
Fair Social Choice in Dynamic Settings

Rupert Freeman, Seyed Majid Zahedi, and Vincent Conitzer

Abstract

We study a dynamic social choice problem in which an alternative is chosen at each round
according to the reported valuations of a set of agents. In the interests of obtaining a solution
that is both efficient and fair, we aim to maximize the Nash social welfare, which is the product
of all agents’ utilities. We present three novel rules and discuss some of their properties. Two
are greedy algorithms and the third attempts to explicitly learn the distribution over inputs, up-
dating its decisions by solving a convex program at each round. We also take a more generally
applicable algorithm from existing literature and apply it to our problem. Finally, we compare
all four algorithms against the offline optimal solution in simulations.

1 Introduction
Fairness is a topic of rapidly increasing interest in social choice. On the one hand, there has been
much recent interest in the fair allocation of resources—cake cutting [28] as well as other mod-
els [16, 25]. On the other hand, in voting, fairness considerations have received attention in se-
lecting a committee of candidates, in the form of a focus on the voters being represented in the
committee [12, 23, 8].

A classical approach to obtaining a fair outcome in a context where agents have utility functions
is to maximize the Nash social welfare [24], which is the product of the agents’ utilities. One attrac-
tive feature of using the Nash social welfare is scale invariance: if an agent doubles all her utilities
(or, equivalently, changes the units in which she expresses her utilities), this does not change which
outcomes maximize the objective (the Nash social welfare is not however stable under additive
transformations, where an agent simply adds some constant value to all her reported utilities).

In life, it is often difficult to make a completely fair decision in a single-shot context; often,
every option will leave some agents unhappy. Fortunately, we can often address this over time—we
will go to my most preferred restaurant today, and to yours next week. Achieving fairness over time
is the topic of our paper. Ours is certainly not the first work to consider fairness or social choice in
dynamic settings; see, for example, [27, 19, 6].

When we make multiple decisions over time, we could simply maximize the Nash welfare in
each round separately. But it is easy to see that this can lead to dominated outcomes. For example,
suppose there are two agents, and we can choose an alternative that gives one a reward of 3, and the
other a reward of 0; or vice versa; or an alternative that gives each of them 1. Within a round, the
last alternative maximizes Nash welfare; but if this scenario is repeated every round, then it would
be better to alternate between the first two alternatives, so that each agent obtains 1.5 per round on
average. Of course, initially, say in the first round, we may not realize we will have these options
every round, and so we may choose the last alternative; but if we do have these options every round,
we should eventually catch on to this pattern and start alternating. Ideally, we would maximize the
long-term Nash welfare, that is, the product of the long-run utilities (which are the sums of each
agent’s rewards), rather than, for example, the sum of the products within the rounds. Of course,
if there is uncertainty about the options that we will have in future rounds, we cannot expect to get
the same Nash welfare that we could obtain with perfect foresight. For example, we may choose to
make an agent happy this round, and then later realize that in typical rounds, this agent is very easy
to make happy and we should have focused our efforts on an agent that is more difficult to make
happy. While such scenarios are inevitable, we do want to adapt and learn over time and thereby
approximate the ideal Nash welfare.

In this work, we do not focus primarily on strategic concerns . Of course it is fairly common

to ignore strategic concerns in the social choice literature, but we do think this is an important
topic for future work (and we discuss some directions in Section 8). On the other hand, there are
also important contexts where strategic concerns do not come into play. For example, instead of
considering a setting where there are multiple agents that have different utility functions, we can
consider a setting where there are multiple objectives that each alternative contributes towards. For
example, consider faculty hiring. Suppose the three objectives that we want our faculty hires to
contribute to are research, teaching, and service; moreover, suppose that at the time of hiring we can
predict well how much each candidate would contribute to each of these objectives, if hired. Then, it
stands to reason that, one year, we may hire a top researcher that we do not expect to contribute much
to our teaching or service objectives. But we would be loath to make such a decision every year;
having hired a few top researchers who are not good at teaching or service, pressure will mount to
address these needs. This fits well into our framework, if we simply treat each of the three objectives
as an agent that is “happy” with an alternative to the extent to which it addresses the corresponding
objective. In particular, note that the fact that objectives are measured in incomparable units –
for example, we might measure research crudely by number of top-tier publications, and teaching
crudely by course evalation scores – poses no problem to our methodology, since this methodology
can anyway address agents measuring their utilities in different units. (Since we are not in a setting
with a numeraire, there is no reason their utilities should have similar units.) Thus, a reader who
insists on game-theoretic modeling in the case of agents with utility functions may instead substitute
this modified interpretation of addressing multiple objectives everywhere in our paper.

The rest of the paper is organized as follows. In Section 2 we introduce notation and prelimi-
naries. In Section 3 we present two simple greedy algorithms for choosing alternatives, and provide
intuitive interpretations of them. We make a computational distinction between them and provide
an axiomatic justification for one of them. In Section 4 we present an algorithm which can be seen
as an approximation to the optimal solution when T is infinite. In Section 5 we present an existing
algorithm with good regret guarantees for a more general class of stochastic optimization problems.

After presenting the algorithms, we evaluate them on simulated data in Section 6. Finally, in
Section 7 we discuss specific applications of our methodology, including to voting, and conclude in
Section 8.

Related work: Parkes and Procaccia [27] examine a similar problem by modeling agents’ evolv-
ing preferences with Markov Decision Processes, with a reward function defined over states and ac-
tions (alternatives). However, their goal is to maximize the sum of (discounted) rewards and they do
not explicitly consider fairness as an objective. Kash, Procaccia and Shah [19] examine a model of
dynamic fair division where agents arrive at different points in time and must be allocated resources;
however, they do not allow for the preferences of agents to change over time as we do. A recent
paper by Aleksandrov et al. [6] considers an online fair division problem in a setting where items
appear one at a time, and agents declare yes/no preferences over that item. In our setting, each round
has many alternatives and we allow agents to express more general utilities. Our work is related to
the literature on dynamic mechanism design (see, e.g., [26] for an overview), except that we do not
consider monetary transfers. Guo, Conitzer and Reeves [17] consider a setting similar to ours, also
without money, except that they are not explicitly interested in fairness, only welfare, and focus on
incentive compatibility.

2 Preliminaries
Consider a set of n agents and letA be a set ofm possible alternatives.1 At every round t = 1, . . . , T ,
agents report their valuation for every alternative. In this paper we allow the valuations to be integers
in the range 0 to K for some finite K (therefore we can achieve arbitrarily fine granularity by

1For simplicity of presentation, we define the set of alternatives to be static. However, all of our algorithms and results
hold if the set of alternatives, and even the number of alternatives, changes from round to round.

allowing K to be large). Thus the input at every round is a matrix Vt ∈ Zn×m≥0,≤K . For every round t,
a Dynamic Social Choice Function (DSCF) chooses a single alternative, corresponding to a column
of Vt, which we denote by vt. Importantly, the problem is online, so we may only use information
up to time t in order to choose vt.

