between fully proportional representation vs. the outcome under winner-takes-
all districts, and to �nd distance metrics between these two results [15, 12, 16, 11]. This
included analysis using Banzhaf index and voter power.

The main topic of interest in the computational social choice community, since its initial
groundbreaking papers [3, 2], was the issue of voter manipulation [36, 37, 29] and dealing
with the implications of the Gibbard-Satterthwaite theorem [17, 31]. The issue of institu-
tional manipulation has been explored to a far lesser degree. Control problems, where a
central planner may in�uence the outcome using its power over the voting process, have
been explored to some extent (e.g., [19] and the survey [9]), which included some prelimi-
nary work on dividing voters into groups [7]. Focusing only on a two-party scenario (as in
the US), [28, 13] examined optimal gerrymandering strategies. More recent work [1] de�ned
a ratio to indicate how unrepresentative a district election is, and showed a few bounds on
this value. In any case, to our knowledge, no paper in the �eld has approached the problem
from a spatial, geographic, point of view.

Closest in spirit to this paper is the work of Puppe and Tasnádi [30], which shows that
dividing voters into districts in a way such that the number of representatives of a party
will be proportional to its share of the votes, under some general geographic constraints, is
computationally intractable.

2Voting districts based on centuries-old divisions which after some time contained a very small electorate,
usually controlled by very few people. Most notorious of which was Old Sarum, set up in 1295 with 2 members
of parliament, yet by 1831 contained only 11 voters, none of whom lived in it.



3 Preliminaries

An election Ef = (V,C) is comprised of a set V of n voters (possibly weighted) and a set of
candidates C. Let π(C) be the set of orders over the elements of C. Each voter v ∈ V has
a preference order �v∈ π(C). A voting rule is a function f : π(C)n → C.

In this work we will focus on the most common voting rule, plurality. Under this voting
rule, each voter awards a point to a single candidate, and the candidates with the maximal
number of points are the winners. A tie-breaking rule t : 2C → C is then used to select the
ultimate winner of the election.

In a district-based election, Ef−g voters are divided into disjoint sets V1, . . . , Vs such
that ∪si=1Vi = V . These sets de�ne a set of s elections E if = (Vi, C). The ultimate winner

from amongst the winners of E if is determined by g, which in the analysis below will be
plurality combined with a threshold function (i.e., the winner will need to win a plurality
of the districts, and, potentially, above a certain number of districts).

We are now ready to de�ne the problem with which we will be dealing:

De�nition 1. The input of the gerrymanderingf problem is:

• A set of candidates C.

• A set of voters V = {v1, . . . , vn} ⊂ R2, where every voter v ∈ V is identi�ed by their
location on the plain, a weight wv > 0 and a strict preference �v∈ π(C) over C.

• A set of possible ballot boxes B = {b1, . . . , bm} ⊂ R2. Each ballot box is a district.

• Parameters l, k ∈ N, such that l ≤ k ≤ m.

• A target candidate p ∈ C.

In the gerrymanderingf problem, we are asked whether there is a subset of k ballot boxes
B′ ⊂ B, such that they de�ne a district-based election, in which every voter votes at their
closest ballot box in B′, the winner at every ballot box is determined by voting rule f , then
p wins in at least l ballot boxes.

Remark 1. Note that while we use the term gerrymandering, this is not gerrymandering as
the term is commonly used: we require voters to vote at their closest ballot box, and prevent
designing �unnatural� districts, that force voters to vote far from their local area.

This prevents mathematically possible manipulations such as setting each supporter of p
in their own district, and grouping all the rest in a contiguous single district.

Example 1. Consider a gerrymanderingplurality instance with two candidates, 8 voters,
and 4 possible ballot boxes from which we are asked to choose 3, as illustrated in Figure 1a.
The voters who support candidate a are represented as circles, the voters who support can-
didate b are represented as triangles, and the ballot boxes are the squares. Figure 1b shows
a possible selection of 3 ballot boxes (the �lled squares are the selected ballot boxes) that
induces a partition into three districts (the boundaries are the dashed lines) in which candi-
date a wins two out of the three districts and thus wins the election, while Figure 1c shows
a possible selection of 3 ballot boxes such that candidate b wins two out the three districts
and thus wins the election.

