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Abstract

Manipulation by merging in weighted voting games (WVGs) is a voluntary action of
would-be strategic agents who come together to form a bloc in anticipation of receiv-
ing more payoff over the outcomes of games. The inability to limit (or understand)
the effects of this menace may undermine the confidence agents have in decisions
made via WVGs. If the results are not seen as fair, agents may refuse to abide by
decisions made in this manner. We propose four non-trivial bounds to characterize
the effects of merging in WVGs using the well-known Shapley-Shubik and Banzhaf
indices. The bounds for the Shapley-Shubik index are shown to be asymptotically
tight while those of the Banzhaf index are found to be within constant factors.

1 Introduction

Autonomous agents in complex environments may need to work together to achieve desired
goals. This is an important feature of many multiagent environments where individual agents
lack all the required capabilities, skills, and knowledge to complete tasks alone. Agents
may thus resort to cooperation such as coalition formation, to complete tasks while being
compensated with payoffs. One way of modeling such cooperation is via weighted voting
games (WVGs). See Chalkiadakis, Elkind, and Wooldridge [1] for examples. WVGs are
important in multiagent systems and human societies because of their usage in automated
decision-making. In a WVG, a quota is given and each agent has an associated weight. A
subset of agents whose total weight meets or exceeds the quota is said to be winning. Agents’
power in such games is measured using power indices. The power of an agent reflects its
ability to influence or affect the outcomes of decision-making processes. The Shapley-Shubik
[2] and Banzhaf [3, 4] indices are two prominent indices for computing agents’ power.

Even though WVGs are useful in modeling cooperation, they are not immune from the
vulnerability of manipulation (i.e., dishonest behavior) by some players called manipulators,
or referred to as being strategic, that may be present in the games. With the possibility of
manipulation, it becomes challenging to establish or maintain trust in such games. This
problem of insincere and manipulative behaviors among agents in WVGs has received at-
tention of researchers in recent years. See the work of [5, 6, 8, 9, 10]. Manipulation by merging
in WVGs involves voluntary coordinated action of strategic agents who come together to
form a bloc by merging their weights into a single weight [6, 13]. The agents in the bloc are
assumed to be assimilated voters since they can no more vote as individual voters in the
new game, rather as a bloc. The new game consists of the previous agents in the original
game that are not assimilated, as well as the bloc formed by the assimilated voters.

Strategic agents merge their weights in anticipation of gaining more power over the
outcomes of games. In a beneficial merge, merged agents are compensated commensurate
with their share of the power gained by the bloc. Agents in the bloc are assumed to be
working cooperatively and have transferable utility. Thus, proceeds can easily be distributed
among the manipulators without bickering. Common settings that may be vulnerable to

1Earlier versions of this article appeared in the 28th International FLAIRS conference (FLAIRS 2015)
and the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016)



such attack are online elections, rating systems, electronic negotiation, and auctions. See
for example, Yokoo, Sakurai, and Matsubara [11], where the effects of false-name bids in
combinatorial auction as a form of Internet fraud was studied.

A motivation for this problem can be found in decision-making, e.g., in negotiation
settings. Consider a set of agents, A = {a1, a2, . . . , an}, negotiating on how to allocate some
budgets, B. Let a payoff method, such as the Shapley-Shubik or Banzhaf index allocate B
as say, P = {p1, p2, . . . , pn}, to agents A, respectively, based on their contributions to the
coalition. Suppose some strategic agents, S ⊂ A, merge their weights to form a single bloc,
they may be able to increase their share of the budget.

We motivate this problem further using a real-world example from social choice do-
main. Consider a parliament consisting of five political parties, A, B, C, D, and E, which
have 20, 30, 40, 50, and, 50 representatives (i.e., weights), respectively. This parliament is to
vote on a $100 million spending bill and how much of this amount should be controlled by
each party. Furthermore, the bill requires a quota, q ∈ [111, 120], i.e., the number of votes
to pass. Assuming that all members of a political party votes in the same direction on a bill,
the Banzhaf index allocates the amount of the spending bill to be controlled by each party
as follows: A = $4m, B = $20m, C = $20m, D = $28m, and E = $28m. Now, suppose
political parties A, B, and D, merge their weights to form a bloc with weight 100. The sum
of the initial allocation to each party in the bloc is $4m + $20m + $28m = $52m. However,
the new allocation of the amount by Banzhaf index to the manipulators’ bloc in the altered
game is $60m, which is more than $52m. This indicates a beneficial merge with a payoff
increase of $8m for the manipulators’ bloc.