The valuation of agent i for the alternative j at time t is Vt(i, j), and at each round we can think
of an agent’s valuation vector, Vt(i, ·), as their reported valuation for each alternative. Although
the columns of Vt are formally indexed by alternatives, we will often refer to the vecuavg

t torV(·, j)
simply as j when there is no risk of confusion. Thus the valuation of agent i for alternative vt will
be denoted by vt(i). We define a vector of accrued rewards at round t, ut, where the accrued reward
of agent i at round t is the sum of agent i’s valuations for the chosen alternatives up to and including
round t, ut(i) =

∑t
t′=1 vt′(i). We will most often be interested in an agent’s accrued reward before

the start of round t, ut−1(i). The average utility of the agents over the first t rounds is given by
uavg
t = 1

tut.
A DSCF is anonymous if applying permutation σ to the rows of Vt, for all t, does not change the

chosen alternative vt, for any t. A DSCF is neutral if applying permutation σ to the columns of Vt,
for all t, results in choosing alternative σ(vt) for all t. For the rest of this paper we only consider
anonymous, neutral DSCFs. The DSCFs that we discuss are presented in a way that naturally allows
ties between alternatives. We think of the mechanisms choosing a set of possible alternatives, and
then choosing a single alternative from the set arbitrarily.

The Nash social welfare (NSW) of utility vector v, NSW (v), is defined to be the product of
the agents’ utilities, NSW (v) =

∏n
i=1 v(i). The NSW is frequently used as an objective in the

fair division literature as it strikes a balance between maximizing efficiency and fairness (for recent
examples in the computer science literature, see [13, 14, 29]). One further nice property of NSW
is that it is scale-free, meaning that the optimal choice of alternative is unchanged if some agent(s)
report valuations on different scales from others. Our aim is to maximize the NSW of the average
utility across all T rounds, NSW (vaveT). Some of our algorithms involve the use of convex pro-
gramming, which requires a concave objective function to maximize. Unfortunately, NSW is not
a concave function, however ln(NSW) is. Thus, we will interchangeably talk about maximizing
ln(NSW (uavg

t)) = ln
(∏n

i=1 u
avg
t (i)

)
=
∑n
i=1 ln(u

avg
t (i)). Since ln is an increasing function, the

solution maximizing lnNSW (v) is the same as the solution maximizing NSW (v).
The benchmark algorithm is the opfimal offline algorithm, where an offline instance of the prob-

lem is given by the set of matrices {Vt}t∈{1,...,T}. The offline problem can be solved via the follow-
ing mixed integer convex program:

Maximize
n∑
i=1

ln

 T∑
t=1

m∑
j=1

xtjVt(i, j)

 (1)

subject to
m∑
j=1

xtj = 1 ∀t, xtj ∈ {0, 1} ∀t, j

where xtj is a binary variable denoting whether or not alternative j is chosen at time t. The constraint
simply says that for each t, we must choose exactly one alternative. We denote the optimal Nash
social welfare by OPT (thus the optimal objective value achieved by convex program 1 is ln(OPT)).

The details of all missing proofs can be found in the appendix.

3 Greedy Algorithms
In this section we present two simple greedy algorithms. We note that, although these algorithms
are designed to give an approximate solution to that which maximizes Nash welfare, much of this
section is devoted to showing that the algorithms satisfy desirable properties as algorithms in their

own right. Such an approach is not new in computational social choice – for other papers that
treat approximation algorithms as distinct voting rules see, for example, [10, 11, 15]. The first
algorithm, GREEDY, simply chooses vt to maximize NSW (uavg

t). The only subtlety is that in the
early rounds it may not be possible to give all agents non-zero utility. Therefore it may be the case
that NSW (uavg

t) = 0 for all choices of vt, even when one allocation is clearly better than all others.
We address this by randomly allocating some small ‘hallucinated’ utility, εi, to those agents with
zero accrued reward at each round (not necessarily the same to each agent). GREEDY is presented as
Algorithm 1. The bounds on εi in Line 4 are used to ensure that no agent with zero accrued reward is
given too high priority over any other agent with zero accrued reward, and will be helpful in proving
Proposition 1 and Theorem 1. Let 0 < x < 1

2n(K+1)n(n+1) .

Algorithm 1 GREEDY

1: Initialize u0 = (0, . . . , 0)
2: for t = 1, . . . , T do
3: for i = 1, . . . , n do
4: Set x ≤ εi ≤ 2(K + 1)n−1x
5: end for
6: Choose vt ∈ argmaxv∈Vt

∏n
i=1(max{ut−1(i) + v(i), εi})

7: ut = ut−1 + vt
8: end for

The next algorithm, LINEARGREEDY, is a linear version of GREEDY which assigns each agent
a weight wi equal to the inverse of their accrued utility at the start of each round and simply chooses
vt = argmaxv∈Vt

w·v. This algorithm is known as the Proportional Fair algorithm in the networking
community (see, among many others, [32, 18]) as, at each round, it maximizes the sum of the
percentage increases in accrued reward across all agents.

Again, it is necessary to hallucinate small utility δi for all agents with zero accrued reward. Here,
the upper bound on δi is chosen so as to guarantee that at least one agent with zero accrued reward
receives positive utility at each round, as long as such an agent exists.

Algorithm 2 LINEARGREEDY

1: Initialize u0 = (0, . . . , 0)
2: for t = 1, . . . , T do
3: for i = 1, . . . , n do
4: Set 0 < δi <

1
nK

5: end for
6: Set wi = 1

max{δi,ut−1(i)} for all i
7: Choose vt ∈ argmaxv∈Vt

w · v
8: ut = ut−1 + vt
9: end for

We now discuss some behavior of the GREEDY and LINEARGREEDY algorithms. We begin with
a lemma which follows easily from the choice of εi.

Lemma 1. For all j, k such that 1 ≤ k < k + j ≤ n, and all sets of agents I and I ′, of size k + j
and k respectively,

(K + 1)n−k−j
∏
i∈I

εi <
∏
i′∈I′

εi′ .

We next state a simple interpretation of GREEDY. Let NSW+(v) be the product of all non-zero
entries in v.

Proposition 1. At every round, GREEDY selects an alternative to maximize the number of agents
with ut(i) > 0. Subject to this condition, and holding fixed the set of agents with non-zero utility,
GREEDY chooses an alternative which maximizes NSW+(uavg

t).

Indeed, we can show that every alternative not ruled out by Theorem 1 can be chosen by
GREEDY, for some choice of {εi}.

Theorem 1. Suppose alternative a maximizes the number of agents with ut(i) > 0. Suppose further
that for all j such that choosing j results in the same set of agents with non-zero accrued reward,
NSW+(ut−1+Vt(·, j)) ≤ NSW+(ut−1+Vt(·, a)). Then a is chosen by GREEDY for some choice
of {εi}.

Unlike GREEDY, LINEARGREEDY may leave some agents with zero utility even when it was
possible to give positive utility to all agents.

Example 1. Let n = 2, m = 3, and suppose that V1 = (3 0 1
0 3 1). The columns represent alternatives

a1, a2, and a3 respectively, and the rows represent agents i1 and i2 respectively.
For any choice of 0 < ε1, ε2 << 1, GREEDY chooses a3 since 3εi < 1. However, LINEAR-

GREEDY assigns the agents weights w1, w2 and chooses argmaxv∈{a1,a2,a3} w · v. Since it must be
the case that either 3w1 > w1 + w2 or that 3w2 > w1 + w2, it is not possible for a3 to be chosen
by LINEARGREEDY even though it is the only alternative which gives both agents positive utility.