4 Complexity of Gerrymanderingplurality

We are now ready to present the main result of this paper.
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Figure 1: An example of a gerrymanderingplurality instance with two candidates (a) and
two possible outcomes that result in di�erent winners (b) and (c).

Theorem 1. gerrymanderingplurality is NP-Complete, even when the number of candi-
dates is a constant.

To show gerrymanderingplurality is NP-Complete we will reduce Planar X3C, a known
NP-Complete problem [5], to gerrymanderingplurality.

De�nition 2. In the Planar Exact Cover by 3-Sets (X3C) we are given a bipartite planar
graph G = (X ∪ S, E), where X = {x1, . . . , x3n}, S = {S1, . . . , Sm}, every S ∈ S is S ⊆ X
and |S| = 3, and (x, S) ∈ E ⇐⇒ x ∈ S. We are asked whether there is a subset S̄ ⊂ S
such that

∣∣S̄∣∣ = n and for every S, S′ ∈ S̄ it holds that S ∩ S′ = ∅.

In what follows, when we are given a planar graph G, we will associate every node of G
as a point in R2.

Before we can begin showing that gerrymanderingplurality is NP-Complete by reduc-
tion from Planar X3C, we must add some constraints to the Planar X3C problem.

De�nition 3. In the Planar X3C* problem we are given a bipartite graph G as in Planar
X3C. However, the graph G when embedded on the plain has the following properties (similar
to what is portrayed in Figure 2a):

1. For every x ∈ X, S, S′ ∈ S such that x ∈ S′ and x /∈ S: d (x, S) < d (x, S′) where
d (·, ·) is the Euclidean distance.

2. For every x, x′ ∈ X, S ∈ S such that x ∈ S and x′ /∈ S: d (x, S) < d (x′, S).

3. For every x ∈ X, S, S′ ∈ S such that x ∈ S ∩ S′: d (x, S) < 2d (x, S′).

4. For every x, x′ ∈ X, S ∈ S such that x, x′ ∈ S: d (x, S) < 2d (x′, S).

5. For very two elements x, x′ that belong to the same set S ∈ S, the angle ∠xSx′ is at
least π

3 and at most 5π
6 .

6. Every three elements that share a set induce a triangle, and the triangles do not overlap.

Next, we show that adding these constraints on the planar graph do not make the
problem easier.

Lemma 1. Planar X3C* is NP-Complete.
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Figure 2: (a) The Planar X3C* gadget; the circles are the elements and the square is the
set. And (b) the gerrymanderingplurality gadget; the squares are the ballot boxes, the
circles, pentagons, rhombi and triangles are voters V 1, V 2, V 3 and V 4, respectively, with
their preferences.

Proof sketch. We start with the 3,4-SAT problem. This problem is a special case of the
well-known SAT problem where each variable appears in at most four clauses, and every
clause contains at most three variables. This problem is known to be NP-Complete [35]. A
3,4-SAT instance will be reduced to a Planar 3-SAT instance [24]. Next, the Planar 3-SAT
instance will be reduced to a Planar 1-3-SAT [5]. Finally, the Planar 1-3-SAT instance will
be reduced to Planar X3C* instance (via the reduction in [5]).

By following this reduction chain we are guaranteed that the degree of every vertex is
bounded by a constant, and that all the constraints are satis�ed.

of Theorem 1. We reduce an arbitrary Planar X3C* instance, G = (X ∪ S, E) to the follow-
ing gerrymanderingplurality instance. First, we may assume that there is a map function
π : S ×X → {1, 2, 3} such that if x, x′ ∈ S, x 6= x for some S ∈ S then π (S, x) 6= π (S, x′).
Hereafter, when we address a set S = {xi, xj , xk}, we assume that π (S, xi) = 1, π (S, xj) = 2
and π (S, xk) = 3.

