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Abstract

This paper introduces and evaluates the Random Pairs voting rule to show that
it significantly improves upon the communication complexity of balloting methods
requiring complete orderings of candidates while maintaining a high Condorcet effi-
ciency. To this end, Random Pairs is compared to plurality, 2-approval, Borda, and
range voting on elections constructed from Yahoo! users’ ratings of musical artists.
These elections feature seven candidates and two orders of magnitude more voters
than previous analyses of voting rules. In this data set, there are few instances of
elections without a single Condorcet winner, and empirical results on the other vot-
ing rules agree strongly with Merrill’s 1984 simulation results. Upper bounds on the
communication complexity of the Random Pairs voting rule and the range voting
rule are also provided.

1 Introduction

In this United States, most elections are decided using ballots that give voters the ability to
provide only a trivial amount of information about their preferences. In races with a single
winner, voters are typically asked to indicate the one candidate they prefer above all the
others. After all ballots are cast, the candidate who has received a plurality of the votes is
declared the winner.

Because most real elections require voters to share only a small portion of their pref-
erences, the outcomes of elections are almost always based upon incomplete information.
The amount of information required to be communicated (by the voters and by the elec-
tion officials) for each voting rule to select a winner is measured in complexity-theoretic
terms of upper and lower bounds, with the number of voters and the number of candidates
as the variables. This communication complexity allows for comparisons between different
voting rules, and may inform future protocols that require feedback from multiple users to
make a decision. Prior research has evaluated some common voting rules in these terms
[3, 14]. Though plurality has a very low communication complexity, the ballots cast are
not terribly expressive in that the outcomes of such elections may not reflect the voters’
sentiments accurately and plurality may not reliably select the Condorcet winner1 [6, 11].
Other voting rules select the Condorcet winner more often than plurality, but have a higher
communication complexity.

This work was prompted in part by an interest in constructing single-round2 voting rules
that have low communication complexity but that still frequently elect Condorcet winners.
Several reasons support the need for voting rules with lower communication complexity. The
most obvious is that recording a complete set of preferences for every user would take up too

1As defined in Section 2.1
2That is, a voting rule that does not rely on preference elicitation or a separate runoff election. All voters

communicate whichever preferences they have all at once, and the winner is determined using only those
preferences. Plenty of research has gone into preference elicitation, which requires a central authority to
iteratively ask questions of each voter about their preferences, often in the form of a pairwise comparison of
candidates [2, 17]. The new voting rule described here follows the convention of real-world elections where
the central authority requests that each voter complete a single ballot, then applies a decision rule based
upon the ballots collected.



FOR PRESIDENT OF THE UNITED STATES
Vote for not more than ONE

ROSS "ROCKY" C. ANDERSON, Justice

GARY JOHNSON, Libertarian

PETA LINDSAY, Socialism and Liberation

BARACK OBAMA, Democratic

MITT ROMNEY, Republican

Figure 1: A ballot to elect the President of the United States based on the American state
of Vermont’s 2012 General Election ballot, in the conventional plurality voting rule.

much space. Second, voters must spend more time than they may be willing to construct
these complete rankings, and indeed may not have enough information about the candidates
to do so. Last, voters may not want to disclose their complete ranking–an individual could
conceivably be identified uniquely if the number of voters is low relative to the number of
candidates.

With this in mind, I propose a randomized partial-order voting rule called “Random
Pairs” (RP hereafter), which seems to be nearly as expressive as those rules requiring full
preference orderings while having a communication complexity not much higher than plu-
rality. While it resembles somewhat the greedy iterative voting procedure in [5], RP requires
the user to communicate only once, and with single-bit preferences between two candidates
rather than with score-based preferences for individual candidates like range or Borda.

Moving beyond the proposed voting rule, it appears that there is no earlier work evalu-
ating voting rules on elections not derived from synthetic distributions with as many candi-
dates or as many voters as evaluated here. Mattei et al were the first to take a large set of
ratings and convert them into three- and four-candidate elections [8], which were then made
available online [9]. Their work is extended here to much larger elections both in terms of
candidates and of voters.

2 Random Pairs

In an election using the plurality rule, each voter chooses a single “best” candidate by
marking that candidate on a ballot, like the one shown in Figure 1. Using the RP voting
rule, each voter gets a ballot with a predetermined number of random candidate pairs
(defined as p), like the one shown in Figure 2. These pairs are selected uniformly at random
before the election by election officials or the party responsible for tabulating and reporting
the results. The voter then indicates which candidate of the pair they prefer more, if they
have a preference. Because each ballot is provided with only a subset of the possible pairings,
the voter will not have the opportunity to compare all candidates, and two different voters
will almost certainly receive two different ballots.3

3I do not evaluate the real-world implications of applying RP to real-world elections. In particular, I
envision the challenge of dealing with a voter arriving at a polling place and receiving a ballot that does not
contain his or her preferred candidate. I suspect that telling the voter “trust me, the math works out in the
end” would do little to console them.