We can, however, provide a weaker guarantee for LINEARGREEDY.

Proposition 2. LINEARGREEDY always chooses an alternative vt with vt(i) > 0 for at least one
agent i with ut−1(i) = 0, if such an alternative exists.

3.1 Computational Considerations
Clearly, when the number of allocations, m, is not too large, the outcome of both GREEDY and
LINEARGREEDY can be computed efficiently. However, consider a setting in which every round
is a combinatorial allocation problem, so the number of alternatives is exponential in the number
of items being allocated. For instance, if every round is an allocation of food bank items [6] to
different charities then we will have substitutes and complements which must be taken into account,
thus charities have preferences over subsets of items, not just items themselves. In this setting,
computing the chosen alternative under GREEDY is weakly NP-hard even in a very restricted case.

Proposition 3. Computing the chosen alternative vt under GREEDY is weakly NP-hard, even when
there are only two agents and each has additive valuations over the items.

Note that for the LINEARGREEDY algorithm, computing the chosen alternative is equivalent to
the combinatorial auction winner determination (CAWD) problem, which has been studied exten-
sively [30, 7, 21]. Thus, the outcome under LINEARGREEDY can be computed efficiently under
exactly the same conditions as the CAWD problem.2 Even in those cases where LINEARGREEDY
can not be computed efficiently, we can use any existing algorithm for the CAWD problem. This
suggests that there may be significant computational advantages to using LINEARGREEDY over
GREEDY as an allocation mechanism.

3.2 Axiomatization of LINEARGREEDY

It is possible to simply consider LINEARGREEDY an approximation to GREEDY. However, in this
section we provide an axiomatization of the LINEARGREEDY mechanism which provides some

2For example, when agents have preferences over bundles of size at most 2, the problem is in P.

justification for seeing it as a worthwhile rule in and of itself, without needing to appeal to its
approximation of GREEDY.

A DSCF is scale-free if it is not affected by a uniform (multiplicative) scaling of some agent’s
valuations. This property is desirable because it means we do not require any sort of agreement or
synchronization as to the units of measurement used by the agents in their reporting.

Definition 1. Let c > 0. Say that a DSCF satisfies scale-free-ness (SF) if the chosen alternative at
round t is still among the set of (possible) chosen alternatives if we replace v(i) by c · v(i) for all
v ∈ Vt for every t = 1, . . . , T .

Lemma 2. LINEARGREEDY satisfies SF.

A DSCF is separable into single-minded agents if the chosen alternative at a given round is
unchanged by replacing an agent by several new agents with the same accrued utility, each of which
has unit positive valuation for only one alternative.

Definition 2. Say that a DSCF is separable into single-minded agents (SSMA) if, at round t, the
same allocation is chosen if we replace each agent with several new agents according to the follow-
ing scheme: An agent with valuation vector Vt(i, :) is, for each j ∈ {1, . . . ,m}, replaced by Vt(i, j)
new agents, each with valuation vector ej . Each new agent has the same (possibly hallucinated)
accrued utility as the original agent it replaces.

Lemma 3. LINEARGREEDY satisfies SSMA.

The plurality axiom says that if all agent valuation vectors are unit vectors, and we have no reason
to distinguish between agents, then the allocation favored by the most agents should be chosen.

Definition 3. Say that an allocation satisfies plurality (P) if, when all agents have preferences of the
form ej , and all agents have the same (non-zero) accrued utility, then the chosen alternative is the
one with non-zero valuation from the most agents.

The axiom says nothing about the case when all agents have zero accrued utility. The idea of
the axiom is that we should choose the alternative which provides the greatest utility gain, relative
to what agents already have. However, in the case that agents have zero accrued utility, it is not
possible to make accurate comparisons as to the relative benefit each agent receives.

Observation 1. LINEARGREEDY satisfies plurality.

We now show that any mechanism that achieves SF, SSMA, and P simultaneously must agree
with LINEARGREEDY, provided that all accrued rewards are non-zero.

Theorem 2. Suppose that ut−1(i) > 0 for all i. Denote by Jt the set of all alternatives that may
be chosen by LINEARGREEDY at time t. If a DSCF satisfies SF, SSMA, and P then it must choose
some alternative from Jt at time t.

4 Distributional Update Algorithm
So far we have assumed nothing about the way that the input matrices are drawn. In this section, we
will assume that there is some distribution, D, over Zn×m≥0,≤K from which matrices are drawn i.i.d at
each round.3

Suppose first that we knowD, and that T =∞. Then the optimal solution is defined by a policy:
when Vt = v, choose allocation j with probability xvj . We simply need to choose values for {xvj}

3In practice, this algorithm may be suitable when we believe the distribution of inputs to be somewhat stable over time.

in order to maximize E(NSW (uavg
t)), as t→∞. We can compute these variables by the following

convex program:

maximize
n∑
i=1

log(
∑

v∈Zn×m
≥0,≤K

m∑
j=1

Pr(Vt = v)xvjv(i, j)) (2)

subject to
∑
j∈A

xvj = 1 ∀v ∈ Zn×m≥0,≤K , xvj ≥ 0 ∀v, j

Theorem 3. The variables xvj computed by convex program 2 define the optimal policy when the
distribution D is known and T =∞.

Let us now relax the assumption that D is known to the algorithm. In this case, one approach
would be to approximately learn the distribution by sampling, then compute the optimal policy
according to the learned distribution, and act accordingly for the remaining rounds. We can even
continue to update our belief on the distribution as often as we want, re-compute the variables {xvj},
and choose according to them until we perform another update step. If T = ∞, we can learn the
distribution arbitrarily well, and behave close to optimally in the long term.

The algorithm we present now uses the same heuristic even when T is finite. We begin with no
knowledge of D, but update our belief with every new piece of information Vt, and use the inferred
distribution to compute a policy {xvj}.

Algorithm 3 UPDATE

1: for t = 1, . . . , T do
2: for s ∈ {V1, V2, . . . , Vt} do
3: Let ps = (number of times s has been realized)/t
4: end for
5: Solve Convex Program 2 using inferred probabilities ps
6: Randomly draw vt according to xVtj

7: end for

Crucially, the update to ps is done before vt is actually chosen according to xVtj . Were this not
the case, the algorithm would not be defined when valuation matrix s appears for the first time.

Example 2. Let n = m = 2. Suppose that V1 = (1 0
0 1), where the columns represent alternatives

a1 and a2 respectively. Then the algorithm updates its belief on D to be that V1 appears with
probability 1, in which case the optimal polcy is to choose a1 and a2 with probability 0.5 each.
Suppose it randomly chooses a1. Suppose that V2 = (2 0

0 1). Then the algorithm updates its belief on
D to be 0.5V1+0.5V2. Given this distribution, the optimal policy is to choose a1 when V2 is realized
and a2 when V1 is realized. Thus, the algorithm chooses v2 = a1. Now suppose that V3 = V2. Then
the updated belief on D is 1

3V1 + 2
3V2. The optimal policy now is to choose a2 whenever V1 is

realized, and whenever V2 is realized to draw randomly from 3
4a1 +

1
4a2. Thus the algorithm draws

an allocation for v3 from this distribution.

