
Refinements and randomised versions of some
tournament solutions

Justin Kruger and Stéphane Airiau

Abstract

We consider voting rules that are based on the majority graph. Such rules typically output large
sets of winners. Our goal is to investigate a general method which leads to refinements of such
rules. In particular, we use the idea of parallel universes, where each universe is connected
with a permutation over alternatives. The permutation allows us to construct resolute voting
rules (i.e. rules that always choose unique winners). Such resolute rules can be constructed
in a variety of ways: we consider using binary voting trees to select a single alternative. In
turn this permits the construction of neutral rules that output the set the possible winners of
every parallel universe. The question of which rules can be constructed in this way has already
been partially studied under the heading of agenda implementability. We further propose a
randomised version in which the probability of being the winner is the ratio of universes in
which the alternative wins. We also investigate (typically novel) rules that elect the alternatives
that have maximal winning probability. These rules typically output small sets of winners, thus
provide refinements of known tournament solutions.

keywords:
tournament probabilistic rules refinements Condorcet consistency

1 Introduction
In general, social choice theory studies the problem of making group decisions: the problem of
selecting a single alternative from a set of alternatives, given that different members of the group
have different opinions and preferences. Stated as such this is a rather vague problem. One attempt
to make it more tractable is to restrict attention to two alternatives at a time. Such a focus leads to
structures called tournaments, which have been objects of purely mathematical studies for a long
time. For social choice theoretic purposes a tournament can be defined in the following manner: if
a majority of people in the society prefer a to b, then there is a directed edge from a to b. The hope
is that using a tournament to determine the selected alternative will allow us to fairly select the best
alternative in a consistent and transparent manner.

There are many methods (which we will call rules) designed to select alternatives from a tour-
nament. These include, but are not restricted to: Copeland, the Top Cycle, Banks, Slater and the
Markov solution concept. All of these satisfy what is known as the Condorcet Criterion, which,
roughly speaking, requires that an obviously best alternative is selected. More precisely: if a sin-
gle alternative wins every pairwise competition between itself and any other candidate, then any
reasonable rule will select this alternative.

What about when a tournament has no obvious winner? Another, less fortunate, trait often ex-
hibited by rules based on tournaments is irresoluteness. Such rules often cannot decide between
alternatives; instead of selecting a unique alternative they output a set of multiple alternatives. Reso-
luteness (always selecting a single alternative) is often required, either for actual implementations or
to facilitate particular analyses of social choice rules. Thus tournament rules are typically equipped
with an exogeneous tie-breaking method that is applied after the rule. In terms of fairness using such
a tie-breaker violates the highly desirable property of neutrality; it is no longer the case that all the
alternatives are considered equal.

So far we have only discussed social choice theoretic issues concerning methods for selecting
from tournaments. However such rules are also interesting from an algorithmic standpoint. One

interesting result is that it can be hard to compute the full set of selected alternatives while at the same
time easy to find some winner. Rules based on tournaments are not alone in having this gap; social
choice functions based on some sort of parallel computation often seem to have this characteristic.
Typically, for a parallel computation rule, a trade-off must be made between neutrality on the one
hand, and resoluteness and tractability on the other.

In this paper we ignore the question of tractability and focus on the question of resoluteness. We
know that full resoluteness is not achievable at the same time as neutrality. Instead we ask whether
it can be possible that the rule can be more resolute while remaining neutral. We can pose this
question in two ways: (i) are there more cases where a single winner is selected? and (ii) in those
cases where multiple winners are still selected, is the set smaller than before? The methods used to
generate rules of this type also lead to a natural definition of randomised rules. We will also define
and analyse these rules.

1.1 Previous work
There is a large literature on tournaments ranging from purely mathematical [15] to explicitly social
choice theoretic. Definitions of the rules described in the introduction can be found [13] and [4],
either of which provide extensive general treatments of tournaments from the social choice theoretic
side.

The particular tournament rules that we are interested in concern tree structures, of which one
strand of study originates from questions concerning voting by agenda. Perhaps the first significant
result is the implementation of what became known as the Banks solution concept [14, 2]. This in
turn lead to more general questions of implementability: attempts to find the rules implementable
by individual resolute trees were given by Srivastava and Trick [17] and continued by Trick [19].
To some extent this issue is settled by Horan [9], who went on to give full sufficient and necessary
conditions for irresolute tournament rules [10].

The Banks solution concept provides a good example of the gap in difficulty between calculating
all and calculating some winners: Woeginger [20] showed that the full set is NP-hard, to which
Hudry [11] replied noting there is a greedy algorithm for calculating some Banks winner. These
results are implicitly based upon the “parallel” nature of the Banks solution concept. Such implicit
treatment of the idea of parallel computations can be traced back to Tideman’s Ranked Pair rule
[18], but seems to have been first explicitly called such by Conitzer et al. [6] who investigate the
single transferrable vote rule. Freeman et al. [8] continued this study in a similar direction, while
Brill and Fischer [5] applied a similar explicit treatment of parallel universes to Ranked Pairs.