The scenarios described above obviously raise the following important questions that we
seek to answer in this research: What is the extent of budgets, payoffs, or power (depending
on the settings under consideration) that manipulators may gain? Analogously, what is the
amount of damage that is caused to the non-manipulating agents in the games?

This research is thus primarily motivated by the need to provide insights into understand-
ing the details of the problem of this insincere and manipulative behavior in WVGs. We
are concern that the inability to limit (or understand) the effects of this manipulation may
undermine the confidence agents have in decisions made via WVGs. If the results from this
decision-making process are not seen as fair, agents may refuse to abide by decisions made
in this manner. The present work is limited to the case when the number of strategic agents
in the games is 2. Our main results are as follows.

• We propose four non-trivial bounds to characterize the effects of manipulation by
merging in WVGs using the well-known Shapley-Shubik and Banzhaf power indices.

• The bounds for the Shapley-Shubik index are shown to be asymptotically tight, i.e.,
there exists at least a game in which strategic agents achieve the proposed bounds by
merging their weights to form a bloc.

• Also, the bounds for the Banzhaf index are found to be within constant factors.

2 Related Work

WVGs are widely studied [14, 15, 16, 17, 18]. They have found applications in many real-
world environments, including the United Nations Security Council, the Electoral College
of the United States, the International Monetary Fund [19, 20], the Council of Ministers,
and the European Community [15]. The issue of WVGs design has also recently received
attention of many researchers in the field [21, 22, 23]. The Shapley value [24], its variant,
Shapley-Shubik [2], and the Banzhaf [3, 4] indices are the well-known power indices used



in measuring power of agents in WVGs. Other lesser known power indices are the Deegan-
Packel [25], Johnston [26], and Holler-Packel [27] indices.

WVGs are vulnerable to various forms of dishonest behaviors, referred to as manip-
ulations. These manipulations are due to strategic players that may be present in the
games. Prominent among these forms of behaviors are manipulations by splitting and merg-
ing [5, 7, 6, 8, 9, 10]. Unlike in merging where two or more strategic agents merge their
weights to form a single bloc, manipulation by splitting involves a strategic agent splitting
its weight among two or more false agents in anticipation of gaining more power. These
two forms of manipulations have received attention of many researchers for the cases when
the number, k, of strategic agents involved is either k = 2 or k > 2. However, none of
these works has considered the bounds on the extent of power that strategic agents may gain
when they merge their weights using the Shapley-Shubik and Banzhaf power indices. It is
important to point out that the effects of manipulation by splitting are well studied. Table
1 provides a summary on the state of the arts on manipulation by splitting in WVGs.

Bounds # Strategic agents Shapely-Shubik Index Banzhaf Index

Upper k = 2 Bachrach & Elkind [5] Aziz & Peterson [28]
k > 2 Lasisi & Allan [10] Lasisi & Allan [10]

Lower k = 2 Bachrach & Elkind [5] Aziz et al. [6]
k > 2 Lasisi & Allan [10] Lasisi & Allan [10]

Table 1: Summary of bounds for manipulation by splitting in weighted voting games

Previous work [6] has shown that the problem of finding beneficial merge is NP-hard
for both the Shapley-Shubik and Banzhaf indices. This complexity result seems sufficient
to discourage would-be strategic agents from merging. However, NP-hardness is a worst
case measure, and only shows that at least an instance of the problem requires such com-
plexity. Thus, the real-life instances of WVGs that we care about may be easy to ma-
nipulate [9]. Furthermore, Felsenthal and Machover [13] characterize situations when it is
advantageous or disadvantageous for agents to merge, and show that using the Penrose-
Banzhaf measure, merging can be advantageous or disadvantageous. Also, Lasisi and Allan
[12] consider empirical evaluation of the extent of susceptibility of three power indices,
namely, Shapley-Shubik, Banzhaf, and Deegan-Packel, to merging. Their results show that
the Shapley-Shubik index is the most susceptible to merging among the three indices. How-
ever, none of these works provide bounds on the extent of power that manipulators may
gain in the case that the merging is advantageous.

In contrast to these works, we propose new bounds on the extent of power that strategic
agents may gain with respect to merging in WVGs using the Shapley-Shubik and Banzhaf
indices to compute agents’ power.

3 Preliminaries

We present some preliminaries in this section, including definitions and notation, formal
problem definition, and illustrative examples needed to provide necessary backgrounds in
WVGs.

3.1 Definitions and Notation

Let I = {1, . . . , n} be a set of n ∈ N agents. Let {w1, . . . , wn} be the corresponding weights
of these agents. The non-empty subsets, S ⊆ I, are called coalitions.