In the reduced gerrymanderingplurality instance there are 4 candidates C =
{p, a, b, c, d}; 4 sets of voters V = V1 ∪ V2 ∪ V3 ∪ V4; and 2 sets of ballot-boxes B = B1 ∪B2.

For every element in X we will have a voter in V1, that is, V1 =
{
v1

1 , . . . , v
1
3n

}
. For every

(x, S), x ∈ S pair we will have a voter in V2, a voter in V3 and a voter in V4. That is,
Vi =

{
vix,S : x ∈ S

}
for i = 2, 3, 4. The weight of the voters in V3 is 3, and the weight of the

other voters is 2. Voters in V1 and V2 prefer candidate p; and for every set S = {xi, xj , xk},
voters v3

xi,S
and v4

xi,S
prefer candidate a; voters v3

xj ,S
and v4

xj ,S
prefer candidate b; and

voters v3
xk,S

and v4
xk,S

prefer candidate c.

For every set in S we will have a ballot box in B1, that is, B1 =
{
b11, . . . , b

1
m

}
. For

every (x, S), x ∈ S pair we will have a ballot box in B2. That is, B2 =
{
b2x,S : x ∈ S

}
. To

conclude, there are 3n+ 9m voters and 4m ballot boxes.
The location of a voter in V1 will be as the location of the corresponding element, and

the location of a ballot box in B1 will be as the location of the corresponding set. Ballots
and voters are organized as shown in Figure 2b:

• For every ballot box b2x,S ∈ B2, the location of b2x,S will be on the line between x and

S such that d
(
b2x,S , S

)
= d

(
b2x,S , x

)
.



• Location of a voter v3
x,S ∈ V3 will be on the line between b2x,S and b1S such that

d
(
v3
x,S , b

2
x,S

)
= ε, for some small ε > 0.

• Voter v2
x,S ∈ V2 location is on the line between v3

x,S and b1S such that d
(
v2
x,S , v

3
x,S

)
=

d
(
v2
x,S , b

1
S

)
.

• For every set S = {xi, xj , xk}, set the location of v4
xi,S

on the line between b2xi,S
and

b2xj ,S
such that d

(
v4
xi,S

, b2xi,S

)
= d

(
v4
xi,S

, b2xj ,S

)
+ ε.

• Similarly, location of v4
xj ,S

is on the line between b2xj ,S
and b2xk,S

such that

d
(
v4
xj ,S

, b2xj ,S

)
= d

(
v4
xj ,S

, b2xj ,S

)
+ ε; and set the location of v4

xk,S
on the line be-

tween b2xk,S
and b2xi,S

such that d
(
v4
xk,S

, b2xk,S

)
= d

(
v4
xk,S

, b2xi,S

)
+ ε.

At this point we should note that:

• For every x ∈ S, voter v1
x is closer to ballot box b2x,S , than to ballot box b1S .

• For every x ∈ S ∩ S′, voter v1
x is closer to ballot box b2x,S , than to ballot box b1S′ (this

holds due to requirement 3 in De�nition 3).

• For every x ∈ S, x′ ∈ S′ such that x 6∈ S′, voter v1
x is closer to ballot box b2x,S , than

to ballot box b1S′ and ballot box b2x′,S′ (this holds due to requirements 1 and 2 in
De�nition 3).

• For every x ∈ S, voter v2
x,S is closest to ballot box b1S , then to b2xi,S

, and then to all

other ballot boxes; and voter v3
x,S is closest to ballot box b2x,S then to all other ballot

boxes (this holds due to requirements 2 and 5 in De�nition 3).

• For every S = {xi, xj , xk}, voter v4
xi,S

is closer to ballot box b2xj ,S
than to ballot box

b2xi,S
; voter v4

xj ,S
is closer to ballot box b2xk,S

than to ballot box b2xj ,S
; and voter v4

xk,S

is closer to ballot box b2xi,S
than to ballot box b2xk,S

;

The objective is to decide whether there is a subset of 2n+m ballot boxes such that p will
win in all of them.