1.2 Outline
In the following section we collect and unify those definitions from the literature that we will require,
in particular definitions concerning resolute rules determined by trees. In the section after this we
apply parallel universes terminology to these voting trees, thereby defining two deterministic rules
and one probabilistic rule. In the penultimate section we investigate which different properties apply
to the different versions of these rules and ask to what extent we have defined refinements of known
rules. The final selection summarises our results and indicates future directions.

2 Definitions
In this section we give preliminary definitions. All of these are given with reference to a set X of m
alternatives. We will label specific alternatives of X as 1, 2, 3, . . . and refer to arbitrary elements as
a, b, c, . . .

The typical comparison method between two alternatives is majority voting: alternative a defeats
alternative b if a wins in a pairwise majority election. We will refer to this as the domination
relation, i.e. “a dominates b” expresses the relation aTb. If we assume that such a relation holds
between every pair of alternatives, we end up with a tournament. Formally, a tournament is a
trichotomous1 binary relation T over some set X . Perhaps the smallest interesting example involves
four alternatives.

Example 1. Let T and T ′ be tournaments with aTb or aT ′b if there is an arrow from a to b in the
following respective graphs.

T =

1 2

34
T ′ =

1 2

34

Note that in the above example we can obtain T ′ from T by switching the arrow between 1 and 3.
In general we will write T〈a,b〉 for the tournament obtained by reversing the relation between a and
b in T .

A tournament function is a function from the set of all tournaments over some set X to subsets
of X . Thus a tournament function selects a set of winners from a tournament. One common way to
define tournament functions is using binary trees. Indeed, for the rest of the paper we will focus on
rules defined in terms of such trees. We will use two kinds of description for trees: either a graphical
or a compact representation, for example:

1
2
3 4

1(2(34))

The compact representation of the tree is a left-associative word, where parantheses (i) are assumed
to exist between the two leftmost elements in a triple and (ii) indicate that two nodes are siblings.
This particular tree structure has gone under multiple names: it is equivalent to the sincere simple
agenda [13], but has also been called the voting caterpillar [7]. We will call it the simple tree, and
give the following recursive definition (applicable to any number of alternatives).

Simple tree st(1, 2, . . . , n) = 1 (st(2, . . . , n))

We now define a tournament function based on a tree ω over the set of candidate X , which
we note JωK. The tournament T provides the dominance relation over the set of candidates X
and the tree describes an order of the pairwise competitions between the candidates, so JωK(T) is
the winner of the tournament T . We use the natural way to determine the winner: we recursively
determine the label of a parent as whichever child dominates the other child with reference to the
given tournament (unless both children are the same in which case this alternative is also set as the
parent). The selected winner is then the alternative at the root node. Formally, for a tree ω, the
tournament function JωK has the following recursive definition:

JxyK(T) =
{
x if xTy
y otherwise

Jω(ω′)K(T) =
q

JωK(T) Jω′K(T)
y(
T
)

It can be verified that for the tournaments in Example 1, J1(2(34))K(T) = J1(2(34))K(T ′) = 1.
Clearly, any tournament function defined by a binary tree will always select a single alternative:

we say such a tournament function is resolute. Resoluteness is incompatible with neutrality, which
requires that permuting the alternatives in the tournament results in an identical permutation of the
alternatives in the output set. Neutrality is one of the key properties that we desire of our rules.

1Recall a binary relation R ⊆ X ×X trichotomous if for all a, b ∈ X , either aTb, bTa or a = b.

Another key property is the Condorcet Criterion, which requires that if there is a alternative that
pairwise defeats all other alternatives, this alternative is selected. It is easy to see that only complete
binary trees, those that have every alternative appearing as some leaf, satisfy the Condorcet Criterion
(proofs are given in [19, 9]). Thus the two-leaf tree violates this when m > 2.

Two-leaf tree tt(1, 2, . . .) = 12.

Also desirable is monotonicity, which requires that whenever a winner is reinforced it does not
become a loser. Reinforcing a winner here means making it dominate more alternatives than before,
while not changing the domination relations between any other alternatives. Formally, if T is a
tournament such that bTa, and a is selected by the tournament function, then a should also be
selected by T〈a,b〉. Notice that alternative 1 has been reinforced between T and T ′ in Example 1,
and that the simple tree outputs 1 for both of these tournaments; in fact, the simple tree is monotonic.
Further, all non-repetitive binary trees with no repeated alternatives in their leaves are monotonic (a
proof is given, for example, in [13]). Another example of such a non-repetitive tree is the “fair” or
“balanced” voting tree [12] for which the height is minimised.