Definition 1. Simple Game

A simple game is a coalitional game, (I, v), where v : 2I → {0, 1}. A coalition S ⊆ I
wins if v(S) = 1 and loses if v(S) = 0.

Definition 2. Weighted Voting Game

A weighted voting game is a simple game which has a weighted form, (W, q), where W =
(w1, . . . , wn) ∈ (R+)n corresponds to the weights of agents in I, and q ∈ R+ is the quota of
the game. A coalition S wins if the total weight of S, w(S) =

∑
i∈S wi ≥ q, which implies

that v(S) = 1. A WVG G of n agents with quota q is denoted by G = [q;w1, . . . , wn]. Note
also that 1

2w(I) < q ≤ w(I).

Definition 3. Critical Agent

An agent i ∈ S is critical to a coalition S if w(S) ≥ q and w(S\{i}) < q.

Definition 4. Shapley-Shubik Power Index

The Shapley-Shubik index quantifies the marginal contribution of an agent to the grand
coalition. Each permutation of the agents is considered. We term an agent pivotal in a
permutation if the agents preceding it do not form a winning coalition, but by including
this agent, a winning coalition is formed. We specify the computation of the index using
notation of [6]. Denote by π, a permutation of the agents, so π : {1, . . . , n} → {1, . . . , n},
and by Π the set of all possible permutations. Denote by Sπ(i) the predecessors of agent i
in π, i.e., Sπ(i) = {j : π(j) < π(i)}. The Shapley-Shubik index, ϕi(G), for each agent i in a
WVG G:

ϕi(G) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

Definition 5. Banzhaf Power Index

The Banzhaf power index computation for an agent i is the proportion of the number of
coalitions i is critical compared to the total number of coalitions any agent in the game is
critical. The Banzhaf index, βi(G), for each agent i in a WVG G is given by

βi(G) =
ηi(G)∑
j∈I ηj(G)

(2)

where ηi(G) is the number of winning coalitions in which agent i is critical in game G.

3.2 Formal Problem Definition

Let G = [q;w1, . . . , wn] be a WVG of n agents. Let k ∈ N, 2 ≤ k < n. Consider a manipula-
tors’ coalition S of k agents which is a k-subset of the n-set I. We assume that S contains
k distinct elements chosen from I. Suppose the manipulators in S merge their weights to
form a bloc denoted by &S, i.e., agents i ∈ S have been assimilated into the bloc &S, then,
we have a new set of agents in the game after merging. Thus, the initial game G of n agents
has been altered by the manipulators to give a new game G′ of n− k + 1 agents consisting
of the bloc, &S, and other agents not in the bloc, i.e., I\S.

Let φ be either the Shapley-Shubik or Banzhaf index. Denote by (φ1(G), . . . , φn(G)) ∈
[0, 1]n the power of agents in a WVG G of n agents. Thus, for the strategic agents i ∈ S with
power φi(G) in game G, the sum of the power of the k manipulators in S is

∑
i∈S φi(G),

while that of the bloc formed by the manipulators in the altered game G′ is φ&S(G′). The



ratio τ = φ&S(G′)∑
i∈S φi(G) compares the power of the bloc in G′ to the sum of the original power

of the agents in the merged bloc. τ gives a factor of the power gained or lost when strategic
agents i ∈ S alter G to give G′. We say that φ is susceptible to manipulation if there exists
a game G′ such that τ > 1; the merging is termed advantageous. If τ < 1, then the merging
is disadvantageous, while the merging is neutral when τ = 1.

3.3 Examples of Manipulation by Merging

We provide next illustration of manipulation by merging in WVGs using the Banzhaf power
index to compute agents’ power. The strategic agents in each game are shown in bold.

Example 1. Advantageous Merge

Let G = [28; 8, 8, 8, 6,5, 5,4,2,2,2] be a WVG, i.e., a game with quota, q = 28, and
ten agents, 1, 2, . . . , 10. The power of the strategic agents are, β1(G) ≈ 0.1784,β5(G) ≈
0.0843, β7(G) = β8(G) = β9(G) = β10(G) ≈ 0.0412. Their cumulative power is ≈
0.4275. Suppose the manipulators form a bloc and alter G by merging their weights into
a single weight as follows; G′ = [28; 23, 8, 8, 6, 5]. The power of this bloc is β&S(G′) =
β1(G′) = 0.7895 > 0.4275. The factor by which the bloc gains is 0.7895