First, assume G = (X ∪ S, E) is a �yes� X3C* instance. Let S̄ ⊂ S such that
∣∣S̄∣∣ = n and⋃

S∈S̄ S = X. Let B′1 =
{
b1i : Si /∈ S̄

}
, B′2 =

{
b2x,S : S ∈ S̄, x ∈ S

}
and �nally B′ = B′1∪B′2.

For every v1
i ∈ V1 there exists only one S ∈ S̄ such that xi ∈ S. Therefore, b2xi,S

∈ B′
and voter v1

i will go to vote there.
For every S = {xi, xj , xk} ∈ S̄, we have that v1

i , v
2
xi,S

, v3
xi,S

and v4
xk,S

will vote in b2xi,S
,

therefore p will win as they would receive 4 votes and the other candidates would get at
most 3 votes. In the same way, p will also win in b2xj ,S

and b2xk,S
.

For every S = {xi, xj , xk} /∈ S̄, we have that v2
xi,S

, v3
xi,S

, v4
xi,S

, v2
xj ,S

, v3
xj ,S

, v4
xj ,S

,v2
xk,S

,

v3
xk,S

, and v4
xk,S

will vote in b1S . p will get 6 votes and every other candidate will get 5, and
p will thus win.

Hence p will win in every ballot box, and there are a total of 3n+m−n = 2n+m ballot
boxes. Thus the reduced gerrymanderingplurality instance is a �yes� instance as well.

Now, assume that the resulting gerrymanderingplurality instance is a �yes� instance,
so there is B′ ⊂ B such that |B′| = 2n+m and p wins in all of the ballot boxes.

Let b2xi,S
∈ B′; it must hold that b1S /∈ B′, otherwise, p could not win at this ballot box,

as v2
xi,S

will vote at b1S and v3
xi,S

will vote at b2xiS
. Furthermore, assume S = {xi, xj , xk},



v4
xi,S

is closer to b2xj ,S
than to b2xi,S

; hence it must hold that b2xj ,S
∈ B′. In the same way,

b2xk,S
∈ B′.

Therefore, for every S = {xi, xj , xk} either
{
b2xi,S

, b2xj ,S
, b2xk,S

}
⊂ B′ and b1S /∈ B′, or{

b2xi,S
, b2xj ,S

, b2xj ,S

}
∩B′ = ∅.

For every S = {xi, xj , xk} ∈ S, let l (S) =
∣∣∣{b2xiS

, b2xjS
, b2xkS

}
∩B′

∣∣∣ ∈ {0, 3}; in addition,

let t =
∣∣{S ∈ S : b1S ∈ B′

}∣∣, and �nally let r = |{S ∈ S : l (s) = 3}|.
We have that |B′| = t + 3r ≤ m + 2r, as t + r ≤ m. Moreover, |B′| = m + 2n, hence

n ≤ r. Falsely assume that n < r; then there is v1
i ∈ V1 such that xi ∈ S ∩ S′ and

l (S) = l (S′) = 3. However, v1
i can vote only at one ballot box, say b2xi,S

, thus p will loss at

b2xi,S′ which contradicts the assumption that p wins at every ballot box. Therefore n = r.

Finally, let S̄ = {S ∈ S : l (S) = 3}; we have that
∣∣S̄∣∣ = n, and for every S, S′ ∈ S̄ S∩S = ∅

� otherwise as before, for x ∈ S ∩ S′ where S, S′ ∈ S̄ it holds that b2x,S , b
2
x,S′ ∈ B′, yet p

cannot win at b2x,S and at b2x,S′ . Therefore, the X3C* instance is a �yes� instance.

Remark 2. In the reduction we required that a speci�c candidate win in all ballot boxes.
However, any other bound can be similarly proven, by adding dummy voters and ballot boxes
�far far away�.