Balanced tree ft(1, . . . ,
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, . . . , n) = ft(1, . . . ,

⌈
n
2

⌉
)
(
ft(
⌈
n
2

⌉
+ 1, . . . , n)

)
We note that if log2 |X| is not an integer there are multiple non-repetitive tree structures that have
minimum height. However, our particular implementation is the perhaps the most natural, as it also
minimises the difference in the amount of nodes in the left and right subtrees of any particular node.
For example2:

ft(1, 2, 3, 4, 5, 6) =
1 2

3
4 5

6
123(456)

Other trees may not be monotonic. We give a minimal counter example: let ω be the following
binary tree.

ω =
4

1 3
2

1 4(13)21

It can be verified that for T and T ′ of Example 1, we have JωK(T) = 1, but JωK(T ′) = 3.
However, some repetitive trees are monotonic. Sophisticated voting on the simple agenda re-

sults in an outcome produced by the following so-called Banks tree, named for one of its early
investigators [2].

Banks tree bt(1, 2, . . . , n) = bt(1, 3, . . . , n) (bt(2, 3, . . . , n))

For four alternatives this produces the following tree.

bt(1, 2, 3, 4) =
1 4 3 4 2 4 3 4

14(34)(24(34))

The fact that this is monotonic is well known; we give an example proof later (Proposition 4.17).
Another monotonic (by Proposition 4.18 to come) repetitive tree is the following, which adapts the
iterative Condorcet rule described by Altman and Klienberg [1] into a binary tree rule.

Iterative Condorcet tree it(1, 2, . . . , n) = 12 . . . n it(2, . . . n)

Intuitively, given a fixed ordered over the candidates, this rule successively removes alternatives
from the tournament until the smaller tournament has a Condorcet winner. This Condorcet winner
is then selected. To our knowledge this has algorithm has not been implemented as a tree before.

2Note that by left associativity many of the brackets in the compact representation are “left out”.

it(1, 2, 3, 4) =

1 2
3

4
2

3
4

3
4

4

1234234344

Neutrality allows for a direct application of a tournament function on one set of alternatives to
a tournament function on another set of alternatives of the same size, with the aid of any bijection
between the two sets of alternatives. This provides the first step towards extending tournament
functions to apply to any set of alternatives. A tournament solution is a family of neutral tournament
functions that can be applied to tournaments over any set. Thus a tournament function is restricted
to tournaments over some particular set (and can be non-neutral), whereas tournament solutions are
applicable to tournaments over any set (and are necessarily neutral). Properties that are applicable to
tournament functions can be said to hold for tournament solutions if they hold for every tournament
function in the family.

For a tournament T over X , its restriction to Y ⊆ X is the tournament TY = {(x, y) ∈ T |
x, y ∈ Y }. This subtournament TY is further a component if all its alternatives have the same
relation to any element outside the component. Formally we require that for all a, b ∈ Y and
c ∈ X\Y , aTc iff bTc. If a tournament has components, if can be sensibly split into smaller parts.
Thus a decomposition of a tournament is a division of the tournament into components TXi

, fully
written as (T ∗, TX1

, . . . , TXk
) such that the Xis are (i) pairwise disjoint, (ii) cover the set X , and

(iii) form components when the tournament T is restricted to them. The tournament T ∗ is called the
summary of the decomposition: a tournament over {1, . . . , k} such that iT ∗j iff xTy for all x ∈ Xi

and y ∈ Xj .

Example 2. Consider the tournament T of Example 1. This can be decomposed into
(T ∗, T{1,4}, T{3}, T{2}) such that

T ∗ = {1, 4}

{3}

{2}

T{1,4} =

1

4

Weak composition consistency requires that local changes to a component (i) do not change the
winners on other components and (ii) do not change the fact that either no element or some element
wins on the component itself. Formally, given a component Y and x, y ∈ Y , (i) F (T) ∩ (X\Y) =
F (T〈x,y〉) ∩ (X\Y) and (ii) F (T) ∩ Y 6= ∅ ↔ F (T〈x,y〉) ∩ Y 6= ∅.

Weak composition consistency is a weakening of composition consistency, which states that the
winners of the overall tournament should be winners of the winners in a decomposition: one can first
determine the winners of the summary and then determine the winners of these winning tournaments.
Unlike weak composition consistency this can only apply to tournament solutions; formally for any
decomposition T = (T ∗, TX1

, . . . , TXk
), a ∈ S(T) iff S(T ∗) = i where a ∈ Xi and a ∈ S(TXi

).
For any tournament solution to which composition consistency applies, the consituent tournament
functions will satisfy weak composition consistency.