FOR PRESIDENT OF THE UNITED STATES
In EACH line below, vote for ONE candidate

ROSS "ROCKY" C. ANDERSON, Justice PETA LINDSAY, Socialism and Liberation

PETA LINDSAY, Socialism and Liberation MITT ROMNEY, Republican

ROSS "ROCKY" C. ANDERSON, Justice GARY JOHNSON, Libertarian

BARACK OBAMA, Democratic ROSS "ROCKY" C. ANDERSON, Justice

GARY JOHNSON, Libertarian BARACK OBAMA, Democratic

Figure 2: A ballot to elect the President of the United States, using the Random Pairs
voting rule with five pairs.

In order to fully express a voter’s preferences and let them weigh in on every pair of
candidates, an RP ballot would need to have p =

(
α
2

)
entries, where α is the number of

candidates. With p as low as α− 1, a full linear order could be recovered, though it would
be unlikely that the voter would receive the exact pairs necessary. In order to drive down
the communications complexity further still, this work fixes p to dlog2αe. Even with this
extremely low p, the results below show that RP still selects the Condorcet winner more
often than the other voting rules.

The drawback to the RP rule is that it can violate the Pareto and unanimity condi-
tions [15]. Pareto requires that a voting rule must not select a winner when some other
candidate is preferred over it by every voter. Unanimity requires that a voting rule must
select as a winner the candidate strictly that is preferred to all other candidates by every
individual voter, respectively. I assert without proof that these violations of Pareto and
unanimity occur with very low probability when voters are presented with too few bal-
lots containing the unanimously-preferred candidate than, say, the second-most-preferred
candidate. This probability decreases as the number of voters increases.

2.1 Definitions

A is defined as the set of all candidates and N as the set of voters with |N | = n and |A| = α.

Definition 1. The plurality voting rule allows each voter to vote for no more than a single
candidate. After all ballots are cast, the candidate who receives the most total votes is
chosen as the winner.

Definition 2. The 2-approval voting rule allows each voter to vote for up to two candidates.
After all ballots are cast, the candidate who receives the most total votes is chosen as the
winner.

Definition 3. The Borda voting rule method asks voters to construct a strict linear ordering
of the candidates and assign each one points such that the most-desirable candidate receives
α− 1 points, the second-most-desirable candidate receives α− 2 points, and so on, until the
least-desirable candidate receives zero points. After all ballots are cast, the candidate with
the most total points is chosen as the winner.

Definition 4. The range balloting method asks voters to provide a numeric score in a
range between zero and some constant r. Candidates receiving a score of zero are the
least desirable and those receiving a score of r are the most desirable. It is possible for all
candidates to receive duplicate (tie) scores. After all ballots are cast, the candidate with
the highest aggregate score is chosen as the winner.



Definition 5. For every pair of candidates i and j such that i, j ∈ A, the Condorcet voting
rule compares the number of voters that prefer i over j to the number of voters who prefer
j over i. There is a winner (the Condorcet winner) only if one candidate beats every other
candidate in such pairwise match-ups.

Definition 6. The Copeland voting rule resembles the Condorcet rule, but selects as the
winner the candidate with the best record in pairwise matchups, calculated as the number
of pairwise wins minus the number of pairwise losses.

Definition 7. The Random Pairs voting rule4 presents each voter a ballot constructed
by selecting p pairs of candidates ik and jk uniformly at random such that ik 6= jk and
ik, jk ∈ A ∀ k ∈ {0, 1, . . . , p− 1}. The voter casts a vote for at most one candidate in each
pair. RP selects as the winner the candidate with the best record in such pairwise matchups,
calculated as the number of pairwise wins minus the number of pairwise losses. As p grows,
RP converges to the Copeland rule.

In this work, voters always cast a vote for one candidate for the plurality voting rule and
for two candidates in 2-approval. That is, there is no abstention. In the event that more
than one winner is selected by any voting rule, ties are broken by selecting at random one
of the tied winning candidates as the single winner.

3 Communication Complexity

Conitzer and Sandholm established upper and lower bounds for a number of common voting
rules [3], including many of those currently under consideration. While the definitions above
do not include quite the same formulations of the various rules as Conitzer and Sandholm,
the proofs below follow their lead.

