
Object Allocation Problems Under

Constraints

Laurent Gourvès and Carlos A. Martinhon and Jérôme Monnot

Abstract

The Object Allocation Problem (OAP) is a well studied problem in which a set X of
n objects is allocated to a set N of n agents. This paper deals with a generalization
called Constrained Object Allocation Problem (COAP) where the set of objects allo-
cated to the agents must satisfy a given feasibility constraint. The input is a set X
of at least n elements and a collection S of subsets of X , each of size n. Every S ∈ S
defines a set of elements that the agents can collectively possess and such that every
agent is allocated exactly one element.
In this article we first study the problem of a central authority who wants to maximize
the social welfare defined in two ways: the sum of the agents’ utility for the item
they receive or the utility of the poorest agent. This optimization problem is shown
NP-hard for COAP in general but polynomial time solvable when S is the base set
of a matroid.
An allocation can be built by the agents without communicating their utilities to
a central authority. They can use a mechanism like the famous Serial Dictatorship
mechanism (SD). In SD, a permutation of the agents is given and, starting from
scratch, the agents select in turn their most preferred element among the remaining
items. We analyse the solutions produced by a version of SD adapted to COAP. There
are instances of COAP such that SD fails to produce a socially optimal allocation,
whatever the order on the agents. However, if S is the base set of a matroid, then
we prove that SD produces a social optimum for at least one permutation.

1 Introduction

In the Object Allocation Problem (OAP), a set X of n objects (e.g. houses or jobs) is matched
to a set N of n agents. Every agent receives exactly one object so there are n! possible
allocations. This article deals with a generalization called Constrained Object Allocation
Problem (COAP): X may contain more than n elements but each agent is allocated exactly
one object and the sets of objects that the agents can collectively possess is prescribed.
In concrete terms, we are given a collection S of subsets of X , each of these subsets has
cardinality n, and an allocation A is feasible if and only if {A(i) : i ∈ N} ∈ S where A(i)
is the object assigned to agent i ∈ N . Thus, S defines which sets of 2X the agents can
collectively possess. But for any given S ∈ S, there is no restriction on how S is distributed
to the agents. We aim at studying some important features of OAP and see if they extend
to COAP.

In both OAP and COAP the individual utility of an agent for a given allocation solely
depends on the object he receives. The social welfare is mainly defined in two standard ways:
utilitarian (total sum of the agents’ individual utilities) and egalitarian (least individual
utility of an agent).

For OAP, it is long known that a socially optimal allocation can be computed in polyno-
mial time if the agents’ utilities for the objects are given (maximum weight perfect match-
ing). For example, these utilities can be collected by a central authority which computes the
social optimum. Interestingly, we show that the problem is still polynomial-time solvable
for COAP if S is the base set of a matroid defined on X . This matroidal subcase of COAP,
denoted by MOAP for matroidal object allocation problem, is well motivated and central to

central computation Serial Dictatorship
of a social optimum

COAP NP-hard for some instances, no permu-
tation induces a social optimum

MOAP polynomial time at least one permutation
solvable induces a social optimum

Table 1: Contribution. All these results hold for utilitarian and egalitarian social welfare.

our work. For COAP in general, we prove that computing a socially optimal allocation is
an NP-hard problem.

The remaining part of the article deals with Serial Dictatorship (SD), a famous mech-
anism for the greedy construction of solutions in the object allocation problem (no central
authority is required). Given a permutation of N (also called policy), the first agent selects
his top item, i.e. his most preferred object in X , and removes it from X . Then, the second
agent selects his top item and removes it from X , and so on. The allocation produced by
SD is rarely a social optimum. However, it is known that for every instance of OAP, there
must be a permutation of N such that SD ends up with a socially optimal allocation (a folk
result).

In this article we provide an extension of SD to COAP: at each step, the agent who plays
selects his most preferred element under the constraint that the set of currently selected
elements can be completed in a set of S. We show that for every instance of MOAP (the
matroidal version of COAP), there must be at least one permutation of N such that SD
ends up with a socially optimal allocation. For COAP in general, there is at least one
instance such that no permutation of SD provides a socially optimal allocation according to
the utilitarian or the egalitarian social welfare.

This article is organized as follows. Related works are provided in Section 2. Formal
definitions of COAP, MOAP and OAP, together with basic notions on matroids are given
in Section 3. MOAP is new and central to our work so we motivate it with applications
in Section 4. The problem of computing a social optimum is studied in Section 5. SD and
its extension to COAP are investigated in Section 6. More precisely, see Section 6.1 for
the existence of a permutation inducing a social optimum for MOAP. A summary of our
contribution is given in Table 1.

2 Related work

In many real-world applications, one tries to pair some entities: jobs and workers, houses
and families, men and women, students and schools, etc. These well-studied problems are
often called markets or matchings.