The final property of this section is stability. According to [4], stability requires that a set is
chosen from two different sets of alternatives if and only if it is chosen from the union of these sets.
A tournament solution S is stable if for all tournaments function and for all nonempty subsets Y , Z
of X and W ⊆ Y ∩ Z, W = S(Y) = S(Z) if and only if W = S(Y ∩ Z).

3 From parallel universe to randomised rules and refinements
In this section we move from resolute rules defined on trees to neutral rules. To do this we consider
permutations over the set of alternatives. Such a permutation can be applied to the leaves of a voting

tree. The winner of this permuted tree is then called a co-winner. It is well known that union of
the outcomes over all permutations of the simple tree returns the Top Cycle. Similarly, the set of
all co-winners for the Banks tree is the Banks set. Following Conitzer et al. [6] we phrase this
in terms of parallel universes. Here the set of parallel universes is the set of permutations. Each
parallel universe outputs a different (single) winner based upon a permutation of the alternatives.
The parallel universe rule then takes the set of all of these. For a given binary tree ω we will write
the parallel universe tournament function as ωPU. Formally3:

ωPU(T) = { Jσ(ω)K(T) | for all permutations σ : X → X}

Similarly for a recursive tree function f we write the parallel universe tournament solution as fPU.
Although Horan [10] gives necessary and sufficient conditions as to which tournament solutions

are implementable in this manner, it is not generally noted that there may be multiple trees that
implement the same tournament rules. In particular, the set of all co-winners for the iterative Con-
dorcet tree is also the Top Cycle, i.e. stPU = itPU. However, there is no general bijection between
permutations of the simple tree and permutations of the iterative Condorcet tree. Table 3 in the ap-
pendix shows the outcome for all permutations of our trees for the smallest non-trivial tournament,
i.e. T of Example 1. Even in this small case involving only four alternatives we see that the number
of permutations for which each alternative wins are different for the simple tree and the iterative
Condorcet tree. Thus defining a probabilistic rule that determines the probability of selecting each
alternative as the proportion of universes in which this alternative wins gives different results for the
simple tree and for the iterative Condorcet tree. Let us use FR as a subscript for probabilistic rules
based upon the proportion of universes in which alternatives win.

ωFR(T)(c) =
|{σ | Jσ(ω)K(T) = c}|

|X|!

We can also define a refinement of the parallel universe version by selecting those alternatives
that win in the largest number of universes. We will describe the winners of this refinement as the
argmax winners. Let us use AM as the subscript for rules that return the argmax winners.

ωAM(T) = argmax
c∈X

|{σ | Jσ(ω)K(T) = c}|

As for the parallel universe rules, we also have frequency and argmax versions of recursive families
of trees f , respectively fFR and fAM.

All the parallel universe rules defined with respect to the trees above correspond to known rules,
while the argmax winners are typically new refinements of these. To the best of our knowledge, the
randomised rules we propose have not been studied theoretically as choice rules. We summarize the
status of these rules in Table 1.

4 Properties and comparison of the rules
In this section we analyse the properties that our rules satisfy. The most straightforward results
state that all rules of a certain type must satisfy a given property γ. Other results may be classed
as “inheritance” results. These state (for instance) that if a given version of the rule (single tree,
parallel universe, probabilistic or argmax) has property γ, this implies that a different version of
the rule must also have property γ. We structure the following by considering in turn the parallel,
probabilistic and argmax rules in terms of their general and inherited properties. In the subsection
after these we apply these general results and determine which properties apply to the specific rules

3Here we abuse notation in applying the permutation σ directly to the tree and not the leaf alternatives.

Table 1: Summary of tree based rules.

Parallel universe Argmax Randomised

Simple tree Top Cycle [13] new [7]

Banks tree Banks [13] new new

Fair tree [12] new new

Two-leaf tree Condorcet non-losers Copeland new

Iterative Condorcet tree Top Cycle [1] new [1]

we have defined above. The final subsection deals with a slightly different issue: how much more
effective the argmax rules are at selecting small sets of winners.

We must first define probabilistic versions of Condorcet consistency, monotonicity, composition
consistency and stability. To each of these we prepend a P to indicate that it is the probabilistic
version. (Some similar definitions are given in [3].) In the following P (X) is the set of probability
distributions over the outcomes X and supp(P (X)) is the support of P (X), i.e., the set of alterna-
tives with a positive probability of winning. A randomised solution for a tournament will be denoted
as R(T) where R : T → P (X) is a function to a probability distribution over X , i.e., R(T)(a) is
the probability that alternative a ∈ X wins.

We start with the notion of Condorcet consistency: if a tournament has a Condorcet winner, no
other alternative should have a positive probability to be elected.

Definition 4.1 (P-condorcet consistency). If T has a Condorcet winner a, then R(T)(a) = 1.