0.4275 ≈ 1.85

Example 2. Disadvantageous Merge

Let G = [56; 10, 9, 9,9, 8,7, 6,6,2,1] be a WVG of ten agents. The power of the strategic
agents are, β4(G) ≈ 0.1238, β6(G) = β8(G) ≈ 0.1139, β9(G) ≈ 0.0248, and β10(G) ≈
0.0149. Their cumulative power is ≈ 0.3913. Suppose the manipulators form a bloc &S and
alter G as follows; G′ = [56; 25, 10, 9, 9, 8, 6]. The power of this bloc is β&S(G′) = β1(G′) ≈
0.2308 < 0.3913. The factor by which the bloc loses is 0.2308

0.3913 ≈ 0.58

Example 3. Neutral Merge

Let G = [3; 2,1,1, 1] be a WVG of four agents. The power of the strategic agents
are, β2(G) = β3(G) ≈ 0.1666667. Their cumulative power is ≈ 0.3333334. Suppose the
manipulators form a bloc &S and alter G as follows; G′ = [3; 2,2, 1]. The power of this bloc
is β&S(G′) = β2(G′) ≈ 0.3333333. Rounding the cumulative power of the manipulators (in
G) and that of the bloc (in G′) to 0.3333 shows that the strategic agents neither gain nor
lose power by merging their weights in this case.

We have shown that strategic agents may gain power, lose power, or their power may
remain the same when they engage in manipulation by merging using the Banzhaf index.

4 Shapley-Shubik Index Bounds

This section proposes upper and lower bounds to characterize the effect of manipulation by
merging in WVGs using the Shapley-Shubik power index. The proposed bounds are shown
to be asymptotically tight.

4.1 Upper Bound

Theorem 1. (Upper Bound) Let G = [q;w1, . . . , wn] be a WVG of n agents. If two
manipulators, m1 and m2, merge their weights to form a bloc, &S, in an altered game
G′, then, the Shapley-Shubik power, ϕ&S(G′), of the bloc in the new game, ϕ&S(G′) ≤
n
2 (ϕm1(G) + ϕm2(G)). Moreover, this bound is asymptotically tight.



Proof. Let S ⊂ I be a coalition of two distinct manipulators, m1 and m2, from the original
game G that would like to merge into a bloc &S in an altered game G′. Let ΠG be the set
of all permutations of the n agents in game G. Also, let ΠG−2 be the set of all permutations
of the remaining n− 2 non-manipulating agents in G, i.e., not including m1 and m2. Again,
for any permutation π ∈ ΠG−2, let r ∈ N be the possible positions in π for insertion of m1

or m2 within the non-manipulating agents. Thus, 1 ≤ r ≤ n− 1.
We first bound the number of permutations in game G, for which the manipulators m1

and m2 are pivotal. Consider any π ∈ ΠG−2. Suppose we insert m1 and m2 arbitrarily
into π to have a resulting permutation π∗ ∈ ΠG of n agents. Let Π∗G be the set of all
permutations π∗ such that one of m1 or m2 is pivotal for π∗. Finally, let Q(π∗, r, π) be the
set of all permutations π∗ in which at least one of m1 or m2 appears on the r-th position
of π ∈ ΠG−2 and is pivotal for π∗. For example2, consider a WVG of six agents with quota
q = 15. Suppose π = 8 6 4 2, and consider an arbitrary insertion of two manipulators, 3
and 5, into π. Let the resulting permutation π∗ = 8 5 3 6 4 2. The manipulators are both
on the 2-nd position of π (i.e., r = 2). Also, the manipulator with weight 3 is pivotal for π∗.

Note that Π∗G ⊆ ΠG, and every permutation in Π∗G appears in one of the sets Q(π∗, r, π)
for some π and r. Thus, the Shapley-Shubik power of the manipulators in game G is:

ϕm1(G) + ϕm2(G) =
|Π∗G|
n!
≤ 1

n!

∑
π,r

|Q(π∗, r, π)| (3)

Now, we bound the number of permutations in the altered game G′ for which the bloc &S
is pivotal. Let π ∈ ΠG−2. Consider a permutation f(π, r) of agents in game G′ obtained from
π by inserting the bloc &S at the r-th position of π. Note that if Q(π∗, r, π) is not empty,
then &S is pivotal for the permutation f(π, r). Also, all the permutations π∗ in the set
Q(π∗, r, π) derived from a permutation π ∈ ΠG−2 in which at least one of the manipulators
appears at the r-th position of π and is pivotal for π∗ corressponds to a single permutation
f(π, r) in game G′. Furthermore, it is not difficult to see that, |Q(π∗, r, π)| ≥ 2, for all π
and r when Q(π∗, r, π) 6= ∅. This is because if one of the two manipulators, say, m1, is
pivotal at position r, we can also insert the other, i.e., m2, immediately before or after m1

at the same position, and there are only 2 ways for them to appear together at r. Finally,
we compute the Shapley-Shubik power of the bloc &S in the altered game G′ by counting
all the non-empty sets Q(π∗, r, π) for all π and r. Hence,

ϕ&S(G′) ≤ 1

(n− 1)!