In a two-sided market there are two groups of agents and everyone has preferences over
the members of the opposite group (e.g. men and women). A solution is a matching M
that consists of pairs (one member of each group) and M(x) denotes the agent matched
with x under M . Given a two-sided market, the famous stable marriage problem is to find
a matching M such that no pair of agents (a, b), not matched together, satisfies “a prefers b
to M(a)” and “b prefers a to M(b)”. Such a stable matching always exists and an algorithm
to build it was provided by Gale and Shapley [8].

Sometimes M has to satisfy some extra constraints. For example, a school may have
bounds on the number of students that it can host. Schools can be classified according to
their topic/location and there may be additional quotas, not on the schools directly, but on

the groups on schools. In a different context, this is known as laminar matroids which are
special cases of matroids [17, 14, 15]. Matroidal extensions of the stable matching problem
have already been studied in [2, 6, 10, 13].

A one-sided market is also divided in two groups of entities but only one group has
preferences over the other group (e.g. families and houses). In [18], Shapley and Scarf study
a one-sided house market with endowments (each agent owns a house). They search for an
allocation such that no coalition of agents can improve upon it. Such a stable allocation
always exists and it is produced by Gale’s top trading cycle algorithm (TTC) [18]. TTC
is centralized and mainly based on reallocating resources along potentially long cycles of
exchanges. In a recent paper [3], the authors propose to study this kind of algorithms with
the restriction that only small cycles of exchanges are allowed (cycles involving at most
4 agents but most of the results concern bilateral exchange). For instance, the authors
identified a domain where this procedure converges to a Pareto-optimal allocation, and they
proved that the worst-case loss of welfare is as good as it can be under the assumption
of individual rationality. They also show the NP-completeness of deciding whether an
allocation resulting of swaps and maximizing utilitarian or egalitarian welfare is reachable.

This paper deals with the object allocation problem (OAP), introduced in 1979 by Hylland
and Zeckhauser [12] (see also [21, 19]). It is a one-sided market with no endowment; a set of
n items has to be allocated to a set N of n agents. One of the n! possible allocations is chosen
with a mechanism. A mechanism is deterministic if one specific allocation is returned with
probability 1. Usually, a mechanism has to elicit the agents’ private preferences but in that
case, the agents may have incentive to strategize, i.e. to misreport their true preferences in
order to influence the outcome of the mechanism. In a strategy-proof mechanism, reporting
false preferences cannot be profitable. Pareto optimality is reached by a mechanism if the
profile of the agents’ utilities is not dominated by another utility vector.

Serial dictatorship (SD) is a well-studied deterministic mechanism for the object allo-
cation problem. The agents play in turn according to a given permutation π. During his
turn, an agent takes his most preferred item within the set of remaining items. We end
up with an allocation, say A, where A(i) designates the item allocated to agent i. SD
satisfies several valuable properties including Pareto optimality for strict preferences1 and
group-strategy-proofness (no group of agents can strategize).

Zhou [21] utilizes a random version of SD, called random serial dictatorship (RSD) which
consists of choosing a permutation of N uniformly at random and then, SD is performed. If
RSD is executed, then for every agent-object pair (i, x), agent i gets object x with probability
Pix. Saban and Sethuraman [16], together with Aziz, Brandt and Brill [1], have recently
shown that computing the bi-stochastic matrix P is #P-complete.

3 Models and matroids

An instance of the Constrained Object Allocation Problem (COAP) consists of a set N of n
agents and a structure (X ,S) where X is a set of at least n elements and S is a collection
of subsets of X where each S ∈ S is of size n.

We allow S to be defined explicitly (all its members are listed) or implicitly (we are
equipped with a test which indicates whether S ⊆ X belongs to S and this test is polynomial
in |X |). However, for hardness results we assume, as it is mainly done in the literature, that
S is given implicitly.

A valid allocation (or feasible solution) is a function A : N → X satisfying
⋃
i∈N A(i) ∈ S.

We say that A(i) is the element allocated (or assigned) to agent i. In this article we assume
that an agent cannot be allocated more than one object.

1strict preference means a �i b iff ui(a) > ui(b).

An allocation can be evaluated from the point of view of a single agent or from the
point of view of the entire group of agents. The individual utility of agent i with respect to
element A(i) ∈ X is denoted by ui(A(i)) and this quantity is a nonnegative real. The social
welfare of an allocation A is usually measured in two standard ways:

• U(A) =
∑
i∈N ui(A(i)) (utilitarian social welfare);

• E(A) = mini∈N ui(A(i)) (egalitarian social welfare).

The Object Allocation Problem (OAP) is a special case of COAP where X is a set of |N |
objects and S = {X}. An intermediate case, called Matroidal Object Allocation Problem
(MOAP), is defined on a matroid. Let us give some basic notions on matroids before MOAP
is introduced (see [17, 14, 15] for more details on matroid theory).

3.1 Matroids

This section contains basic notions of matroid theory. Quoting Dan Gusfield [11], the reader
unfamiliar with matroids, but familiar with graphs, can follow most of the paper by special-
izing the results to the minimum spanning tree problem, substituting graphs for matroids,
edges for elements, spanning trees for bases, and cycles for circuits.