5 Gerrymanderingplurality in the Real World

While showing gerrymanderingplurality is NP-complete in the worst case, we wish to
examine its di�culty and applicability in the real world. To do so, we show a greedy
algorithm, and check its applicability by running it using the 2015 Israeli and UK elections,
seeing what parties we can make victorious just by adjusting the number and border of
districts. Our results attest to the primacy of geographical dispersion as a key aspect, apart
from voting share or parliamentary seat share.3

5.1 A Greedy Algorithm

As the gerrymanderingplurality problem is NP-Complete, we design a greedy algorithm
that takes as input a set of candidates C, a set of voters V = {v1, . . . , vn} ⊂ R2, each with
a preference order over C, a set of ballot boxes B = {b1, . . . , bm} ⊂ R2, a target candidate
p ∈ C, and a parameter k ≤ m. The algorithm tries to �nd a subset of the ballot boxes B′

sized k such that when every voter in V votes at their closest ballot box in B′, the target
candidate wins a plurality of the districts.

The greedy algorithm initially sets B′ to be the full ballot boxes set, and then eliminates
ballot boxes from B′ one after the other, until |B′| = k.

The objective of the greedy algorithm, in every elimination step, is to keep the ratio
between the number of ballot boxes that p wins to the number of ballot boxes that any
other candidate wins as high as possible. The pseudocode of the greedy algorithm is given
in Algorithm 1.

Remark 3. The objective of the greedy algorithm described in Algorithm 1 is to �nd a
partition to k districts such that p wins a plurality of districts, while the decision problem is
to decide whether there is a partition to k districts such that p wins at least l of them. As

3The elections we looked into use plurality, but, in general, this technique can still be used, in a way,
to analyze gerrymandering with other voting rules, by considering each data point of a set of voters as
a single weighted voter with the voter's full preference being according to the the vote distribution at that
particular data point.



Algorithm 1 Greedy Gerrymanderingplurality

1: procedure GreedyGerrymandering(V,B, k, p)
2: B′ ← B
3: while |B′| > k do
4: for all b ∈ B′ do
5: fb ← findRatio(B′, b, V, p)
6: end for

7: b← arg maxb∈B′{fb}
8: B′ ← B′ \ {b}
9: end while

10: if p wins a plurality of ballot boxes then
11: return True
12: else

13: return False
14: end if

15: end procedure

1: procedure findRatio(B, b, V, p)
2: B′ = B \ {b}
3: return

|{b̃∈B′:p wins in b̃}
maxc∈C,c6=p |{b̃∈B′:c wins in b̃}

4: end procedure

noted in Remark 2, the two problems are essentially equivalent; furthermore, Algorithm 1
can be easily modi�ed to meet the other objective.

5.2 Israeli Results

The dataset of the 2015 Israeli legislative election4 contains the number of voters and vote
distribution in every Israeli city, town, village, and hamlet. We considered each location
both a voter and as a possible ballot box. All voters in a particular locale were considered
as if they were living in the same central location. The location of the voters and the ballot
boxes is the geographic location of the place itself. We had in our dataset 1098 locales.

In Figure 3 we show parties that won at least some of the 120 seats in the Israeli 20th
Knesset, the percentage of the popular vote, and the percentage of Knesset seats won in the
election. Moreover, for every party the graphs show the maximal and minimal number of
districts such that Algorithm 1 �nds a partition to that number of districts such that the
party wins the plurality of districts.

As Figure 3 shows, neither the percentage of votes nor the number of seats have a
monotonic e�ect on the partition that the greedy algorithm �nds. For example, the Kulanu
party won 7.49% of the votes, and the greedy algorithm could not �nd a partition to districts
such that this party would have won a plurality of districts; while the Jewish Home party
and the United Torah Judaism party both won below 7% of the popular vote, yet are able to
win in a signi�cant number of district allocations, attesting to their particular geographical
voter dispersal pattern, which maintains majorities in geographically signi�cant parts of the
country.