∑
π,r:Q(π∗,r,π)6=∅

1

=
1

(n− 1)!

∑
π,r

|Q(π∗, r, π)| · 1

|Q(π∗, r, π)|

=
1

(n− 1)!

∑
π,r

|Q(π∗, r, π)| · 1

2

=
1

(n− 1)!
· n!

2
· 1

n!

∑
π,r

|Q(π∗, r, π)|

=
n

2
(ϕm1

(G) + ϕm2
(G)).

We prove that this bound is asymptotically tight. To do so, we need only show that
there exists at least one game where manipulators achieve the proposed bound. Consider

2The numbers in the permutations are the weights of the agents.



a WVG G = [2n − 3; 2, . . . , 2, 1, 1] of n agents, and having two manipulators, say, m1 and
m2, each with weight 1 in the game. m1 is pivotal for any permutation of agents in G if
and only if it appears at the (n − 1)-th position and immediately followed by m2 at the
last position. Observe that the sum of the weights of all the agents before the (n − 1)-th
position is 2n− 4, which is less than the desired quota of the game. Thus, there are (n− 2)!
ways to arrange the non-manipulating agents in G such that m1 is pivotal at the (n− 1)-th
position. By the same argument, m2 is pivotal for the same number of permutations. Hence,

ϕm1
(G) + ϕm2

(G) = 2(n−2)!
n! . Suppose now that m1 and m2 merge their weights to form a

bloc, &S, of weight 2, resulting in the game, G′ = [2n− 3; 2, . . . , 2] of n− 1 agents. Clearly,
this game is unanimity3, and requires all agents in G′ to form a winning coalition. Thus,

ϕi(G
′) = 1

n−1 for all agents i in game G′. Finally, ϕ&S(G′) = 1
n−1 = 1

n−1 ·
n!

2(n−2)! ·
2(n−2)!
n! =

n
2 (ϕm1(G) + ϕm2(G)).

4.2 Lower Bound

Theorem 2. (Lower Bound). Let G = [q;w1, . . . , wn] be a WVG of n agents. If two
manipulators, m1 and m2, merge their weights to form a bloc, &S, in an altered game
G′, then, the Shapley-Shubik power, ϕ&S(G′), of the bloc in the new game, ϕ&S(G′) ≥

n
2(n−1) (ϕm1

(G) + ϕm2
(G)). Moreover, this bound is asymptotically tight.

Proof. Let S ⊂ I be a coalition of two distinct manipulators, m1 and m2, from the original
game G that would like to merge into a bloc &S in an altered game G′. Let ΠG′ be the
set of all permutations of the n − 1 agents (including the merge bloc) in game G′. Also,
let Π∗G′ be the set of all permutations in game G′ such that the bloc &S is pivotal for the
permutations. Note that Π∗G′ ⊆ ΠG′ . Finally, let Π∗G, Q(π∗, r, π), and f(π, r) be as defined
in Theorem 3.

We first bound |Q(π∗, r, π)| for any π and 1 ≤ r ≤ (n − 1). There are P2 2 = 2 per-
mutations4 in Q(π∗, r, π) such that m1 and m2 appear at the r-th position of π. There

are P2 1 · P
(n−2)

1 = 2(n − 2) permutations in Q(π∗, r, π) such that one of the two ma-
nipulators appears at the r-th position of π and the other is elsewhere in π. In all,
|Q(π∗, r, π)| ≤ 2 + 2(n − 2) ≤ 2(n − 1). Again, as in Theorem 3, all the permutations
π∗ in the set Q(π∗, r, π) derived from a permutation π ∈ ΠG−2 in which at least one of the
manipulators appears at the r-th position of π and is pivotal for π∗ corressponds to a single
permutation f(π, r) in game G′. Thus, it is clear that |Π∗G′ | ≥ 1

|Q(π∗,r,π)| · |Π
∗
G|. Hence,

|Π∗G′ |
(n− 1)!

≥ 1

|Q(π∗, r, π)|
· 1

(n− 1)!
· |Π∗G|

ϕ&S(G′) =
1

2(n− 1)
· n!

(n− 1)!
· |Π

∗
G|
n!