Observe that, in Example 2, from the perspective of the algorithm at t = 3, a mistake was made
at round 1 by choosing a1 instead of a2. As stated, this algorithm does nothing to take the mistake
into account. However, one could imagine incorporating a more ‘backwards-looking’ approach into
this algorithm. As a simple example we could, with probability p, simply use GREEDY at round t,
which would act to partially compensate for past mistakes. In Example 2, GREEDY would choose
a2 to make up for agent 2 not accruing any utility from the first two rounds.

5 Stochastic Convex Programming Approach
Agrawal and Devanur [5] have designed algorithms for a general class of problems that encompasses
our framework. In their setting, the input is a concave, Lipschitz-continuous function f : [0, 1]n →
R, a convex set S ⊆ [0, 1]n, and the goal is to choose a vector vt at each round so that f(uavgT) is
maximized, subject to uavgT ∈ S. For the setting in our paper, however, there is no constraint, since
all input vectors are feasible. That is, S = [0, 1]n.

They provide an algorithm using tools from convex optimization which, in our setting, reduces to
Algorithm 4. The algorithm assigns a vector of weights, φ, to the agents and minimizes the (possibly
negative) weighted sum of valuations at each round. Every round, φ is updated by an online convex
optimization update (our implementation uses the gradient descent algorithm to update φ).

The initialized variables φ and η can be set to any values satisfying the constraints. In our
implementation, we set φ = −1 and η = 0.7 after some experimentation.

Algorithm 4 STOCHASTIC

1: Initialize φ ∈ Rn, ` > 0, ||φ||2 ≤ 1
` , η > 0.

2: for t = 1, . . . , T do
3: Vt ← Vt

K + `
4: Choose vt = argminj∈Vt

j · φt
5: if φt(i) ≥ −1

`+1 then
6: Set φt+1(i) = φt(i)− η(1− vt(i))
7: else
8: Set φt+1(i) = φt(i) + η(vt(i) + `+ 1

φt(i)
)

9: end if
10: if ||φt+1||2 > 1

` then
11: Set φt+1 = 1

`||φt+1||2φt+1

12: end if
13: end for

Unfortunately, for our function f = lnNSW is not Lipschitz-continuous at 0. For this reason
we add a constant ` to all utilities. On domain [`,∞)n, f is 1

` -Lipschitz and therefore satisfies the
required conditions.

Agrawal and Devanur prove a regret bound on Algorithm 4 of L ·O
(√

n log(n)
T

)
, where L = 1

`

is the Lipschitz constant for f . There are three drawbacks, however.

• The regret bound is a bound on the (concave) function f = lnNSW (·), not on our actual
objective, NSW (·).

• The regret bound is on the expected regret when the input matrices appear in a random order. It
is not a guarantee on any single instance. Therefore, while we would expect good performance
from this algorithm on instances in which the input matrices {Vt} are permuted randomly, we
may not necessarily expect low regret on instances where the agents’ preferences change over
time in a structured way.

• Since we add ` to all utilities, we are no longer even solving the original problem! This
problem stems from the fact that the solution maximizing the Nash social welfare is not stable
with respect to additive transformation. As long as ` is small compared to the reported utilities,
we are not changing the problem too much and would still expect good solutions. However,
if ` is large compared to the reported utilities (for example, if many reported utilities are
zero), then we are making a significant adjustment to the problem which could result in bad
solutions. Further, the Lipschitz constant 1

` appears as a linear factor in the regret bound, so

as we decrease ` (thus solving a problem that is closer to the actual instance), the regret bound
on the solution gets worse.

We explore these issues further in Section 6.

6 Experiments

6.1 Simulated Data
We compare the four algorithms discussed in this paper – GREEDY, LINEARGREEDY, STOCHAS-
TIC, and UPDATE– on input data randomly generated from a variety of distributions. As a benchmark
we also compute the optimal offline solution for each input using MIP (1).

We consider three input models. The first, uniform, has each Vt(i, j) chosen uniformly at random
between 0 and 20. The second, half-half, draws Vt from a different distribution depending on t. For
t < T

2 , Vt = (A B
C D), where A,B,C,D are submatrices of size n

2 ×
m
2 . Entries in A are integers

in the range 0 to 25 drawn uniformly at random, entries in B and C are in the range 0 to 5, and
entries in D are in the range 0 to 10. For t ≥ T

2 , submatrices A,B,C,D are drawn in the same
way but Vt = (D B

C A). The third model, alternating, sets Vt = (A B
C D) for odd t and Vt = (D B

C A)
for even t. In both of these latter models, it is almost always optimal to choose an alternative for
which half of the valuations are being drawn from the high, ‘A’, distribution. The other agents can
be compensated in a round where they draw from the ‘A’ distribution.

For every fixed value of n, m, T , and input model that we report, values are averaged over 15
random instances. When not explicitly varied, n = 20, m = 10, and T = 40.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
n

0

5

10

15

S
ec

on
ds

MIP
Update
Stochastic
Greedy
Linear

G

(a) Running time, n varies

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
m

0

5

10

15

S
ec

on
ds

MIP
Update
Stochastic
Greedy
Linear

G

(b) Running time, m varies

20 40 60 80 100 120 140 160 180 200
T

0

20

40

60

80

100

Se
co
nd
s

MIP
Update
Stochastic
Greedy
Linear_G

(c) Running time, T varies

Figure 1: Simulation results showing the effect of varying number of agents, n, number of alterna-
tives, m, and number of rounds, T , on the runtime of each algorithm.

20 40 60 80 100 120 140 160 180 200
T

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Update
Stochastic
Greedy
Linear_G

(a) Value, uniform model

20 40 60 80 100 120 140 160 180 200
T

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Update
Stochastic
Greedy
Linear_G

(b) Value, half-half model

20 40 60 80 100 120 140 160 180 200
T

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Update
Stochastic
Greedy
Linear_G

(c) Value, alternating model

Figure 2: Simulation results showing the effect of the input model on the value achieved by the
algorithms. For each model, n and m are held constant while T varies.

Consider first the runtime comparisons in Figure 1. These simulations are performed on inputs
drawn from the half-half model, varying values of n, m, and T seperately. Three of the algorithms,
GREEDY, LINEARGREEDY, and STOCHASTIC, take virtually no time to run on the instances we
consider. This is not surprising as each makes only a simple comparison between each of the m

Table 1: Spark Workloads
App Category Dataset Data Size
Correlation Statistics kdda2010 [31] 2.5G
DecisionTree Classification kdda2010 2.5G
FP Growth Pattern Mining Webdocs [22] 1.5G
GradientBoostedTrees Classification kddb2010 [31] 4.8G
KMeans Clustering uscensus1990 [3] 327M
LinearRegression Classification kddb2010 4.8G
ALS Collaborative Filtering movielens2015 [2] 325M
NaiveBayesian Classification kdda2010 [31] 2.5G
SVM Classification kdda2010 2.5G
Pagerank Graph Processing wdc2012 [4] 5.3G
ConnectedComponents Graph Processing wdc2012 5.3G
TriangleCounting Graph Processing wdc2012 5.3G

alternatives, followed by some very simple arithmetic operations to update weights and accrued
utility. The UPDATE algorithm is the slowest by far on our simulations, even slower than the MIP
for solving the offline problem (although we would expect that for large values of T , the MIP would
become slower than UPDATE). We could speed it up by a constant factor of k by only updating the
inferred distribution, and values of xVtj , every k rounds, and still expect reasonable results. All of
our algorithms scale well with n and m. Runtime results for the other two input models are very
similar and we do not present them here.