A matroid (E,F) consists of a finite set E and a collection F of subsets of E such that:

(M1) ∅ ∈ F ;

(M2) if F2 ⊆ F1 and F1 ∈ F , then F2 ∈ F ;

(M3) if F1, F2 ∈ F such that |F1| < |F2|, then there exists e ∈ F2\F1 such that F1∪{e} ∈ F .

The elements of F are called independent sets. Inclusionwise maximal independent sets
are called bases. A matroid can be defined by its set of bases, i.e. (E,B), where B denotes
the set of bases, is an alternative definition of (E,F) [17]. The rank of F ⊆ E is defined as
max{|G| : G ⊆ F, G ∈ F}. All the bases of a matroid have the same cardinality, also called
the rank of the matroid.

A subset of E that is not independent is dependent. Inclusionwise minimal dependent
sets are called circuits. If for F ∈ F and e ∈ E \ F we have F ∪ {e} /∈ F then F ∪ {e}
contains a unique circuit denoted by C(F, e) and C(F, e) contains e.

The independence oracle of a matroid (E,F) is a test for determining if a set F ⊆
E belongs to F . Usually, an algorithm does not manipulate a matroid directly but its
independence oracle. In this article, we always assume that the time complexity of the
independence oracle is polynomial in the size of E.

When every element e ∈ E has a weight w(e) ∈ IR, a typical optimization problem
consists in computing a base B that maximizes

∑
e∈B w(e). This problem is solved in

polynomial time by a greedy algorithm [4]. Given two matroids (E, F1) and (E, F2) and a
weight w(e) ∈ IR for every e ∈ E, there exist polynomial algorithms to find an independent
set F ∈ F1 ∩ F2 that maximizes

∑
e∈F w(e) [7]. See also [17, 14] for the algorithms.

Let us finish this section with typical examples of matroids.
A laminar matroid is given by k (not necessarily disjoint) sets E1, . . . , Ek and k non-

negative integers b1, . . . , bk. For every pair of sets Ei, Ej , one of following cases occurs:

Ei ⊆ Ej or Ei ⊆ Ej or Ei ∩ Ej = ∅. A laminar matroid (E,F) is such that E :=
⋃k
i=1Ei

and F := {F ⊆ E : |F ∩ Ei| ≤ bi}. The partition matroid is a special case of laminar
matroid in which the k sets are disjoint.

Given k (not necessarily disjoint) sets E1, . . . , Ek, subsets of a ground set E, a partial
transversal is a set T ⊆ E such that there exists an injective map Φ : T → [1..k] satisfying

t ∈ EΦ(t) for all t ∈ T . Then (E,F) where F = {T ∈ 2E : T is a partial transversal of E}
is a transversal matroid.

If F denotes the set of forests of a multigraph G = (V,E), then (E,F) is called the
graphic matroid of G. The free matroid is defined as (E, 2E), and E is its unique base.

3.2 MOAP

In this article we pay particular attention to MOAP — the matroidal version of OAP. For
MOAP, S is the base set of a matroid (X ,F) and each base has size n = |N |. Note that
if we are given a matroid whose bases contain more than n elements, then we can restrict
ourselves to (X ,F ′) such that F ′ = {F ∈ F : |F | ≤ n}, which is also a matroid. Put
differently, there is no loss of generality when we assume that the agents collectively possess
a base and not just an independent set.

In the following, we interchangeably use S and the underlying matroid (X ,F) for the
input of MOAP. Notice that OAP corresponds to MOAP with the free matroid.

4 Motivation

Let us give some possible applications of MOAP and COAP.

Example 1. Let X be a set of 75 offices composed of 10 units located in building A, 15
units located in building B and 50 units located in building C. There are 60 workers and
we want to assign one office per worker. For financial reasons (e.g. offices in building A
are more expensive than in the other buildings), at most 8 offices from building A can be
allocated. Furthermore at least 4 offices of buildings A and B must be left free because of
forthcoming recruitment.

The situation depicted in Example 1 corresponds to a laminar matroid. We have XA =
{x1, . . . , x10}, XAB = {x1, . . . , x25}, XC = {x26, . . . , x75} and X = XAB ∪ XC . Then S
contains every set S satisfying S ⊆ X , |S| = 60, |S ∩ XA| ≤ 8 and |S ∩ XAB | ≤ 21.

Example 2. The researchers of a given institute can invite external colleagues for 1 month
visits. Let X be the set of possible external researchers. We know during which months
these possible guests can visit the institute. The problem is to assign one guest per internal
researcher under the constraint that no two guests are invited at the same time. Internal
researchers have utilities with respect to the external researchers but these values are inde-
pendent of the visiting period. The next instance involves 5 possible guests and 3 months.

January April June
Dr. Red 1 1 0
Dr. Blue 0 1 0
Dr. Yellow 1 0 1
Dr. Pink 0 1 0
Dr. Brown 1 0 1

It is possible to invite Doctors Red, Blue and Yellow in January, April and June, respectively.
However we cannot invite Doctors Red, Blue and Pink because none of them is available in
June.

The situation depicted in Example 2 corresponds to a transversal matroid.