Theorem 1. The deterministic communication complexity of the 2-approval rule has an
upper bound of O(n log α).

Proof. Much like plurality, each voter must communicate a vote for some candidate with
logα bits. Because there are two votes per voter, each voter must communicate 2 · logα bits,
for a total of 2n · logα, or O(n log α).

Theorem 2. The deterministic communication complexity of the range rule has an upper
bound of O(nα).

Proof. Providing a rating between zero and some constant r requires log r bits per candidate.
For all voters to provide a rating for each candidate requires the communication of nα log r
bits, but since r is a constant and does not grow with the number of candidates or voters,
the communication complexity is O(nα).

Theorem 3. The nondeterministic communication complexity of the RP rule is
O(n(log α)2).

Proof. Because each voter’s ballot is generated at random, the election official producing the
ballot must first communicate the ballot to each voter. To communicate one pair requires
2·log α bits, so to communicate p pairs to each of n voters requires 2np·log α bits, or an
upper bound of O(np log α). Each voter then indicates a preferred candidate for each of dlog
αe random pairs of candidates. This requires log α bits per user, for a total of O(n log α).

The complexity of communicating the ballots to the voters dominates the complexity
of the voters returning their ballots. When p is set to log α (as suggested earlier), the
complexity of the RP rule is O(n(log α)2).

4As one reviewer noted, RP could be reasonably referred to as “approximate Copeland”.



Voting Rule Upper Bound
Plurality O(n log α)∗

2-approval O(n log α)
Random Pairs O(n(log α)2)
Range O(nα)
Borda O(nα log α)∗

Table 1: Communication complexities of the voting rules under consideration where the
number of voters is n, the number of candidate is α, and p = log α. The complexities
indicated with an asterisk are from [3].

4 Election Data & Results

In order to concretely compare the voting rules, I considered using synthetic data of the
same type as Merrill [10], but elected instead to follow in the footsteps of Mattei et al [8]
by constructing elections from existing real-world preference data. Because the RP voting
rule provides less of a benefit in races with few candidates,5 the three- and four-candidate
elections derived from the Netflix prize data are unsuitable. I instead used Yahoo’s collection
of musical artist ratings [18] to construct seven-candidate elections.

4.1 The Data

The Yahoo! Webscope R1 data set provides 11,557,943 ratings from 1,948,882 anonymized
users across 98,211 artists sampled over a 30-day period [18]. The provided ratings range
from 0 to 100 (inclusive) with the rating 255 as a special case meaning “never play again”.7

The users have an incentive to submit accurate ratings, since, like the Netflix data, accu-
rate ratings result in better future music recommendations. As it is clearly infeasible to
exhaustively compute all possible seven-candidate elections,8 I opted to use some shortcuts
to produce usable data. What follows is the rough sequence that led to the final data set.

I began in a similar way as in [7] by selecting three sets of 2000 non-overlapping artists
with at least 350 ratings each. For each of these three sets, I then enumerated all collections
of three artists that had at least 350 users rating all three of them. Statistical results of
this enumeration of the three samples are shown in Table 2. The first sample produced
102,850,561 three-candidate elections, the second produced 90,992,753 elections, and the
third produced 79,639,473 elections.

Despite having ten times fewer ratings, four times as many users, and more than five
times as many items to rate as the Netflix data set, there was a much greater overlap of
user ratings in this data set, as demonstrated by the number of three-candidate elections
that were generated. There was so much overlap that extending the 100 million triples to
five-artist tuples with more than 350 shared ratings from just the first of the sets of triples
would have produced on the order of 1010 elections, required more than a terabyte of disk
space, and taken more than a year of computation. Admittedly, parallelizing the search and

5When there are three candidates, there are three possible pairings. In the analysis below, the p pairs
presented to each voter are selected with replacement, which allows a ballot to have multiple instances of
the same matchup.6 Using the previously-mentioned formula, p is set to 2 and the user returns 2/3 of a full
ordering. With seven candidates, there are 21 possible pairings and p = dlog27e = 3, which allows the user
to communicate just 1/7 of his or her preferences. That small of a proportion seems suitable to demonstrate
that collecting just a few partial preferences from many voters is enough to show the effectiveness of the
rule.

7For the purposes of this analysis, ratings of 255 are interpreted as ratings of 0.
8This would require checking approximately 1031 7-tuples.



Sample # Min 1st Q Median Mean 3rd Q Max
1 350 418 531 798.7 783 102,700
2 350 412 513 736.7 733 162,000
3 350 408 503 688.3 702 94,400

Table 2: Statistical properties of the number of voters in three-candidate elections produced
by the three samples of 2000 artists.