Turning to the value comparisons in Figure 2, we see that the input model used heavily influences
the performance of the algorithms. In these graphs, OPT is normalized to 1, and for each input model
we present results only for varying T . The results for varying m and n look very similar.

For both the uniform and alternating input models, all algorithms perform well, achieving at
least 80% of the optimal value. These models provide relatively simple cases for the algorithms;
indeed, simply maximizing (additive) welfare at each round is the optimal solution in the limit as
T grows. However, for the half-half distribution STOCHASTIC is clearly better than all the other
algorithms, achieving over 60% of OPT compared to less than 30% for the others. Interestingly, the
performance of STOCHASTIC is quite clearly decreasing as T increases. This is because, in these
instances, the optimal offline solution simply keeps giving more and more utility to the well-off
agents until the halfway point, and then is able to change once the other agents start getting high
valuations. Of course, as T increases, any algorithm must starve certain agents for increasingly long
periods of time to be competitive with OPT. That STOCHASTIC is competitive for the smaller values
of T simply reflects that it is willing to be patient and starve certain agents for some number of
rounds, but eventually starts giving them utility at the expense of efficiency.

6.2 Real Data: Power Boost Allocation
We ran the algorithms on real data gathered from a power boost allocation problem. In this problem,
n computer applications are each allocated a base level of power, and compete for m < n additional
(indivisible) units of extra power (power boosts) at each of T rounds. For our instance, power boosts
are allcoated using RAPL [1] technology and each application’s performance is measured under base
and high power limits, 30W and 130W, respectively. We evaluate Apache Spark [33] benchmarks.
Table 1 lists the twelve Spark applications in our instance.

Each Spark application is defined by a fixed number of tasks. We profile tasks’ completion time.
We define an application’s utility in a round as the number of tasks completed normalized by its total
number of tasks. Since the length of the utility trace is shorter when profiled under boosted power,
we use linear interpolation to extend the shorter trace. Thus, for each application a, we estimate the
base power utility (ubase

a,t) and boosted power utility (uboost
a,t) in each round.

In our instance, there are two power boosts to be allocated. Therefore, at each round there are(
12
2

)
alternatives, one for each pair of applications. For an alternative j corresponding to power

boosts for applications a and b, we have that Vt(a, j) = uboost
a,t , Vt(b, j) = uboost

b,t , and Vt(c, j) = ubase
c,t

for all other applications c 6= a, b. We have 120 rounds in the instance we tested.

Figure 3: Nash Social Welfare
achieved by the algorithms, as a
fraction of OPT.

The Nash Social Welfare achieved on this instance is shown
in Figure 3, normalized against OPT. Most striking is the poor
performance of STOCHASTIC. We hypothesize that this is due
to some of the applications having long stretches of consecu-
tive rounds where they achieve zero utility for all allocations,
followed by short periods with positive reported utility. Of the
issues that we discussed regarding the regret guarantees of the
STOCHASTIC algorithm in Section 5, both (1) and (3) are rele-
vant here, due to the high number of zeros present in the data. We
have not yet conducted further experiments to determine the ex-
tent to which each of these issues individually affects the perfor-
mance of STOCHASTIC on this instance, and whether STOCHAS-
TIC performs poorly on other real-world instances.

Runtime results are similar to those presented in Section 6.1, with one exception. The time taken
to solve the offline instance is 384 seconds, whereas UPDATE takes only 108 seconds. This provides
evidence that, for large instances, the optimal MICP is prohibitively slow compared to our online
algorithms. For comparison, the three other algorithms each ran in less than 0.2 seconds.

7 Applications

7.1 Voting
Our setup can be directly applied to voting, where agents are voters who report a utility for each of
the alternatives. If voters only report an ordering over alternatives within each round, then we can
simply infer utilities according to a chosen scoring vector. For example, we could set V (i, j) = 1 if
alternative j is voter i’s most preferred alternative and 0 otherwise (the plurality scoring vector), or
V (i, j) = m− k when j is ranked k-th in i’s preference order (the Borda utility vector).

An interesting direction for future work is to investigate what social-choice theoretic properties
are satisfied by the Nash social welfare in this repeated setting. One weak property is unanimity,
which states that if all voters rank the same alternative at the top of their ordering, then that alter-
native should be chosen (in the dynamic setting we could require this on a round-by-round basis).
Clearly all of the algorithms presented in this paper satsify this condition for all monotone scoring
vectors. Some other fundamental axioms also extend naturally to the dynamic setting, for example
anonymity and neutrality (which we define for the dynamic setting in Section 2).

For some axioms, however, it is not so clear how to extend to the dynamic setting. For instance,
consider the Condorcet criterion, which states that any alternative which achieves a pairwise ma-
jority against all other alternatives should be chosen. This makes sense in the one-shot setting, but
maybe less sense in the dynamic case. Suppose that there are two alternatives, A and B, and that
51% of voters prefer A to B in every round. Then the Condorcet criterion appears to say that we
should choose A in every round, while fairness considerations dictate choosing B at least occasion-
ally. It is not clear how we would extend the Condorcet criterion to the dynamic setting and, if we
cannot, we may need novel axioms.

There is a natural link between repeated elections and the theory of multi-winner elections.
In multi-winner elections, not only do we want to choose popular alternatives, but we also want
to represent as many voters as possible, for which several rules have been designed [12, 23, 20].
Consider an election where the aim is to choose a committee of size k < m. This is exactly
equivalent to setting T = k and choosing a single distinct winner at each round, while also imposing
the restriction that voters do not change their votes between rounds. Thus we can view multi-
winner elections as a special case of repeated elections. It would be interesting to check whether
any desiderata in the context of multi-winner elections extend naturally to the repeated setting.

7.2 Allocating Shared Resources
Consider a situation in which a group of agents take turns being allocated a shared resource for dis-
crete units of time. Examples include allocating supercomputer time among members of a university
department or assigning the use of a holiday home owned jointly by several people. In both cases,
demand varies across time intervals and across agents. For instance, people who like skiing may
want use of the holiday home in winter, while those who like hiking may prefer a different season.

Another interesting aspect of these situations is that our notion of fairness may not be to treat all
agents exactly equally. For instance, if people contributed unequally to the purchase of the holiday
home, the group may decide that someone who paid twice as much as another person ‘deserves’ to
get twice the benefit from the home. In the supercomputer example, we may wish to allocate time
based on the amount of grant money contributed to the purchase of the machine (for example).

In these cases we may wish to generalize the Nash social welfare to the Cobb-Douglas welfare.
The Cobb-Douglas welfare for utility vector v, CD(v), is given by CD(v) =

∏n
i=1 v(i)

αi , where∑n
i=1 αi ≤ 1. The case where all αi = 1

n is the special case of Nash social welfare, but setting
other values of αi allows us to prioritize some agents over others. It is illuminating to consider the
simple case where all agents have a common unit of utility (say, dollars). In this case, the Nash
social welfare is maximized when all agents receive exactly the same utility. If we generalize the
coefficients, then the Cobb-Douglas welfare is maximized when the agents receive utility in exactly
the ratio of their exponents αi. So if agent i contributed twice as much money to the purchase of the
holiday home as agent j, simply set αi = 2αj .