Example 3. For the provisioning of the International Space Station (ISS) the 5 actors of
the program (USA, Russia, EU, Japan, Canada) regularly send a cargo that is limited in

space and weight. Let X denote the bundles of objects that an actor may wish to send to
ISS. All possible sets of 5 bundles of objects satisfying the constraints of space and weight
form S.

This last example falls in the case of COAP but not of MOAP.

5 Computing a socially optimal allocation

In this section we seek a good solution for the group of agents. Let ÂU and ÂE denote valid
allocations that maximize the utilitarian social welfare U(ÂU) =

∑
i∈N ui(ÂU (i)) and the

egalitarian social welfare E(ÂE) = mini∈N ui(ÂE(i)), respectively. We are going to see that
computing ÂU or ÂE is NP-hard for COAP but polynomial for MOAP.

Proposition 1. For COAP, computing ÂU or ÂE is NP-hard.

Proof. The reduction is done from Hamiltonian Cycle (hc in short) which is known to be
NP-complete [9]. hc consists in deciding if a given graph has a Hamiltonian cycle. Given
an instance G = (V,E) of hc with vertex set {1, . . . , n}, build an instance of COAP such
that N = {1, . . . , n}, X = {(i, j) : 1 ≤ i, j ≤ n} and S ∈ S if and only if S is a Hamiltonian
cycle. Finally, ui(a, b) = 1 if (a, b) ∈ E, otherwise ui(a, b) = 0. Therefore U(ÂU) = n (resp.,
E(ÂE) = 1) if and only if G has a Hamiltonian cycle.

Notice that if S ∈ S is given, i.e. what the agents collectively receive is fixed, then finding
an allocation A that maximizes U(A) (resp., E(A)) under the constraint

⋃
i∈N A(i) = S can

be done within polynomial time by using matching algorithms.
We are going to see that both ÂU and ÂE can be computed efficiently for MOAP (in a

centralized manner). The input is (N, (X ,S)) where S is the base set of a matroid (X ,F).
The fact that ÂU and ÂE are polynomial time computable is shown after an intermediate

result. Suppose X = {x1, . . . , xm} and for every k ∈ [m], let Yk = {y1
k, . . . , y

n
k } where each

yik can be seen as a copy of xk associated with agent i. Let Y =
⋃m
k=1 Yk. For any D ⊆ Y,

let p(D) := {xk ∈ X : |D∩Yk| > 0} be the projection of D; note that p(D) is not a multiset.
Let D = {D ⊆ Y : (p(D) ∈ F) ∧ (|D ∩ Yk| ≤ 1, k = 1..m)}.

Lemma 1. If (X ,F) is a matroid then (Y,D) is a matroid.

Proof. We have to verify the three properties of a matroid.

(M1) (X ,F) is a matroid, so ∅ ∈ F . Using p(∅) = ∅ and |∅ ∩ Yk| = 0 for all k, we get that
∅ ∈ D.

(M2) Take D, D′ such that D ⊂ D′ ⊆ Y and D′ ∈ D. |D′ ∩ Yk| ≤ 1 for all k implies
|D ∩ Yk| ≤ 1 for all k. By the definition of p, p(D) is a subset of p(D′). From D′ ∈ D we
know that p(D′) ∈ F . Because (X ,F) is a matroid, any subset of p(D′) (p(D) in particular)
is in F .

(M3) Take D and D′, two members of D, such that |D| < |D′|. It follows that |p(D)| <
|p(D′)|. Since both p(D) and p(D′) belong to F , there must be xk∗ ∈ p(D′) \ p(D) such
that p(D) + xk∗ ∈ F by property (M3). Let yi

∗

k∗ be the unique member of D′ such that
p({yi∗k∗}) = xk∗ . D ∩ Yk∗ must be empty, otherwise xk∗ ∈ p(D), a contradiction. Hence
|D + yi

∗

k∗ ∩ Yk∗ | = 1. In conclusion, yi
∗

k∗ belongs to D′ \D and D + yi
∗

k∗ ∈ D.

Note that (X ,F) and (Y,D) have the same rank. The independence oracle of (X ,F)
is, by hypothesis, polynomial in |X |. Thus a polynomial independence oracle for (Y,D) is
immediately derived. The interest of Lemma 1 is that (Y,D) carries more information than
(X ,F) (having yik in a solution means that xk is picked by agent i) and the properties of a
matroid are preserved.

Theorem 1. For MOAP, ÂU can be computed in polynomial time.

Proof. We are going to see that a socially optimal allocation (utilitarian) corresponds to
an independent set of maximum weight at the intersection of two matroids, which is a
polynomial time solvable problem [17, 14].