=
n

2(n− 1)
· |Π

∗
G|
n!

=
n

2(n− 1)
(ϕm1(G) + ϕm2(G)).

We prove that this bound is asymptotically tight. Consider a WVG G = [n; 1, 1, . . . , 1]
of n agents, and having two manipulators, say, m1 and m2, in the game. Clearly, this
game is unanimity, and requires all agents in game G to form a winning coalition. Thus,

3A WVG is unanimity if there is a single winning coalition in the game, and every agent in the game is
critical to the coalition.

4P (n, r) = n!
(n−r)!

.



ϕi(G) = 1
n for all agents i in game G, and in particular, ϕm1(G) + ϕm2(G) = 2

n . Suppose
the manipulators merge their weights to form a bloc, &S, of weight 2, resulting in the game,
G′ = [n; 2, 1, . . . , 1] of n − 1 agents. The game remains unanimity, and ϕ&S(G′) = 1

n−1 =
1

n−1 ·
n
2 ·

2
n = n

2(n−1) (ϕm1
(G) + ϕm2

(G)).

5 Banzhaf Index Bounds

We propose upper and lower bounds in this section to characterize the effect of manipulation
by merging in WVGs using the Banzhaf power index. The proposed bounds are found to be
within constant factors.

5.1 Upper Bound

Theorem 3. (Upper Bound) Let G = [q;w1, . . . , wn] be a WVG of n agents. If two manip-
ulators, m1 and m2, merge their weights to form a bloc, &S, in an altered game G′, then,
the Banzhaf power, β&S(G′), of the bloc in the new game, β&S(G′) ≤ 3(βm1

(G) + βm2
(G)).

Proof. Let S ⊂ I be a coalition of two distinct manipulators, m1 and m2 (with weights w1

and w2, respectively), from the original game G that would like to merge their weights, and
form a bloc &S in an altered gameG′. Assume without loss of generality that w1 ≤ w2. Recall
that ηi(G) is the number of winning coalitions for which an agent i is critical in WVG G.

We first bound the number of winning coalitions in G for which the manipulators
are critical. Let ΓG be the set of all possible coalitions of the n agents in G. Also, let
ΓG−2 be the set of all possible coalitions of the remaining n − 2 non-manipulating agents
in G, i.e., not including agents m1 and m2. Consider any coalition c ∈ ΓG−2 such that
w(c) < q. Suppose we add strategic agents m1 and/or m2 to c and have a resulting winning
coalition c∗ ∈ ΓG. Let Γ∗G be the set of all possible coalitions c∗ such that at least one of
m1 or m2 is critical in G. We define the subsets Ci ⊆ Γ∗G as follows:

C1 = {C ⊆ ΓG−2 : w(C) < q,w(C) + w1 ≥ q}
C2 = {C ⊆ ΓG−2 : w(C) < q,w(C) + w2 ≥ q}
C3 = {C ⊆ ΓG−2 : w(C) + w1 < q,w(C) + w1 + w2 ≥ q}
C4 = C5 = {C ⊆ ΓG−2 : w(C) + w1 < q,w(C) + w2 < q,w(C) + w1 + w2 ≥ q}.

Thus,

ηm1
(G) + ηm2

(G) =

5∑
i=1

|Ci|. (4)

Note that C1 are winning coalitions in G for which m1 is critical, and which does not include
m2. Other winning coalitions, C2, . . . , C5, of the manipulators are similarly defined.

Similarly, we bound the number of coalitions for which the non-manipulators are critical
in game G. Note that there are two possibilities for an arbitrary non-manipulating agent
j ∈ I \ {m1,m2} to be critical in a winning coalition in game G:

S1 = {S ⊆ ΓG−2 \ {j} : w(S) < q,w(S) + wj ≥ q}
S2 = {S ⊆ I \ {j} : m1 ∈ S ∨ m2 ∈ S,w(S) < q,w(S) + wj ≥ q}5.

S1 are the winning coalitions in G for which agent j is critical, and which does not
include both m1 and m2. S2 are the winning coalitions in G for which agent j is critical,
and which include at least one of m1 or m2. Thus, we have

5a ∨ b is the or of a and b. At least one of the two simple parts of the compound proposition is required
to be true.



ηj(G) = |S1|+ |S2|. (5)

Now, we bound the number of coalitions in the altered game G′ for which a manipulators’
bloc, &S, is critical. Let c ∈ ΓG−2 be a coalition in game G such that w(c) < q. We define
a function f such that a coalition, f(c) = c ∪ {&S}, of agents in game G′ is winning if and
only if at least one of the coalitions, c ∪ {m1}, c ∪ {m2}, or c ∪ {m1,m2}, is winning in G.