A weaker version would be to only require that the Condorcet winner, when it exists, has the largest
probability of winning of all alternatives.

Definition 4.2 (Weak p-condorcet consistency). If T has a Condorcet winner a, then
R(T)(a) > R(T)(b) for all b 6= a.

In a probabilistic setting, the simplest definition of monotonicity simply requires that if we reinforce
a winner, her probability of winning cannot decrease.

Definition 4.3 (P-monotonicity). We say that R is p-monotonic if for any tournament T where bTa
we have R(T〈a,b〉)(a) ≥ R(T)(a).

As with the deterministic versions, probabilistic composition consistency conditions concern
changes to components of the tournament. Also as before, the weak version only requires a function
with a domain of tournaments over a fixed set of alternatives, while the full version requires that we
can calculate the outcomes for subtournaments.

Definition 4.4 (Weak p-composition consistency). Given a decomposable tournament
T = (T ∗, TX1

, . . . , TXk
) and two alternatives a, b ∈ Xi in some component, we require for

any c 6∈ Xi, R(T)(c) = R(T〈a,b〉)(c).

Note that this implies that changing the tournament within a component doesn’t change the proba-
bility of selecting some alternative from the component, i.e. for a and b in component Xi we have∑
d∈Xi

R(T)(d) =
∑
d∈Xi

R(T〈a,b〉)(d).

Definition 4.5 (P-composition consistency). If T can be decomposed into (T ∗, TX1 , . . . , TXk
) then

for all j ∈ {1, . . . , k} and for all x ∈ Xj R(T)(x) = R(TXj) ·R(T ∗)(j).

For probabilistic stability, we first define a notion of S-equivalence.

Definition 4.6 (S-equivalence). Let P be a probability distribution over Y and P ′ a probability
distribution over Z. Then P and P ′ are S-equivalent iff supp(P) = supp(P ′) and for all x ∈
supp(P) we have P (x) = P ′(x).

Note that when Y = Z in the above, S-equivalence is effectively the identity.

Definition 4.7 (P-stability). R(TY) is S-equivalent toR(TZ) iffR(TY ∪Z) is S-equivalent toR(TY)

4.1 Properties of parallel universe rules
In general parallel universe rules may not be monotonic. Laslier [13] provides a large counterexam-
ple.4 We provide a smaller example with only 5 alternatives.

Example 3. Consider the binary tree ω = 301(342)3 and the tournament T with 4T3T2T1T0 and
iT j for all other i < j.

T =

0

1

2

3

4

T〈3,4〉 =

0

1

2

3

4

301(342)3 =

3 0
1

3 4
2

3

(Undrawn arrows go downwards.)

It can be verified that JωK(T) = 3. In fact there are four permutations of the tree that select this
alternative. Now reinforce alternative 3, obtaining T〈3,4〉. There are no permutations of ω that select
3 for the tournament T〈3,4〉 (verified by computer). That is to say, 3 ∈ ωPU(T) but 3 6∈ ωPU(T〈3,4〉).

However monotonicity is straightforwardly inherited from single universes to parallel universes.

Proposition 4.8. If JωK is monotonic, then so is ωPU.

In particular this implies that ftPU is monotonic (the other particular parallel universe rules are well
known to be monotonic). Weak composition consistency is not only inherited in the same manner,
it further holds for all single universe and parallel universe rules based on binary trees.

Proposition 4.9. For any ω, JωK and ωPU are weakly composition consistent.

For proof, see [13, 16].
In considering the remaining two properties, we need to shift attention from single binary trees

to recursively defined families of trees, corresponding to the shift from tournament functions to
tournament solutions. In general, for a function f defining a family of trees, both composition
consistency and stability may or may not be satisfied by fPU. The Banks tree provides an example of
the first and a counterexample to the second. Conversely, the simple tree provides a counterexample
to the first and an example of the second [4]. However, if the probabilistic version of a rule satisfies
these properties, then so does the parallel universe version.

4More precisely, a family of counterexamples.

Proposition 4.10. For a recursive family of trees f , if fFR is p-composition consistent then fPU is
composition consistent.

Proof. Suppose fFR is p-composition consistent. Consider the support for the summary and com-
ponenets of any decomposed tournament. (I.e. note supp(fFR(T

∗)) = fPU(T
∗) and for each com-

ponent with subscript i, supp(fFR(TXi
)) = fPU(TXi

).)

Proposition 4.11. For a tree function f , if fFR is p-stable then fPU is stable.

Proof. As with p-composition consistency, consider the support.

4.2 Properties of probabilistic rules
Similarly to parallel universe rules, monotonicity is straightforwardly inherited from single trees.

Proposition 4.12. If JωK is monotonic, then so is ωFR.

Proposition 4.13. For any non-singleton tree ω, ωFR is weakly p-Condorcet consistent. If ω is also
complete, ωFR is p-Condorcet consistent.