Consider (Y,D), the matroid associated with (X ,F) (see Lemma 1). For every i ∈ N ,
let Y ′i denote {yi1, yi2, . . . , yim}, i.e. the copies of X associated with agent i. We have a
partition Y ′1 ∪Y ′2 ∪ . . .∪Y ′n of Y, so (Y,G) where G = {Z ⊆ Y : |Z∩Y ′i | ≤ 1 for every i ∈ N}
is a partition matroid. For every yik ∈ Y, define its weight w(yik) as ui(xk) where i ∈ N
and k ∈ [m]. We claim that if S ∈ D ∩ G has maximum weight w(S), then p(S) is an
optimum for the utilitarian social welfare U . Indeed, for every S ∈ D ∩ G we know that
S ∈ D ⇒ p(S) ∈ F (definition of matroid and S ∈ G implies that no agent is associated
with more than one element).

If |S| < |N | then at least one agent, say i′, is not associated with an element of S. Take
any base B of (X ,F). We have |B| = |N | and |p(S)| = |S| < |N | so by property M3, there
exists xj ∈ B \ p(S) such that xj + p(S) ∈ F . It follows that yi

′

j , the copy of xj associated

with agent i′, can be added to S, i.e. yi
′

j /∈ S and yi
′

j +S ∈ D. We get that w(yi
′

j +S) ≥ w(S)

by the non negativeness of w(yi
′

j). Therefore, we can suppose w.l.o.g. that |S| = |N |. To
conclude, U(p(S)) is equal to w(S).

Theorem 2. For MOAP, ÂE can be computed in polynomial time.

Proof. The proof relies on the tools introduced for the previous proof. Let T be a threshold
for which we are going to test if an allocation A satisfying E(A) ≥ T can be built. Consider
(Y,D), the matroid associated with (X ,F). For every i ∈ N , let Y ′i denote {yi1, yi2, . . . , yim}.
We have a partition matroid (Y,G) where G = {Z ⊆ Y : |Z ∩ Y ′i | ≤ 1 for every i ∈ N}. For
every yik ∈ Y, define its weight w(yik) as 1 if ui(xk) ≥ T , otherwise w(yik) = 0. Therefore, if
S ∈ D ∩ G has weight w(S) = n, then p(S) satisfies E(p(S)) ≥ T . With a binary search on
T , we can guess the value E(ÂE).

6 Serial Dictatorship

The previous section was dedicated to the centralized computation of a socially optimal
allocation. This approach is relevant when there exists a sort of central authority who
knows the agents’ true utilities for the objects but it fails in the following situations:

• the agents are reluctant to disclose their true valuation for the objects because they
do not trust the authority;

• the agents act strategically by misreporting their utilities;

• no central authority exists.

Therefore, other mechanisms for the construction of an allocation must be used. Serial
Dictatorship (SD) is a well-studied deterministic mechanism for OAP. The agents play in
turn according to a given permutation π. During his turn, an agent takes his most preferred
item within the set of remaining items. We end up with an allocation, say Aπ, where Aπ(i)
designates the item allocated to agent i.

With SD no central authority is required and the agents need not disclose their true
valuations. However an ordering on the agents is assumed. This ordering can be seen as an
exogenous ranking of the agents. In Example 2, there can be an order of priority within the
inviting researchers.

So far we assumed that the agents have utilities with respect to the objects and for SD
we need to clarify which object is selected by an agent in case of a tie. We suppose that
every agent i has his own total and strict order �i on X . This order is compliant with ui
in the sense that ui(x) > ui(y) implies x �i y. If several available objects maximize the
individual utility of an agent, then the element coming first in �i is selected by the agent.

Let us describe how SD extends to COAP with input (N, (X ,S)). The agents play in
turn according to a given permutation π on N . The allocation Aπ, which is undefined at
the beginning, is gradually built. At every step, the partial solution must be a subset of a
member of S.

When it is the turn of agent π(i), the set of elements that are already assigned is⋃
j<iA

π(π(j)). The possible actions of agent π(i) are to pick one element in {x ∈ X \⋃
j<iA

π(π(j)) : ∃S ∈ S such that S ⊇ x +
⋃
j<iA

π(π(j))}. The element that agent π(i)
likes the most (according to �π(i)) in this set is denoted by topπ(i), or topπ(i)(

⋃
j<iA

π(π(j)))
if the previously assigned elements need to be stressed. So topπ(i) is allocated to agent π(i).
We sometimes say that it is picked by π(i).

Let us emphasize a particularity of MOAP for SD. Aπ is empty at the beginning and for
i = 1 to n, agent π(i) adds to {Aπ(π(j)) : j < i} the element x that he likes the most under
the constraint that {Aπ(π(j)) : j < i}+x is an independent set. Because of M3 (see Section
3.1), as soon as adding x to {Aπ(π(j)) : j < i} preserves the independence of the partial
solution, we know that {Aπ(π(j)) : j < i}+ x can be completed in a base of the underlying
matroid. Thus, no need to foresee if {Aπ(π(j)) : j < i}+ x is the subset of some S ∈ S.