We claim that for any c such that c∪{m1} ∈ C1, it must also be the case that c∪{m2} ∈
C2, since w1 ≤ w2. Observe that the two winning coalitions, c∪{m1} ∈ C1 and c∪{m2} ∈ C2,
of the manipulators, m1 and m2, from G, correspond to exactly one winning coalition f(c)
of the bloc, &S, in G′. Similarly, for the case when c ∪ {m1} /∈ C1 and c ∪ {m2} ∈ C2,
it must also be true that, c ∪ {m1,m2} ∈ C3. This is because since if m1 is not critical
in c ∪ {m1}, it also cannot be critical in the winning coalition c ∪ {m1,m2} ∈ C3, where
m2 is present. Note, however, that, only m2 is critical for coalition c ∪ {m1,m2} ∈ C3 by
definition. Thus, again, the two winning coalitions, c ∪ {m2} ∈ C2 and c ∪ {m1,m2} ∈ C3,
of m2, from G correspond to exactly one winning coalition f(c) of the bloc in G′. Finally,
both m1 and m2 are critical for any coalition c ∪ {m1,m2} ∈ C4 and c ∪ {m1,m2} ∈ C5 by
definition. The two winning coalitions, c∪{m1,m2} ∈ C4 and c∪{m1,m2} ∈ C5, of m1,m2,
from G correspond to exactly one winning coalition f(c) of the bloc in G′. We conclude that
the number of coalitions for which a manipulators’ bloc, &S, is critical in G′ is one-half of
the number of times the manipulators, m1 and m2, are critical in G. Thus,

η&S(G′) =
ηm1

(G) + ηm2
(G)

2
. (6)

It remains to bound the number of coalitions in G′ for which the non-manipulators are
critical. Note that because the power of the manipulators’ bloc is the ratio of the number
of winning coalitions in which the bloc is involved divided by the total number of winning
coalitions involving all agents, the most power will be obtained by the bloc when the manip-
ulators’ bloc is involved in highest number of winning coalitions and the non-manipulators
are involved in the least number of winning coalitions. Let S ∈ S1. Clearly, since m1 /∈ S and
m2 /∈ S, S remains unchanged fromG toG′. Hence, for this case, the non-manipulating agent
j remains critical in G′ for |S1| number of winning coalitions. Similarly, let S ∈ S2. Since
at least one of m1 or m2 is in S, the three possible coalitions for j to be critical for S in G
are: S ∪ {m1, j}, S ∪ {m2, j}, and S ∪ {m1,m2, j}. However, these coalitions correspond to
exactly one winning coalition, S ∪ {&S, j}, of the bloc in G′. Thus,

ηj(G
′) = |S1|+

|S2|
3

(7)

=
3|S1|+ |S2|

3
(8)

=
|S1|+ |S2|+ 2|S1|

3
(9)

=
ηj(G)

3
+

2|S1|
3

(10)

≥ ηj(G)

3
. (11)

We compute the Banzhaf power index of the bloc &S in game G′ using (6) and (9):

β&S(G′) =
η&S(G′)

η&S(G′) +
∑
j∈I\{m1,m2} ηj(G

′)



=

ηm1
(G)+ηm2

(G)

2
ηm1

(G)+ηm2
(G)

2 +
∑
j∈I\{m1,m2} ηj(G

′)

=
ηm1

(G) + ηm2
(G)

ηm1
(G) + ηm2

(G) + 2
∑
j∈I\{m1,m2} ηj(G

′)

≤ ηm1
(G) + ηm2

(G)

ηm1
(G) + ηm2

(G) + 2
3

∑
j∈I\{m1,m2} ηj(G)

≤ 3(ηm1
(G) + ηm2

(G))

3(ηm1
(G) + ηm2

(G)) + 2
∑
j∈I\{m1,m2} ηj(G)

≤ 3(ηm1
(G) + ηm2

(G))

ηm1
(G) + ηm2

(G) +
∑
j∈I\{m1,m2} ηj(G)

≤ 3(βm1
(G) + βm2

(G))

5.2 Lower Bound

Theorem 4. (Lower Bound) Let G = [q;w1, . . . , wn] be a WVG of n agents. If two manip-
ulators, m1 and m2, merge their weights to form a bloc, &S, in an altered game G′, then,

the Banzhaf power, β&S(G′), of the bloc in the new game, β&S(G′) ≥ βm1 (G)+βm2 (G)

2 .