8 Conclusion
Election designers and social choice researchers often do not consider the fact that many elections
are conducted as sequences of related elections. In this work, we have provided a framework to
allow for the design and analysis of dynamic election protocols, and repeated decision making rules
generally. We have presented four candidate online algorithms for solving these dynamic problems.
Our simulations do not determine a clear winner, but suggest that the right choice of algorithm is
highly dependent on the setting and the model of how agents’ valuations change over time.

Our work is preliminary, and leaves a lot of scope for future research in addition to the specific
directions already discussed. One direction would be to design a more precise model of voter pref-
erences, possibly modeling changing preferences by an MDP as has been done in [9, 27]. We have
also not considered modeling discounting of the agents’ utilities. Additionally, we have treated the
Nash social welfare as a substitute for any explicit fairness criterion (for example, envy-freeness).
While it does satisfy some desirable properties, it is an interesting topic for future work to consider
other ways of arriving at a ‘fair’ solution.

Finally, there are many interesting questions regarding strategic behavior by the agents. In the
most general setting, there appears to be no hope for a fair, strategy-proof rule due to the free-rider
problem: agents are incentivized to under-report their utility for an alternative that gets chosen,
and are thus indistinguishable from an agent that is genuinely unhappy with the chosen alternative.
However, it may be possible to regain some (limited) strategy-proofness in a more restricted setting.
For instance, what if we place restrictions on the utilities that can be reported, or restrict our attention
to private goods?

Acknowledgments
We sincerely thank Songchun Fan for sharing the data used in Section 6.2. We are thankful
for support from NSF under awards IIS-1527434, IIS-0953756, CCF-1101659, CCF-1149252
(CA- REER), CCF-1337215 (XPS-CLCCA), SHF-1527610, and AF-1408784, ARO under grants
W911NF-12-1-0550 and W911NF-11-1-0332, and a Guggenheim Fellowship. This work is also
supported by STARnet, a Semiconductor Research Corporation program, sponsored by MARCO
and DARPA. This work was done in part while Conitzer was visiting the Simons Institute for the
Theory of Computing. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of these sponsors.

References
[1] Intel 64 and ia-32 architectures softawre developer’s manual. https://www-ssl.

intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.
pdf.

[2] Movielens. http://grouplens.org/datasets/movielens/.

[3] Us census data (1990) data set. https://archive.ics.uci.edu/ml/datasets/
US+Census+Data+(1990).

[4] Web data commons: Hyperlink graphs. http://webdatacommons.org/
hyperlinkgraph/index.html.

[5] S. Agrawal and N. R. Devanur. Fast algorithms for online stochastic convex programming.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1405–1424. SIAM, 2015.

[6] M. Aleksandrov, H. Aziz, S. Gaspers, and T. Walsh. Online fair division: analysing a food bank
problem. In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI-15), 2015.

[7] A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for combinatorial auction
winner determination. In Proceedings of the Fourth International Conference on Multiagent
Systems, pages 39–46. IEEE, 2000.

[8] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation
in approval-based committee voting. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 784–790, Austin, TX, USA, 2015.

[9] C. Boutilier and A. D. Procaccia. A dynamic rationalization of distance rationalizability. In
AAAI, 2012.

[10] I. Caragiannis, J. A. Covey, M. Feldman, C. M. Homan, C. Kaklamanis, N. Karanikolas, A. D.
Procaccia, and J. S. Rosenschein. On the approximability of dodgson and young elections.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1058–1067. Society for Industrial and Applied Mathematics, 2009.

[11] I. Caragiannis, C. Kaklamanis, N. Karanikolas, and A. D. Procaccia. Socially desirable ap-
proximations for dodgson?s voting rule. ACM Transactions on Algorithms (TALG), 10(2):6,
2014.

[12] J. R. Chamberlin and P. N. Courant. Representative deliberations and representative deci-
sions: Proportional representation and the Borda rule. American Political Science Review,
77(03):718–733, 1983.

[13] R. Cole and V. Gkatzelis. Approximating the Nash social welfare with indivisible items. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
371–380. ACM, 2015.

[14] A. Darmann and J. Schauer. Maximizing Nash product social welfare in allocating indivisible
goods. European Journal of Operational Research, 247(2):548–559, 2015.

[15] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. Properties of multiwinner voting rules. In
Proceedings of the 2014 international conference on Autonomous agents and multi-agent sys-
tems, pages 53–60. International Foundation for Autonomous Agents and Multiagent Systems,
2014.

[16] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple resource types. Proceedings of the 8th USENIX
conference on Networked systems design and implementation, pages 24–24, 2011.

[17] M. Guo, V. Conitzer, and D. M. Reeves. Competitive repeated allocation without payments. In
Proceedings of the Fifth Workshop on Internet and Network Economics (WINE), pages 244–
255, Rome, Italy, 2009.

[18] A. Jalali, R. Padovani, and R. Pankaj. Data throughput of cdma-hdr a high efficiency-high
data rate personal communication wireless system. In Vehicular technology conference pro-
ceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st, volume 3, pages 1854–1858. IEEE,
2000.

[19] I. Kash, A. D. Procaccia, and N. Shah. No agent left behind: Dynamic fair division of multiple
resources. Journal of Artificial Intelligence Research, pages 579–603, 2014.

[20] D. M. Kilgour. Approval balloting for multi-winner elections. In Handbook on approval
voting, pages 105–124. Springer, 2010.

[21] D. Lehmann, R. Müller, and T. Sandholm. The winner determination problem. Combinatorial
auctions, pages 297–318, 2006.

[22] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. WebDocs: a real-life huge transactional
dataset. In Workshop on Frequent Itemset Mining Implementations, 2004.

[23] B. L. Monroe. Fully proportional representation. American Political Science Review,
89(04):925–940, 1995.

[24] J. F. Nash Jr. The bargaining problem. Econometrica: Journal of the Econometric Society,
pages 155–162, 1950.

[25] D. Parkes, A. Procaccia, and N. Shah. Beyond dominant resource fairness: Extensions, lim-
itations, and indivisibilities. In ACM Conference on Electronic Commerce, pages 808–825.
ACM, 2012.

[26] D. C. Parkes, R. Cavallo, F. Constantin, and S. Singh. Dynamic incentive mechanisms. AI
Magazine, 31(4):79–94, 2010.

[27] D. C. Parkes and A. D. Procaccia. Dynamic social choice with evolving preferences. AAAI,
2013.

[28] A. D. Procaccia. Cake cutting: not just child’s play. Communications of the ACM, 56(7):78–87,
2013.

[29] S. Ramezani and U. Endriss. Nash social welfare in multiagent resource allocation. Springer,
2010.

[30] T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artificial
intelligence, 135(1):1–54, 2002.

[31] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and K. Koedinger. Algebra i 2006-
2007. challenge data set from kdd cup 2010 educational data mining challenge. http://
pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[32] P. Viswanath, D. N. Tse, and R. Laroia. Opportunistic beamforming using dumb antennas.
Information Theory, IEEE Transactions on, 48(6):1277–1294, 2002.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, volume 10, page 10, 2010.