6.1 Can SD induce a social optimum?

As a reminder, ÂU and ÂE designate an allocation maximizing the utilitarian and egalitarian
social welfare, respectively. The allocation produced by SD under permutation π is denoted
by Aπ. We clearly have U(ÂU) ≥ U(Aπ) and E(ÂE) ≥ E(Aπ) for every permutation π. The
best outcome if we restrict ourselves to the allocations produced by SD will be denoted by
Aπ
∗
U and Aπ

∗
E , respectively. That is, π∗U = argmaxπ∈PU(Aπ) and π∗E = argmaxπ∈PE(Aπ)

where P denotes the set of all permutations on N .
It can be U(ÂU) > U(Aπ

∗
U) and E(ÂE) > E(Aπ

∗
E) because SD is sometimes unable to

induce a social optimum. For instance, consider the instance of COAP described in Example
4.

Example 4. There are two agents N = {1, 2} (and thus, two possible permutations). The
instance is described as follows:

• X = {l1, l2, l3, r1, r2, r3};

• S = {(l1, r2), (l2, r1), (l3, r3)};

• l1 �1 l3 �1 l2 �1 r1 �1 r2 �1 r3;

• r1 �2 r3 �2 r2 �2 l1 �2 l2 �2 l3.

For the identity permutation, player 1 picks l1 followed by player 2 who picks r2. For
the other permutation, player 2 picks r1 followed by player 1 who picks l2. Now we can find
numerical values such that ÂU = ÂE = {(l3, r3)} (agent 1 gets objet l3 and the other agent
has r3), e.g. u1(l1) = u2(r1) = 3, u1(l2) = u2(r2) = 0 and u1(l3) = u2(r3) = 2. For the
utilitarian social welfare, SD produces a solution of value 3 whereas the optimum is 4. For
the egalitarian social welfare, SD produces a solution of value 0 whereas the optimum is 2.

Thus, SD may fail to produce a social optimum, whichever order on the agents is selected.
This observation is made for COAP but if we consider MOAP then we are going to prove

that for every instance, there exists a permutation of the agents such that SD produces a
socially optimal allocation.

Let (N, (X ,S)) be an instance of MOAP such that S is the base set of a matroid (X ,F).
We are going to compute a socially optimal solution Â (depending on the context, Â = ÂU or
Â = ÂE) and a permutation π such that Aπ = Â. The algorithm is described in Algorithm
1 and it uses Algorithm 2 as a subroutine.

Let us give an overview of the algorithms. First a socially optimal solution Â is computed.
The current solution S′ is initially empty and the current position j in the permutation is
initially 1. Every agent is unassigned (N0 is the set of unassigned agents). SD is simulated by
Algorithm 2: As long as there exists an unassigned agent i such that topi(S

′) = Â(i), agent
i is put on position j of the permutation, Â(i) is added to S′, j is incremented by 1, and
agent i is removed from the set of unassigned agents. If the set of unassigned agents is empty
then we are done. Otherwise, Â must be modified in order to continue the construction of
the permutation.

Algorithm 1:

Data: N , a matroid (X ,F) given by its independence oracle, (�i)i∈N , (ui)i∈N
Result: a permutation π on N such that Aπ is a social optimum for U or E ,

depending on the context
1 Build a social optimum Â = ÂU (or Â = ÂE , depending on the context) for the

instance (see Theorem 1 or Theorem 2)
2 Let π be a permutation on N (to be determined)
3 N0 ← N
4 j ← 1
5 while j ≤ |N | do
6 〈π, j,N0〉 ← Algorithm 2 (N, (X ,F), (�i)i∈N , π, j,N0, Â)
7 if N0 6= ∅ then

8 S′ ← {Â(i) : i ∈ N \N0}
9 Ŝ ← {Â(i) : i ∈ N}

10 if ∃i ∈ N0 such that Ŝ − Â(i) + topi(S
′) ∈ F then

11 Â(i)← topi(S
′)

12 else
13 Create an exchange digraph Gex = (N0, Eex) such that (i, i′) ∈ Eex if and

only if Â(i′) ∈ C(Ŝ, topi(S′)) (see Section 3.1 for the definition of
C(Ŝ, topi(S′)))

14 Take a directed cycle C of Gex of minimum length and let N ′0 be the node
set of C

15 foreach i ∈ N ′0 do

16 Â(i)← topi(S
′)

17 return π

Theorem 3. For every matroid (X ,F), Algorithm 1 provides a permutation π such that
U(Aπ) = U(ÂU) = U(Â) or E(Aπ) = E(ÂE) = E(Â), depending on the definition of the
social welfare.

Proof. We prove the result simultaneously for the utilitarian and the egalitarian social wel-
fare, because the proofs are similar. The case N0 = ∅ (see line 7 of Algorithm 1) is direct
since the permutation π is fully determined. Let us consider the case N0 6= ∅. The current

Algorithm 2: Simulated SD

Data: N , a matroid (X ,F) given by its independence oracle, (�i)i∈N , π, j, N0, Â
Result: a permutation on N , an integer and a subset of N

1 S′ ← {Â(i) : i ∈ N \N0}
2 t← j

3 while there exists i ∈ N0 such that Â(i) = topi(S
′) do

4 π(t)← i
5 N0 ← N0 − i
6 t← t+ 1

7 S′ ← S′ + Â(i)

8 return 〈π, t,N0〉

solution is S′ := {Â(`) : ` ∈ N \N0} and for every i ∈ N0 it holds that topi(S
′) 6= Â(i) and

∃S ∈ S such that S ⊃ (topi(S
′) + S′).