Sample Min 1st Q Median Mean 3rd Q Max
7-candidate, 60K+ voters 60,000 61,930 65,080 67,610 71,070 118,600

Table 3: Statistical properties of the of the number of voters in seven-candidate elections
with more than 60,000 voters produced by sampling the 500 artists with the most ratings.

providing enough disk space could make this feasible, but extending the 5-tuples to all six-
and seven-artist tuples would definitely be infeasible.

After concluding that the initial approach would produce too large a search space, I
chose from the original data the 500 artists with the most ratings and calculated all the
triples that had more than 10,000 shared ratings. This produced nearly 8 million triples.
After several tests of various thresholds based on time and space constraints, I settled on
enumerating all 7-artist tuples that shared at least 60,000 ratings. That allowed me to
produce and evaluate 61,566 elections of 7 candidates, each of which has at least 60,000
voters, in a reasonable amount of time and disk space. Descriptive statistics for this final
data set are provided in Table 3.

Even with a range of possible values from 0 to 100, users’ reviews featured many identical
ratings, with nearly 30% of the total ratings as zeroes, about 24% as 90, and about 12% as
100. This produces many ties within the constructed ballots. These ties were broken in the
Netflix data by simply selecting the lowest internal identifier [8].9 In three-candidate races
like those constructed from the Netflix data set, this approach may have been feasible, but
with more candidates and many more voters in elections, this approach skews the election
results so much that during the initial test runs, the plurality winner almost always selected
the candidate with the lowest internal identifier. Instead, ties are broken between identically-
rated artists randomly, so that every artist with an equally-high rating has an equal chance
of winning.10 Ties in the final tally of votes (or score) in plurality, 2-approval, Borda, range,
and RP elections were also broken randomly.

4.2 Condorcet Efficiency

The Condorcet winner in a single-winner election is the candidate that would defeat every
other candidate in pairwise elections [1]. Given a complete preference ordering for each
voter, this winner is typically considered the best alternative. However, many balloting
methods do not collect a complete preference ordering, and therefore might not select as
a winner the Condorcet winner.11 For such methods, a measurement of their effectiveness
with wide appeal is Condorcet efficiency [11].

The Condorcet efficiency of some voting rule is the fraction of elections where the rule

9In the Netflix set, this is a unique numeric identifier given to each movie. In the Yahoo set, this is a
unique identifier given to each artist.

10Practically speaking, I shuffled the order of the artists on every user’s ballot.
11Put another way, these voting rules are not Condorcet consistent.[12]



Rule CE, n ≥ 60K CE, n ≥ 70K CE, n ≥ 80K CE, Merrill [11]
Plurality 0.606 0.575 0.600 0.520
2-Approval 0.712 0.680 0.676 0.63712

Range 0.774 0.812 0.810 N/A
Borda 0.815 0.772 0.777 0.853
Random Pairs 0.954 0.954 0.951 N/A

Table 4: Condorcet efficiencies (CE) of several voting rules. 61,566 elections were evaluated,
each with seven candidates and a minimum of 60,000 voters. Of these elections, 70 did not
have a Condorcet winner. Of the remaining 61,496, the above indicates the percentage of
elections that the indicated voting rule selected the Condorcet winner. The second and third
columns indicate the Condorcet efficiency of each voting rule when only the elections with
the given minimum number of voters (≥70,000, and ≥80,000, respectively) are considered.

selects a winner that is also the Condorcet winner. When there is no single Condorcet
winner, the election is not considered in the calculation of Condorcet efficiency. In the case
of the 61,566 elections conducted, there were only 70 elections without single Condorcet
winners, which accounts for a paltry 0.11% of all ballots.

Unlike in [8], strict orders are not enforced, and ties are not broken when computing a
voter’s contribution to the pairwise tallies leading to the selection of the Condorcet winner.
As noted previously, this is in part due to the number of ties found in user ratings in
this data set. The results here show the various voting rules agreeing far less often than
in previous studies that constructed elections from real-world data. Table 4 shows the
Condorcet efficiency of each voting rule across all the elections.