Proof. Let S ⊂ I be a coalition of two distinct manipulators, m1 and m2, from the original
game G that would like to merge into a bloc &S in an altered game G′. Let S1 and S2 be
as defined in Theorem 3. We are interested in finding the minimum factor of power that
can be gained by a merged bloc &S in game G′. Note again that, because the power of
the bloc is the ratio of the number of winning coalitions in which the bloc is involved in
divided by the total number of winning coalitions involving all agents, the least power will
be obtained by the bloc when the manipulators’ bloc is involved in the fewest number of
winning coalitions and the non-manipulating agents are involved in the highest number of
winning coalitions. Thus, we seek to find the maximum number of winning coalitions in
which the non-manipulating agents can participate. The case which yields the maximum
number of winning coalitions in game G is that agent j is critical for the three coalitions,
S ∪{m1, j}, S ∪{m2, j}, and S ∪{m1,m2, j} involving the manipulators. This is so because
coalitions, S1, contributing to the overall total remains the same from G to G′. Thus, as
before:

ηj(G
′) = |S1|+

|S2|
3

(12)

≤ |S1|+
|S2|

3
+

2|S2|
3

(13)

≤ |S1|+ |S2| (14)

≤ ηj(G). (15)

We compute the Banzhaf power index of the bloc &S in game G′ using (6) and (13):

β&S(G′) =
η&S(G′)

η&S(G′) +
∑
j∈I\{m1,m2} ηj(G

′)



=

ηm1
(G)+ηm2

(G)

2
ηm1

(G)+ηm2
(G)

2 +
∑
j∈I\{m1,m2} ηj(G

′)

=
ηm1(G) + ηm2(G)

ηm1
(G) + ηm2

(G) + 2
∑
j∈I\{m1,m2} ηj(G

′)

≥ ηm1(G) + ηm2(G)

ηm1
(G) + ηm2

(G) + 2
∑
j∈I\{m1,m2} ηj(G)

≥ ηm1(G) + ηm2(G)

2(ηm1
(G) + ηm2

(G)) + 2
∑
j∈I\{m1,m2} ηj(G)

≥ 1

2
· ηm1(G) + ηm2(G)

ηm1
(G) + ηm2

(G) +
∑
j∈I\{m1,m2} ηj(G)

≥ βm1(G) + βm2(G)

2
.

Although these bounds are within constant factors, we are not certain if they are asymp-
totically tight. A tighter analysis may further improve the bounds.

6 Conclusions

This paper investigates the effects of manipulation by merging in weighted voting games. Ma-
nipulation by merging refers to a dishonest behavior where two or more strategic agents
merge their weights to form a single bloc in anticipation of power increase. Our focus is
on the characterization of the extent to which agents may gain in such manipulation. We
consider two prominent payoff concepts, the Shapley-Shubik and Banzhaf power indices,
that are used in evaluating agents’ power in such games.

The concern of this research is based on the assumption that the inability to limit (or
understand) the effects of this manipulation may undermine the confidence agents have in
decisions made via weighted voting games. If the results from this class of games are not
seen as fair, agents may refuse to abide by decisions made in this manner. Thus, specifically,
we propose four new bounds for this problem when there are k = 2 strategic agents in the
games. Two of the bounds are also shown to be asymptotically tight. Table 2 provides a
summary on the state of the arts on the bounds for manipulation by merging in weighted
voting games using both the Shapley-Shubik and Banzhaf power indices.

Bounds # Strategic agents Shapely-Shubik Index Banzhaf Index

Upper k = 2 This paper This paper
k > 2 ? ?

Lower k = 2 This paper This paper
k > 2 ? ?

Table 2: Summary of bounds for manipulation by merging in weighted voting games

The manipulation we consider in this research is natural, and has practical applica-
tions, that motivate interests from both the game theory and artificial intelligence commu-
nities. The proposed results in the research fit under the models of deception and fraud, as



well as models and mechanisms for establishing identities, which are crucial for maintaining
trustworthy interactions.

There are several areas of ongoing research on this problem. Here are some directions
for future work. We have considered the case when the number, k, of strategic agents in
a weighted voting game is 2. As shown in Examples 1 and 2, it is also possible for the
number of strategic agents to be more than 2. Thus, it will be interesting to see non-trivial
upper and lower bounds for this problem for the case, k > 2, using both the Shapley-Shubik
and Banzhaf indices to compute agents’ power. Furthermore, our immediate future work is
to complement these theoretical results with empirical evaluations to see the extent of the
factors for beneficial merges to strategic agents in practice. Finally, developing methods to
reduce the effects of manipulation by merging in weighted voting games is an interesting
research problem to consider.
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