Proof. Supposing there are k different alternatives in the tree, a Condorcet winner will win in
k · (m− 1)! universes (in constructing the tree, there are k choices for the Condorcet winner within
the tree, m − 1 choices for the other alternatives). Any other alternative can only win in at most
k · (m − k) · (m − 2)! universes (k choices for the alternative within the tree, m − k choices for
the Condorcet winner outside the tree, m − 2 choices for the other alternatives). As the tree is
non-singleton, k > 1, thus the Condorcet winner wins in more universes.

Proposition 4.14. For any tree ω, ωFR is weak p-composition consistent.

We have seen that composition consistency is inherited from probabilistic to parallel universe rules.
However, the Banks tree in Table 3 provides a counterexample to inheritance in the opposite direc-
tion, as btPU is composition consistent but btFR is not.

4.3 Properties of argmax rules
Argmax rules refine their parallel universe versions by definition. Thus the following is direct in the
case of complete trees.

Proposition 4.15. Any argmax binary tree rule is Condorcet consistent.

Proof. This follows easily from Proposition 4.13.

Weak composition consistency (and thus also composition consistency) is always violated by argmax
rules.

Proposition 4.16. Any argmax rule violates weak composition consistency.

Proof. Consider the tournament T = (T ∗, T1, 2, 3) and T ′ = (T ∗, T2, 2, 3) such that T ∗ and T1 are
cyclic tournaments with 3 alternatives, T2 is a transitive tournament with 3 alternatives, and 2 and 3
are tournaments with single alternatives. Suppose for a contradiction that there is a tree ω such that
ωAM is composition consistent. This must make all five candidates winners in T , by composition
consistency and neutrality. As there are 5! = 120 permutations of the five candidates, each candidate
in T must win for 24 permutations. By weak p-Condorcet consistency the candidates in 2 and 3 must
also win for 24 permutations, but the unique winner of T2 wins for the remaining 72 permutations,
thus is the counting rule winner, violating weak composition consistency.

Table 2: Known properties (deterministic/randomised) for trees.

Monotonicity
Composition
Consistency

Stability

PU FR AM PU FR AM PU FR AM

Simple tree 4 4 ? 8 8 8 4 4 ?

Iterative Condorcet tree 4 4 ? 8 8 8 4 4 ?

Banks tree 4 4 ? 4 8 8 8 8 ?

Balanced tree 4 4 ? 8 8 8 8 8 ?

Two-leaf tree 4 4 4 8 8 8 8 8 8

Monotonicity for argmax is an interesting open problem. We note that it is distinct from mono-
tonicity or p-monotonicity. The only result we have here is for the two-leaf tree, which forms a
known rule (Copeland) under argmax. The possibility of failure of monotonicity for arbitrary trees
under parallel universes strongly suggests that this will also be the case here, but the more interesting
case concerns rules that are monotonic in the single and parallel universe cases: is this then inherited
by argmax?

4.4 Properties of specific trees
With respect to the probabilistic rules and monotonicity: the simple, balanced and two-leaf trees
are non-repetitive, thus monotonic. We prove that the Banks and iterative Condorcet trees are also
monotonic below. By the inheritance results above we also have monotonicity for both parallel
universe and probabilistic versions of all these rules.

Proposition 4.17. The Banks tree is monotonic.

Proof. This can be seen to be monotonic by considering the following high level description of how
the tree reduction proceeds here. First, we suppose that the rightmost alternative in the Banks tree
is the preliminary winner. We then successively examine the other alternatives (as arguments in the
recursive definition from right to left), potentially setting them as new preliminary winners. For a
alternative to become the new preliminary winner, it must defeat every member of the set of previous
preliminary winners. After all the alternatives have been tested, we select the current preliminary
winner. Clearly, if an alternative was selected then it defeated all previous preliminary winners:
changing only this alternative so that it defeats more alternatives will not change the fact that it is
selected.

Proposition 4.18. The iterative Condorcet tree is monotonic.

Proof. Consider the process definition that this tree emulates: elminate alternatives according to
some fixed ordering until there is a Condorcet winner. If the alternative was the first Condorcet
winner before, then it is not possible that another alternative becomes a Condorcet winner before
this alternative during the same elimination process.

We now give a short discussion on the balanced tree: though the simple and Banks trees corre-
spond to known tournament solutions and have intuitive descriptions as processes, the balanced tree
is somewhat more difficult to understand. By Table 3 it is easy to see that it is neither weakly com-
position consistent nor stable. The parallel universe version of this rule is sometimes called the cup
rule in the literature, however it is not typically considered in relation to other tournament solutions.