Rupert Freeman
Department of Computer Science
Duke University
Durham, NC, USA
Email: rupert@cs.duke.edu

Seyed Majid Zahedi
Department of Computer Science
Duke University
Durham, NC, USA
Email: zahedi@cs.duke.edu

Vincent Conitzer
Department of Computer Science
Duke University
Durham, NC, USA
Email: conitzer@cs.duke.edu

A Proof of Lemma 1
Lemma 1. For all j, k such that 1 ≤ k < k + j ≤ n, and all sets of agents I and I ′, of size k + j
and k respectively,

(K + 1)n−k−j
∏
i∈I

εi <
∏
i′∈I′

εi′ .

Proof. Let 1 ≤ k < k + j ≤ n. Let I = {i1, . . . , ik+j} and I ′ = {i′1, . . . , i′k}. Recall that

0 < x < 1
2n(K+1)n(n+1) and x ≤ εi ≤ 2(K + 1)n−1x for all i. Then

(K + 1)n−k−j
∏
i∈I

εi ≤ (K + 1)n−k−j(2(K + 1)n−1x)k+j

< xk(K + 1)n−k−j(2(K + 1)n−1)k+j
(

1

2n(K + 1)n(n+1)

)j
≤ xk 2

n(K + 1)(k+j+1)n−2k−2j

(2n(K + 1)n(n+1))j

≤ xk 2
n(K + 1)(k+j+1)n−2k−2j

2n(K + 1)n(n+1)

< xk
(K + 1)n(k+j+1)

(K + 1)n(n+1)

≤ xk

≤
∏
i′∈I′

εi′

B Proof of Proposition 1
Proposition 1. At every round, GREEDY selects an alternative to maximize the number of agents
with ut(i) > 0. Subject to this condition, and holding fixed the set of agents with non-zero utility,
GREEDY chooses an alternative which maximizes NSW+(vavet).

Proof. Consider the action of GREEDY at round t. Suppose first that all agents have ut−1(i) > 0.
Then the first condition in the proposition statement is vacuous; all choices maximize the number
of agents with ut(i) > 0. Since εi < 1 for all i, the choice at Line 6 is precisely to maximize
NSW (vavet) = NSW+(vavet).

Now suppose that ut−1(i) = 0 for some agent i, and consider two alternatives v′ and v. Suppose
that |I ′ = {i : ut−1(i)+ v′(i) = 0}| = k and |I = {i : ut−1(i)+ v(i) = 0}| = k+ j > k. To show
that GREEDY maximizes the number of agents with ut(i) > 0, it suffices to show that the product
in Line 6 is larger when v′ is chosen than when v is chosen.

We consider the case in which the produc tin Line 6 is greatest for v (compared to v′). In
particular, all n − k agents with ut−1(i) + v′(i) > 0 have ut−1(i) + v′(i) = 1, and all n − k − j
agents with ut−1(i) + v(i) > 0 have ut−1(i) + v(i) = K + 1 (if ut−1(i) + v(i) > K + 1 then
ut−1(i)+v

′(i) ≥ ut−1(i) > 1, since no single-round valuation is greater thanK). Then the product
on Line 6 for v′ is

∏
i′∈I′ εi′ , and for v is (K+1)n−k−j

∏
i∈I εi. By Lemma 1, the former is greater

than the latter, and GREEDY chooses v′, thus minimizing the number of agents with ut(i) = 0.
Finally, suppose that GREEDY chooses vt when there exists another alternative v which results

in the same set of agents with ut(i) > 0 (call this set of agents I), and NSW+(ut−1 + vt) <
NSW+(ut−1 + v). Then, by definition of NSW+,∏

i∈I
(ut−1(i) + vt(i)) <

∏
i∈I

(ut−1(i) + v(i))

⇐⇒
∏
i∈I

(ut−1(i) + vt(i))
∏
i/∈I

εi <
∏
i∈I

(ut−1(i) + v(i))
∏
i/∈I

εi

⇐⇒
n∏
i=1

max{(ut−1(i) + vt(i)), εi} <
n∏
i=1

max{(ut−1(i) + v(i)), εi},

which contradicts the choice of vt.

C Proof of Theorem 1
Theorem 1. Suppose alternative a maximizes the number of agents with ut(i) > 0. Suppose further
that for all j such that choosing j results in the same set of agents with non-zero accrued reward,
NSW+(ut−1+Vt(·, j)) ≤ NSW+(ut−1+Vt(·, a)). Then a is chosen by GREEDY for some choice
of {εi}.

Proof. Let a ∈ Vt satisfy the conditions of the theorem statement. We exhibit a set of {εi} such that
a is chosen by GREEDY. Let I be the set of agents with non-zero accrued reward after choosing a.
Then let εi = x (the same x as in Line 4 of Algorithm 1) for all i ∈ I , and εi′ = 2(K + 1)n−1x
for all i′ /∈ I . Consider some alternative j that also maximizes the number of agents with non-zero
accrued reward (since otherwise, by Proposition 1, it would certainly not be chosen by GREEDY),
and denote by J the set of agents given non-zero accrued utility after choosing j.

Suppose that J 6= I . By assumption, |J | = |I|. Therefore |I\J | = |J\I|. Let us consider the
contribution of all agents to the product in Line 6 of Algorithm 1 for alternatives j and a. There are
four types of agent to consider:

1. An agent i ∈ I\J . These are agents for which ut−1(i) = 0, with Vt(i, a) ≥ 1 and Vt(i, j) =
0. Therefore each of these agents contributes a factor of at least 1 to the product for a and
εi = x to the product for j.

2. An agent i ∈ I ∩ J . These are agents for which the choice of either a or j both result
in ut(i) > 0. In the worst case for a (relative to j), ut−1(i) = 1 with Vt(i, a) = 0 and
Vt(i, j) = K. That is, each of these agents contributes a factor of at least 1 to the product for
a and at most K + 1 to the product for j.

3. An agent i ∈ J\I . These are agents for which ut−1(i) = 0, with Vt(i, a) = 0 and Vt(i, j) ≥
1. Each of these agents contributes a factor of εi = 2(K + 1)n−1x to the product for a and at
most K to the product for j.

4. An agent i /∈ I ∪ J . These are agents for which the choice of either a or j both result in
ut(i) = 0. Thus they contribute exactly the same factor to the product for both a and j.

Let us write down the product from Line 6 for a (not counting the agents of type 4 which make
the same contribution to both). It is at least:

(2(K + 1)n−1x)|J\I| = (2(K + 1)n−1x)|I\J| (3)

The product for j (not counting the agents of type 4 which make the same contribution to both)
is at most:

x|I\J| · (K + 1)|I∩J| ·K |J\I| ≤ x|I\J| · (K + 1)|I∩J| · (K + 1)|J\I|

= x|I\J| · (K + 1)|I∩J| · (K + 1)|I\J| (4)

Noting that |I ∩ J | + |I\J | ≤ n − 1 (since |I ∩ J | + 2|I\J | ≤ n and I\J is nonempty), it is
clear that expression 3 is greater than expression 4. Therefore the product in Line 6 is higher for a
than for j.

Finally, suppose that J = I . Then, by the condition of the theorem, NSW+(ut−1 + j) ≤
NSW+(ut−1 + a), which implies that choosing a results in a weakly higher product in Line 6 than
choosing j.

Therefore a is chosen by GREEDY, since all other alternatives which maximize the number of
agents with non-zero accrued reward after round t have been ruled out, given our particular choice
of ε.