At line 10 of Algorithm 1 we check if an unassigned agent i can replace Â(i) by topi(S
′)

so that the new allocation remains valid. If it is possible then Â is modified accordingly.
Otherwise we use an exchange digraph Gex = (N0, Eex) such that (i, i′) ∈ Eex if and only if
Â(i′) ∈ C(Ŝ, topi(S′)) (see Section 3.1 for the definition of C(Ŝ, topi(S′))).

Property 1. Gex admits a directed cycle if ∀i ∈ N0, (Ŝ−Â(i)+topi(S
′)) is not independent.

Proof. For every i ∈ N0 there exists a base S of F such that S ⊃ (topi(S
′) + S′). Thus,

topi(S
′) + S′ is independent. However topi(S

′) 6= Â(i) and Ŝ is a base so topi(S
′) + Ŝ

contains a circuit C(Ŝ, topi(S′)) and this circuit must contain at least one element of {Â(j) :
j ∈ N0− i}2, say Â(i′). By construction, arc (i, i′) belongs to Eex. Therefore, for each node
i of N0, there is at least one arc to another node i′ of N0. As a consequence, Gex admits a
directed cycle.

Property 1 indicates that the directed cycle mentioned at line 14 of Algorithm 1 must
exist. We shall use a theorem taken from [7] (see also [14]).

Theorem 4. [7] Let (E,F) be a matroid and F ∈ F . Let x1, . . . , xs ∈ F and y1, . . . , ys /∈ F
with

(a) xk ∈ C(F, yk) for k = 1, . . . , s and

(b) xj /∈ C(F, yk) for 1 ≤ j < k ≤ s.

Then (F \ {x1, . . . , xs}) ∪ {y1, . . . , ys} ∈ F .

Let us denote the members of N ′0 by {1, . . . , s} such that the directed cycle mentioned
at line 14 of Algorithm 1 is {(k, k + 1) : 1 ≤ k ≤ s − 1} ∪ {(s, 1)}. Since N ′0 are the nodes
of a minimum directed cycle C, we must have that (N ′0, C) is an induced subgraph of Gex
or equivalently C is chordless.

Because of line 13 of Algorithm 1, item (a) of Theorem 4 is satisfied if we let F = Ŝ,
yk = topk(S′) and xk = Â(k + 1) for k = 1, . . . , s (with the convention s + 1 = 1). Indeed
(i, i+ 1) ∈ Eex if and only if xi = Â(i+ 1) ∈ C(Ŝ, topi(S′)) = C(F, yi). In words, yk is agent

2If not, this circuit is included in (topi(S
′)+S′+Â(i)). Now, since (topi(S

′)+S′) and Ŝ are independent,

axiom M3 of matroids implies that we can add all the elements of Ŝ \ S′ except one to (topi(S
′) + S′). By

hypothesis, it is not Â(i)) and then (Ŝ + topi(S
′)− Â(i)) is a base which is a contradiction with the initial

assumption.

k’s top object, yk can be added to Ŝ if xk is removed and xk is initially assigned to agent
k + 1.

Now we consider item (b) of Theorem 4. The case where an agent i ∈ N0 can replace
Â(i) by topi(S

′) is treated at line 10 of Algorithm 1 so we can consider that |N ′0| ≥ 2. If
item (b) does not hold then there exists j and k such that xj ∈ C(F, yk) and 1 ≤ j < k ≤ s.
This is equivalent to xj = Â(j + 1) ∈ C(Ŝ, topk(S′)). In others words, Eex contains arc
(k, j + 1). If j + 1 = k then we get a contradiction with the fact that no agent i ∈ N0 can
replace Â(i) by topi(S

′). If j+ 1 < k then we get a contradiction with the minimality of N ′0
since there is a directed cycle on N ′0 \ {j}, i.e. consecutive arcs from j + 1 to k and one arc
from k to j + 1.

Therefore, we can apply Theorem 4 and state that {Â(i) : i ∈ N \ N ′0} ∪ {topi(S′) :
i ∈ N ′0} is independent. It is, of course, a base because it has the same size as Ŝ. At
line 16 of Algorithm 1, Â(i) is replaced by topi(S

′) for every i ∈ N ′0. The social utility
of {Â(i) : i ∈ N \ N ′0} ∪ {topi(S′) : i ∈ N ′0} is as good as U(ÂU) (resp., E(ÂE)) because
ui(topi(S

′)) ≥ ui(ÂU (i)) (resp., ui(topi(S
′)) ≥ ui(ÂE(i))) for every i ∈ N ′0.

Finally, the construction of π can be resumed by the use of Algorithm 2 (line 6 of
Algorithm 1). The termination of Algorithm 1 is due to the fact that we can always find
i ∈ N0 such that topi = Â(i), until all the agents are assigned. This concludes the proof of
Theorem 3.