This may be because it is neither a superset nor a subset of the uncovered set, which perhaps marks
it as an undesirable tournament solution. It may nonetheless be interesting from a randomised or
argmax perspective.

Inheritance of stability from probabilistic to parallel universe rules settles (by contraposition)
questions of p-stability for any non-stable parallel universe rules. The following result concerning
the two remaining stable parallel universe rules leaves open the probability that stability is inherited
from parallel universe to probabilistic rules.

Proposition 4.19. stFR and itFR satisfy p-stability.

Proof. (Only if) If R(TX) and R(TY) are S-equivalent for either of these rules then the Top Cycle
of TX is the same as the Top Cycle of TY , and both are the same as the Top Cycle of TX∪Y .
Consider any permutation that produces alternative c as a winner for TX . Adding the alternatives in
Y \X to this permutation in any order will not change the winner under the expanded tree. Thus the
proportion of permutations for which c is a winner remains the same.

(If) Similarly, as the alternatives in Y \X have no effect on the permutation, there must be the
same proportions of permutations producing each alternative winner after these are removed.

Collecting together all these results, we summarise the known properties for our specific tress
in Table 2. As we have already noted, it is not clear whether or not we have general inheritance of
monotonicity for the argmax rules. Nor have we proven or disproven monotonicity in specific cases.
However, we conjecture that all the trees we have considered are monotonic under argmax.

4.5 Success of argmax versions as refinements
We may question how reasonable the argmax rules are. Aside from the (open) question of mono-
tonicity, we are interested in how effective they are at actually refining the set of winners. We have
tested this on some example tournaments. The outcome of all of our rules only concern alternatives
in the Top Cycle: any Condorcet losers will not affect the outcome of the vote. Thus we restrict
attention to what are called non-reducible tournaments, those in which the whole tournament is re-
turned by the Top Cycle. Moon [15] provides a list of all non-isomorphic small tournaments, from
which we see that there are only 34 non-reducible tournaments of size 6. We applied our rules to
all of these, and compared them with the Markov solution concept, generally considered among the
most decisive tournament solutions. The specific results are found in Table 4 in the appendix. From
this table it can be verified that all these rules are distinct. We can also see that the Banks set contains
three alternatives 14 times, four alternatives 8 times, five alternatives 9 times and six alternatives 3
times. In contrast btAM outputs a single winner 32 times, two winners 1 time and three winners 2
times. Both stAM and itAM get similar (though distinct) results. Copeland, often considered a fairly
decisive solution concept, which is here equivalent to ttAM, outputs a single winner 18 times, two
winners 7 times, three winners 5 times and four winners 4 times. Thus it appears that the argmax
rules are significantly more decisive than the full parallel universe versions.

5 Conclusion
In this paper, we propose a general principle for constructing randomised voting rules (or social
decision schemes) and neutral refinements of voting rules. We use the idea that, given a voting rule,
some object that we call a universe can ensure that the voting rule is resolute. One example is to
consider that a universe is defined by a tie-breaking rule. In this paper, we have considered that a
universe is defined by a particular assignment of alternatives to a voting tree. There are three types
of rules that are naturally definable with respect to a set of universes: parallel rules that output all
winners for all possible universes, probabilistic (frequency) rules that randomly pick a universe and
output the winner from that universe, and argmax rules that output the winners of the most universes.

We study whether properties can be inherited between these different versions of rules. We
plan to complete the study of properties that can be inherited in the context of tournaments. For
voting rules, our principle may be interesting for voting rules such as Instant-runoff voting (IRV)
and Ranked Pairs: for former, there may be ties to be broken between the alternatives with the
smallest number of votes. We can use our principle to define a new neutral refinement of IRV and a
randomised rule based on IRV. It would be interesting to study the properties of such a rule.

We have noted that the argmax rules are attractive in that they output smaller sets of winners than
their parallel version conterparts. However, the real test of their attractiveness hinges upon whether
or not they are monotonic, a property we have not been able to prove or disprove.

We have not yet considered computational issues, which will probably be a heavy burden. We
expect that some winner determination problems will be in the class #-P and we leave this study as
future work. However, we also plan to investigate to what extent Monte Carlo methods can estimate
winners. If computing the winner is easy in a given universe, we may require not too many samples
to estimate the winner of the argmax rule or to have a good approximation of the randomised rule.

References
[1] Alon Altman and Robert Kleinberg. Nonmanipulable randomized tournament selections. In

AAAI, 2010.

[2] Jeffrey S Banks. Sophisticated voting outcomes and agenda control. Social Choice and Wel-
fare, 1(4):295–306, 1985.

[3] Florian Brandl, Felix Brant, and Hans G Seedig. Consistent probabilistic social choice (forth-
coming). Econometrica: Journal of the Econometric Society, 2016.