D Proof of Proposition 2
Proposition 2. LINEARGREEDY always chooses an alternative vt with vt(i) > 0 for at least one
agent i with ut−1(i) = 0, if such an alternative exists.

Proof. Let i be an agent with ut−1(i) = 0 and v be an alternative with v(i) ≥ 1. Then the weight
assigned to i at round t by LINEARGREEDY is wi = 1

δi
≥ nK, and the dot product in Line 7 of

Algorithm 2 is at least nK. Suppose for contradiction that LINEARGREEDY chooses an alternative
v′ such that v′(i) > 0 only for agents with ut−1(i) > 0. The weight of each such agent is 1

ut−1(i)
≤

1
1 = 1, and v′(i) ≤ K, thus the dot product in Line 7 is at most (n − 1)K < nK. Thus v′ is not
chosen by LINEARGREEDY.

E Proof of Proposition 3
Proposition 3. Computing the chosen alternative vt under GREEDY is weakly NP-hard, even when
there are only two agents and each has additive valuations over the items.

Proof. Suppose there are two agents with the same valuation over the items in the first round. Then
the allocation under GREEDY is to allocate each agent an equal share of the items according to their
common valuation (or as close to equal as possible). This is exactly an instance of PARTITION,
which is weakly NP-hard.

F Proof of Lemma 2
Lemma 2. LINEARGREEDY satisfies SF.

Proof. Suppose that agent i scales all their valuations by c > 0. We show by induction that there
exists some choice of δ such that LINEARGREEDY still chooses the same alternative at each round
as it did before the scaling.

Consider the first round, t = 1. Let δ′ denote the vector of hallucinated utilities chosen before
the scaling. When i scales their valuations by factor c, simply set δi = c · δ′i,4 and deltaj = delta′j
for all j 6= i. Thus the weight of i is scaled by 1

c , so the value of w · v is unchanged for all v ∈ Vt,
and the same alternative is chosen at round 1.

Now consider round t > 1, and suppose that the same alternatives are chosen for all rounds
before t. In particular, the accrued utility of all agents i′ 6= i (or, in the case that i′ has zero accrued
utility, then the value of δi) is the same as before the scaling, so their weights have not changed. But
the accrued utility of i has scaled by a factor of c, since i’s valuation for every alternative at every
round is scaled by c (and, in the case that i has zero accrued utility, we still have that δi = c · δ′i),
so that the weight of i is scaled by 1

c . Thus, again, w · v is unchanged for all v ∈ Vt and the same
alternative is chosen.

Finally we need to rule out the possibility of there being some setting of δ such that some new
alternative, a, is chosen at round t as a result of the scaling that was not previously chosen. But if
this were the case, then we can just scale the scaled instance by 1

c and return to the original instance
where, by the above proof, there is some value of δ such that a is chosen at round t.

G Proof of Lemma 3
Lemma 3. LINEARGREEDY satisfies SSMA.

4It is possible that δi is now greater than 1
nK

. If this is the case, we can simply divide δ by some small constant, bringing
δi back into the allowed range and not changing the relative weights of the agents.

Proof. Consider round t with valuation matrix Vt. LINEARGREEDY chooses

argmax
j∈Vt

n∑
i=1

(
Vt(i, j)

1

ut−1(i)

)
Now suppose that we replace the agents with new agents according to the definition of SSMA.
For every agent i and alternative j, we now have Vt(i, j) agents with accrued utility ut−1(i) and
valuation vector ej . The accrued utility, and therefore the weight of each of these agents in the
LINEARGREEDY algorithm, is the same as the agent it replaced. Thus the value of the dot product
on Line 7 for an alternative j is

n∑
i=1

(
Vt(i, j)

1

ut−1(i)

)
,

and LINEARGREEDY chooses the same alternative in each case.

H Proof of Theorem 2
Theorem 2. Suppose that ut−1(i) > 0 for all i. Denote by Jt the set of all alternatives that may
be chosen by LINEARGREEDY at time t. If a DSCF satisfies SF, SSMA, and P then it must choose
some alternative from Jt at time t.

Proof. We have already shown that LINEARGREEDY satisfies SF, SSMA, and P.
Suppose that all agents have ut−1(i) > 0. LetM be a DSCF that satisfies all three axioms simul-

taneously. We show that M ’s choice of alternative is the same as one chosen by LINEARGREEDY.
Without loss of generality, let ut−1(i) = u for all agents i. We may assume this because, by SF,

M would choose the same allocation at round t (and all previous rounds) even if the valuation vectors
of some agent(s) were multiplied by a constant across all rounds. So, if ut−1(i) 6= ut−1(j), we can
transform the instance to one in which all agents have the same accrued reward by multiplying agent
i’s valuations by

∏
j 6=i ut−1(j) for all i. Then all agents have the same acccrued utility,

∏
i ut−1(i).

By SSMA, we can replace the agents with
∑m
j=1 Vt(i, j) agents, such that Vt(i, j) of them have

valuation vector ej for all j ∈ {1, . . . ,m}, all with accrued reward u. Then, by plurality, the chosen
allocation is

argmax
j∈Vt

n∑
i=1

Vt(i, j). (5)

But note that LINEARGREEDY assigns equal weight wi to each agent since ut−1(i) = ut−1(j) for
all i, j. Thus LINEARGREEDY chooses precisely the alternatives which maximize Equation 5.

I Proof of Theorem 3
Theorem 3. The variables xvj computed by convex program 2 define the optimal policy when the
distribution D is known and T =∞.

Proof. Let {xvj} be the optimal solution to convex program 2. We show that {xvj} converges to the
optimal solution for the offline problem in the case that T →∞. So consider an offline instance for
some large T , large enough that every matrix v that occurs with non-zero probability in D appears a
large number of times in the input. For every round that Vt = v, choose an alternative by sampling
from the distribution xvj . Denote the objective value achieved by SD. Now consider the observed
distribution in the finite instance, O. Consider solving convex program 2 for distribution O, giving
variables xOvj , and denote the value of the resulting solution on the large instance, SO. It can be

shown that SO → SD as O → D. By the law of large numbers, limT→∞O = D, therefore
limT→∞ SO = SD.

Now consider the optimal offline solution as defined by mixed integer program 1. Denote the
value it achieves by SMIP . Clearly SMIP ≥ SO, since SMIP is optimal. Next, consider the
alternatives chosen in the offline solution and use them to define variables

x′vj = #times(Vt = v and j is chosen)/#times(Vt = v). (6)

Denote the value of the solution defined by the x′vj variables by S′. S′ = SMIP since sampling
from the solution corresponding to S′ gives the solution corresponding to SMIP .

Lastly, we show that limT→∞ S′ ≤ limT→∞ SO. Note that the variables x′vj are a feasible
solution to convex program 2. Therefore, as long as the instance is large enough that the probabilities
xOvj can be well-sampled for every v that appears in the instance, SO is the highest value that can
be achieved. As T → ∞, we can sample these variables arbitrarily well. Thus, limT→∞ S′ ≤
limT→∞ SO.

So, in the limit as t→∞, we have the relations

SMIP = S′ ≤ SO = SD ≤ SMIP . (7)

Here the inequalities are forced to be equalities, otherwise we get SMIP < SMIP . In particular,
limT→∞ SD = SMIP .