7 Concluding remarks

An extension of the well studied OAP was proposed in this article. We have shown that
two important features of OAP extend to MOAP: a social optimum can be computed in
polynomial time (provided that the agents’ utilities for the objects are known) and for
every instance, there always exists a permutation such that SD induces a social optimum.
Therefore it is natural to ask if these results can be extended to a problem that is more
general than MOAP. We conjecture that the existence of an underlying matroid is necessary
for these properties to hold.

As future works, it would be interesting to study other mechanisms than SD and also
to consider other definitions of the social welfare (e.g. the ordered weighted averaging
aggregation operators [20] because they extend both the utilitarian and the egalitarian
social welfares). Another future direction is to study the case where the agents get more
than one object. In this respect, we believe that the results of Section 5 extend to the case
where the agents receive the same number of objects (see [5] for OAP with this constraint).

Acknowledgement: This work is supported by the project ANR-14-CE24-0007-01
CoCoRICo-CoDec. We thank the reviewers for their useful comments.

References

[1] Haris Aziz, Felix Brandt, and Markus Brill. The computational complexity of random
serial dictatorship. Economics Letters, 121(3):341 – 345, 2013.

[2] Péter Biró, Tamás Fleiner, Robert W. Irving, and David Manlove. The college admis-
sions problem with lower and common quotas. Theor. Comput. Sci., 411(34-36):3136–
3153, 2010.

[3] Anastasia Damamme, Aurélie Beynier, Yann Chevaleyre, and Nicolas Maudet. The
power of swap deals in distributed resource allocation. In Gerhard Weiss, Pinar Yolum,

Rafael H. Bordini, and Edith Elkind, editors, Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul,
Turkey, May 4-8, 2015, pages 625–633. ACM, 2015.

[4] J. Edmonds. Matroids and the greedy algorithm. Mathematical programming, 1(1):127–
136, 1971.

[5] Diodato Ferraioli, Laurent Gourvès, and Jérôme Monnot. On regular and approxi-
mately fair allocations of indivisible goods. In Ana L. C. Bazzan, Michael N. Huhns,
Alessio Lomuscio, and Paul Scerri, editors, International conference on Autonomous
Agents and Multi-Agent Systems, AAMAS ’14, Paris, France, May 5-9, 2014, pages
997–1004. IFAAMAS/ACM, 2014.

[6] Tamás Fleiner and Naoyuki Kamiyama. A matroid approach to stable matchings with
lower quotas. In Proceedings of SODA 2012, pages 135–142, 2012.

[7] András Frank. A weighted matroid intersection algorithm. Journal of Algorithms,
2(4):328–336, 1981.

[8] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[10] Masahiro Goto, Naoyuki Hashimoto, Atsushi Iwasaki, Yujiro Kawasaki, Suguru Ueda,
Yosuke Yasuda, and Makoto Yokoo. Strategy-proof matching with regional minimum
quotas. In Proceedings of AAMAS 2014, pages 1225–1232, 2014.

[11] Dan Gusfield. Matroid optimization with the interleaving of two ordered sets. Discrete
Applied Mathematics, 8(1):41 – 50, 1984.

[12] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to
positions. Journal of Political Economy, 87(2):293 – 314, 1979.

[13] Yuichiro Kamada and Fuhito Kojima. Efficient matching under distributional con-
straints: Theory and applications. American Economic Review, 105(1):67–99, 2015.

[14] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Publishing Company, Incorporated, 4th edition, 2007.

[15] James G. Oxley. Matroid Theory. Oxford University Press, 1992.

[16] Daniela Sabán and Jay Sethuraman. The complexity of computing the random priority
allocation matrix. In Yiling Chen and Nicole Immorlica, editors, Proceedings of WINE
2013, volume 8289 of LNCS, page 421. Springer, 2013.

[17] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-
Verlag Berlin and Heidelberg GmbH & Co., 2003.

[18] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of Mathematical
Economics, 1(1):23 – 28, 1979.

[19] Lars-Gunnar Svensson. Queue allocation of indivisible goods. Social Choice and Wel-
fare, 11(4):323–330, 1994.

[20] Ronald R. Yager. On ordered weighted averaging aggregation operators in multicriteria
decision making. IEEE Transactions on Systems, Man and Cybernetics, 18:183 – 190,
1988.

[21] Lin Zhou. On a conjecture by gale about one-sided matching problems. Journal of
Economic Theory, 52(1):123 – 135, 1990.

Laurent Gourvès
Université Paris-Dauphine, PSL Research University,
CNRS, UMR [7243], LAMSADE,
75016 PARIS, FRANCE
Email: laurent.gourves@dauphine.fr

Carlos A. Martinhon
Fluminense Federal University, Department of Computer Science,
Niterói, RJ, Brazil
Email: mart@dcc.ic.uff.br

Jérôme Monnot
Université Paris-Dauphine, PSL Research University,
CNRS, UMR [7243], LAMSADE,
75016 PARIS, FRANCE
Email: jerome.monnot@dauphine.fr