It is striking how closely the empirical results match Merrill’s “random society”13 results
with seven candidates [11]: Plurality is 8.6% higher, Approval is 7.5% higher, and Borda
is 3.8% lower than the Condorcet efficiencies found in the synthetic elections.14 One major
difference, though, is how few elections (0.11%) derived from the Yahoo! data had no
Condorcet winners, when “random society” elections of seven candidates have no Condorcet
winner 35.7% of the time. When the elections that have fewer than 70,000 voters are
removed, the Condorcet efficiencies change slightly, but are otherwise fairly stable. The
same holds true when the elections with fewer than 80,000 voters are removed. The only
minor result from looking at different numbers of voters is that RP’s Condorcet efficiency
is much more stable than the others regardless of the number of voters. Though additional
simulations with different numbers of candidates and voters would provide a clearer view of
its performance, these initial results are encouraging. It is clear, though, that the RP rule
performs significantly better than all of the others tested, even with its lower communication
complexity.

12Admittedly, Merrill uses a slightly different formulation, while voters in this analysis are required to
cast exactly two votes.

13In these synthetic elections, each voter has a utility for each candidate that indicates how strongly a he
or she prefers each candidate. In a random society, these utilities are selected uniformly (and independently)
at random within some interval. Because all preference orders are therefore equally likely, random societies
are also impartial cultures[4].

14A reviewer noted that this result seems to conflict with the findings in [16], which find that impar-
tial cultures are a worst-case scenario, and any alternative should provide a higher Condorcet efficiency.
Aside from the reviewer’s suggestion that it could be due to the high number of ties, there are no obvious
explanations at present.



5 Conclusions & Future Directions

5.1 The RP Voting Rule

In the elections constructed from the Yahoo! artist data, the RP voting rule selects the
Condorcet winner more often than any of the others, and its Condorcet efficiency remains
fairly stable across some variations in the number of voters. In addition to beating all the
other voting rules in terms of Condorcet efficiency, RP also is slightly worst than than the
two best rules in terms of communication complexity.

Several future directions are immediately evident. The seven-candidate elections with
many voters offer a glimpse into the performance of RP, but it is likely that the measured
performance will change when there are (a) fewer voters, (b) different numbers of candidates,
and (c) other values of p. Intuitively, RP should perform worse with fewer voters due to
its reliance on probability and the law of large numbers. Perhaps 95% is the Condorcet
efficiency to which it converges given the current values of p and α.15 With more candidates,
RP should perform worse, too.16 And finally, increasing p should, by virtue of providing a
more complete picture of every user’s preferences, increase the Condorcet efficiency at the
expense of also increasing the communication complexity. By fixing all other parameters,
this approach could allow some measurement of the tradeoffs between the two.

Because of its inherent randomness, the RP rule intuitively seems like it should be
resistant to strategic voting, and determining if this is indeed the case seems worthwhile.
Re-running the elections and determining how often the Condorcet loser [13] is elected by
RP (and the other voting rules, for that matter) could also provide supporting evidence for
RP’s usefulness.

Finally, one reviewer noted that it may also be the case that generating the pairs uni-
formly at random (as previously discussed) is not the best method to produce ballots that
are most likely to result in the selection of the Condorcet winner. It might be better to
“cover” as many candidates as possible given the p pairs that are to be generated, and avoid
duplicating information that could be inferred from previously-generated pairs.

5.2 The Constructed Elections

The elections constructed for testing the voting rules feature more candidates and more
than two orders of magnitude more voters than similar analyses. These elections produce
Condorcet efficiency results for several common voting rules that very closely match the
results generated by Merrill’s “random society” synthetic model. However, the prevalence
of ties in the data set could be affecting the usefulness of the results. A reasonable next
step to evaluate how large an effect the ties had would be to eliminate all voters that had
any ties at all, and re-evaluate the elections with only those voters that had distinct ratings
for each of the seven candidates.

Next steps with the election data include converting it to PrefLib’s “Orders with Ties,
Complete List” format [9] and making it available to the community at large, since these
elections may be useful to other researchers. I also hope to construct elections with more
candidates by extending the existing 7-candidate tuples. Producing 10-candidate elections
would allow comparison with the Condorcet efficiency of Merrill’s largest simulated elections.
Similarly, smaller elections (in terms of voters or candidates) may easily be constructed by
sampling the election data produced here. It also remains to be seen whether the Condorcet

15A reviewer offers the alternative explanation that perhaps the remaining 5% of races illustrate the case
when first- and second-place candidates are nearly tied and sampling such a small portion of the voters may
not select the Condorcet winner reliably enough.

16This would certainly follow the patterns of Condorcet efficiency as the number of candidates increases
shown in [10].



efficiencies of other voting rules measured by Merrill (Runoff, Hare/IRV, and Coombs) match
between the synthetic data and the Yahoo! data.

Given that the users’ original artist ratings are readily available and can be used directly
as utilities, this analysis can be extended to compare voting rules’ social utility efficien-
cies [11] and related efficiency measurements using non-synthetic election data.
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