We can also examine how close elections were, using the algorithm's goal function, as
can be seen in Figure 4. Notice how, despite its lower overall vote share, the Zionist Union is

4http://votes20.gov.il/



0

200

400

600

800

1000

1200

0

5

10

15

20

25

30

Likud Zionist Union Joint List Yesh Atid Kulano Jewish Home Shas Yisrael Beiteinu UTJ Meretz

N
um

be
r o

f v
ot

in
g 

di
st

ric
ts

Pe
rc

en
ta

ge
 o

f p
op

ul
ar

 v
ot

e/
pa

rli
am

en
ta

ry
 se

at
s

Vote Share MK Share Max Min

Figure 3: Maximal and minimal district number that can enable a party to become the
plurality winner (line graphs) compared to share of popular vote and MK share (bar graphs)

able to gain a massive number of seats over other parties, thanks to its particular spread-out
distribution in the country.

5.3 United Kingdom Results

The dataset of the 2015 British general election5 consists of the number of votes for every
party in every constituency. As in the dataset of the Israeli elections, all voters in a particular
constituency were considered as if they were living in the same central location. We had in
our dataset 650 constituencies.

Figure 5 shows for every party that won one of the 650 seats in the 56th Parliament
of the United Kingdom, its percent of the popular vote, its percent of parliamentary seats,
and the number of districts the UK can be divided into, that result in the party winning a
plurality of districts.

As in the Israeli case, Figure 5 shows that neither the percentage of votes nor the number
of parliamentary seats has a monotonic e�ect on the partition that the greedy algorithm
�nds. Note that while geographically focused parties�in Scotland (SNP), Wales (Plaid
Cymru), and Northern Ireland (Sinn Féin, SDLP and UUP)�are able to �nd winning
gerrymandering, more widely-supported, yet widely-dispersed parties, such as UKIP and
the Green Party, were not able to do so.

Once more, Figure 6 allows us to look at how close elections were, using the algorithm's
goal function. Because it is well-spread over a swath of the UK, the SNP is able at a
lower district level (where its further-away competitors are condensed into fewer districts)
to achieve a signi�cant margin of victory.

5http://www.electoralcommission.org.uk/our-work/our-research/electoral-data
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Figure 4: Ratio between the number of districts the party won and the maximal number of
districts that any other party won; in every iteration of Algorithm 1. When the values are
above 1, the greedy algorithm �nds a partition where the party wins a plurality of districts.
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Figure 6: Ratio between the number of districts the party won and the maximal number of
districts that any other party won; in every iteration of Algorithm 1.

6 Discussion

In this work we introduced the gerrymandering problem, a control manipulation problem
that is based on winning district-based elections by using a particular division of a spatial
area into districts. We then examined solving this problem with a greedy algorithm using
real-world data from the 2015 Israeli and UK elections.

It is obvious that if district lines were completely arbitrary, the problem would be trivial:
as was possible in pre-1832 Britain, with its multitude of rotten boroughs, one could de�ne
particular voters as a district on their own, while putting a mass of voters into a single
district, thus ensuring victory. However, our requirement that voters vote in the nearest
geographical district to them prevents such barefaced gerrymandering (in fact, Elbridge
Gerry's own salamander shaped district would not be allowed in our setting. . .), in line with
current e�orts to limit the possibility of gerrymandering.

Our empirical work shows that the issue determining possibility of manipulation is not
directly related to voting share or parliamentary weight (which, particularly as Britain has
a district-based election system, is surprising). The geographical dispersion of the voters
plays a major part in this, and we hope further research will do more to investigate the
various variables that come into play when manipulation is geographically based.

An issue we have put aside in this �rst analysis of spatial voting manipulations is the
size of each district. While there are certainly disparities in many countries' district sizes
(in the US Senate, the �district� of California contains more than 70 times the population
of the �district� of Wyoming, both having equal representation), many countries do aim to
achieve a rough equivalence in district sizes. Our theoretical result shows the complexity is
NP-complete when allowing districts di�erent from each other by a �xed factor of only 2 1

3
(or more). Our empirical results did not consider this issue; though, for example, one of the
divisions in which Labour won a plurality of seats in the British election had the maximal
district only 2 2

3 larger than the smallest one.
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