[4] Felix Brandt, Markus Brill, and Paul Harrenstein. Tournament solutions. In Handbook of
Computational Social Choice, chapter 3. Cambridge University Press, 2016.

[5] Markus Brill and Felix Fischer. The price of neutrality for the ranked pairs method. In Pro-
ceedings of AAAI-12, pages 1299–1305, 2012.

[6] Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score rankings
and maximum likelihood estimation. In Proceedings of IJCAI-09, pages 109–115, 2009.

[7] Felix Fischer, Ariel D Procaccia, and Alex Samorodnitsky. A new perspective on implemen-
tation by voting trees. In Proceedings of the 10th ACM conference on Electronic commerce,
pages 31–40. ACM, 2009.

[8] Rupert Freeman, Markus Brill, and Vincent Conitzer. General tiebreaking schemes for com-
putational social choice. In Proceedings of AAMAS-15, 2015.

[9] Sean Horan. Implementation by agenda voting. COMSOC 2012, pages 239–250, 2012.

[10] Sean Horan. Implementation of majority voting rules. preprint, 2013.

[11] Olivier Hudry. A note on “Banks winners in tournaments are difficult to recognize” by G. J.
Woeginger. Social Choice and Welfare, 23(1):113–114, 2004.

[12] Jérôme Lang, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh.
Winner determination in sequential majority voting. In IJCAI’07, volume 7, pages 1372–1377,
2007.

[13] Jean-François Laslier. Tournament Solutions and Majority Voting. Springer, 1997.

[14] Nicholas R Miller. Graph-theoretical approaches to the theory of voting. American Journal of
Political Science, pages 769–803, 1977.

[15] John W Moon. Topics on Tournaments in Graph Theory. Holt, Rinehart and Winston, 1968.

[16] Hervé Moulin. Choosing from a tournament. Social Choice and Welfare, 3(4):271–291, 1986.

[17] Sanjay Srivastava and Michael A Trick. Sophisticated voting rules: The case of two tourna-
ments. Social Choice and Welfare, 13(3):275–289, 1996.

[18] T Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social Choice and
Welfare, 4(3):185–206, 1987.

[19] Michael A Trick. Small binary voting trees. 2006.

[20] Gerhard. J. Woeginger. Banks winners in tournaments are difficult to recognize. Social Choice
and Welfare, 20(3):523–528, 2003.

Appendix

Table 3: Alternatives selected by each permutation σ of a recursive tree g, applied to the tournament
T of Example 1. The values in the top half of the table are Jg(σ)K(T).

σ g = st g = bt g = ft g = tt g = it

1234 1 3 3 1 3
2134 2 3 3 1 3
3214 3 3 4 2 4
2314 2 3 4 2 3
3124 3 3 3 3 4
1324 3 3 3 3 4
4321 3 3 3 3 1
3421 3 3 3 3 4
3241 3 3 4 2 4
4231 4 3 3 4 3
2431 2 3 3 4 3
2341 2 3 4 2 3
4123 4 2 4 4 2
1423 4 2 4 4 2
1243 1 2 3 1 3
4213 4 2 3 4 3
2413 2 2 3 4 3
2143 2 2 3 1 3
4132 4 4 4 4 2
1432 4 4 4 4 2
1342 3 4 3 3 4
4312 3 4 3 3 1
3412 3 4 3 3 4
3142 3 4 3 3 4

Number of permutations for which a is selected:
a = 1 2 0 0 4 2
a = 2 6 6 0 4 4
a = 3 10 12 16 8 10
a = 4 6 6 8 8 8

Table 4: Selected alternatives for various rules for all non-reducible tournaments of size 6. The
alternatives are labelled from 0 to 5.

stAM btAM ftAM ttAM itAM markov

0 0 0 0,1 0 0
0 0 0 0,1 0 0
0 0 0 0,1 0 0
0 0 0 0,1 0 0
0 1 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0,1 0 0
0 0 0 0,1 0 0
0 0 0 0,1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 2 2 0 0 0
0 0,1 0 0 0 0
0 0 0 0 0 0
0 4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0,1,2,3 0 0
4 4 0 0,1,2,4 0 4,0
0 0 0 0,1,2,3 0 0
1 1 1,2 1,2,3,4 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 2 2 2,3,4 2 2
1 1 1,3,4 1,3,4 1,3 1
4 4 4 1,4,5 4 4

3,4,5 3,4,5 3,4,5 3,4,5 3,4,5 5,4,3
3,4,5 3,4,5 3,4,5 3,4,5 3,4,5 5,4,3

Justin Kruger
LAMSADE
Université Paris-Dauphine
PSL Research University
Paris, France
Email: justin.g.kruger@gmail.com

Stéphane Airiau
LAMSADE
Université Paris-Dauphine
PSL Research University
Paris, France
Email: stephane.airiau@dauphine.fr

