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Abstract

Most of the computational study of election problems has assumed that each voter’s prefer-

ences are, or should be extended to, a total order. However in practice voters may have prefer-

ences with ties. We study the complexity of manipulative actions on elections where voters can

have ties, extending the definitions of the election systems (when necessary) to handle voters

with ties. We show that for natural election systems allowing ties can both increase and de-

crease the complexity of manipulation and bribery, and we state a general result on the effect

of voters with ties on the complexity of control.

1 Introduction

Elections are commonly used to reach a decision when presented with the preferences of several

agents. This includes political domains as well as multiagent systems. In an election agents can have

an incentive to cast a strategic vote in order to affect the outcome. An important negative result

from social-choice theory, the Gibbard-Satterthwaite theorem, states that every reasonable election

system is susceptible to strategic voting (a.k.a. manipulation) [18, 32].

Although every reasonable election system can be manipulated, it may be computationally in-

feasible to determine if a successful manipulation exists. Bartholdi et al. introduced the notion of

exploring the computational complexity of the manipulation problem [1]. They expanded on this

work by introducing and analyzing the complexity of control [2]. Control models the actions of an

election organizer, referred to as the chair, who has control over the structure of the election (e.g.,

the voters) and wants to ensure that a preferred candidate wins. Faliszewski et al. introduced the

model of bribery [9]. Bribery is closely related to manipulation, but instead of asking if voters can

cast strategic votes to ensure a preferred outcome, bribery asks if a subcollection of the voters can

be paid to change their vote to ensure a preferred outcome.

It is important that we understand the complexity of these election problems on votes that allow

ties, since in practical settings voters often have ties between some of the candidates. This is seen in

the online preference repository PREFLIB, which contains several election datasets containing votes

with ties, ranging from political elections to elections created from rating data [26]. Most of the

computational study of election problems for partial votes has assumed that each voter’s preferences

should be extended to a total order (see e.g., the possible and necessary winner problems [24]). How-

ever an agent may view two options as explicitly equal and it makes sense to view these preferences

as votes with ties, instead of as partial rankings that can be extended.

Election systems are sometimes even explicitly defined for voters with ties. Both the Kemeny

rule [23] and the Schulze rule [33] are defined for votes that contain ties. Also, there exist variants

of the Borda count that are defined for votes that contain ties [8].

The computational study of the problems of manipulation, control, and bribery has largely been

restricted to elections that contain voters with tie-free votes. Important recent work by Narodytska

and Walsh [29] studies the computational complexity of the manipulation problem for top orders,

i.e., votes where the candidates ranked last are all tied and are otherwise total orders. The manipu-

lation results in this paper can be seen as an extension of the work by Narodytska and Walsh. We

consider orders that allow a voter to state ties at each position of his or her preference order, i.e.,



weak orders. We mention that in contrast to the work by Narodytska and Walsh [29], we give an

example of a natural case where manipulation becomes hard when given votes with ties, while it is

in P for total orders. Additionally, we are the first to study the complexity of the standard models of

control and bribery for votes that contain ties. However, we mention here that Baumeister et al. con-

sider a different version of bribery called extension bribery, for top orders (there called top-truncated

votes) [3].

The organization of this paper is as follows. In Section 2 we state the formal definitions and

problem statements needed for our results. The results in Section 3 are split into three sections,

each showing a different behavior of voting with ties. In Section 3.1 we give examples of election

systems where the problems of manipulation, bribery, and control increase in complexity from P to

NP-complete. Conversely, in Section 3.2 we give examples of election systems where the complexity

of manipulation and bribery becomes easier, and state a general result about the complexity of con-

trol. In Section 3.3 we solve an open question from Narodytska and Walsh [29] and give examples of

election systems whose manipulation complexities are unaffected by voters with ties. Additionally,

we completely characterize 3-candidate Copelandα coalitional weighted manipulation for rational

and irrational voters with ties. We discuss related work in Section 4 and our general conclusions and

open directions in Section 5.

2 Preliminaries

An election consists of a finite set of candidates C and a collection of voters V (also referred to as

a preference profile). Each voter in V is specified by its preference order. We consider voters with

varying amounts of ties in their preferences. A total order is a linear ordering of all of the candidates

from most to least preferred. A weak order is an ordering of all of the candidates from most to least

preferred that allows ties (also referred to as indifference). In general, a weak order can be viewed

as a total order with ties. We use “>” to denote strict preference between two candidates and “∼”

to denote ties between two candidates. A top order is a weak order with all tied candidates ranked

last, and a bottom order is a weak order with all tied candidates ranked first. In Example 1 below we

present examples of each of the orders examined in this paper.

Example 1 Given the candidate set {a, b, c, d}, a > b ∼ c > d is a weak order, a ∼ b > c > d
is a bottom order, a > b > c ∼ d is a top order, and a > b > c > d is a total order. Notice that

every bottom order and every top order is also a weak order, and that every total order is also a top,

bottom, and weak order.

An election system, E , maps an election, i.e., a finite candidate set C and a collection of voters

V , to a set of winners, where the winner set can be any subset of the candidate set. The voters

in an election can sometimes have an associated weight where a voter with weight w counts as w
unweighted voters.

We examine two important families of election systems, the first being scoring rules. A scoring

rule uses a vector of the form 〈s1, . . . , sm〉, where m denotes the number of candidates, to determine

each candidate’s score when given a preference profile. When the preferences are all total orders, a

candidate at position i in the preference order of a voter receives a score of si from that voter. The

candidate(s) with the highest total score win. We consider the following three scoring rules.

Plurality: with scoring vector 〈1, 0, . . . , 0〉.
Borda: with scoring vector 〈m− 1,m− 2, . . . , 1, 0〉.
t-Approval: with scoring vector 〈1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0〉.

To properly handle voters with ties in their preference orders we define several natural extensions

which generalize the extensions from Baumeister et al. [3] and Narodytska and Walsh [29].



Borda score(a) score(b) score(c) score(d)
Min 3 1 1 0

Max 3 2 2 0

Round down 2 1 1 0

Average 3 1.5 1.5 0

Table 1: The score of each candidate for preference order a > b ∼ c > d using Borda with each of

our scoring-rule extensions. We write this order as {a} > {b, c} > {d}, i.e.,G1 = {a},G2 = {b, c},

and G3 = {d}. Note that k1 = 0, k2 = 1, and k3 = 3.

Write a preference order with ties as G1 > G2 > · · · > Gr where each Gi is a set of tied

candidates. For each set Gi, let ki =
∑i−1

j=1
‖Gj‖ be the number of candidates strictly preferred to

every candidate in the set. See the caption of Table 1 for an example.

We now introduce the following scoring-rule extensions, which as stated above, generalize pre-

viously used scoring-rule extensions [3, 29]. In Table 1 we present an example of each of these

extensions for Borda.

Min: Each candidate in Gi receives a score of ski+‖Gi‖.

Max: Each candidate in Gi receives a score of ski+1.

Round down: Each candidate in Gi receives a score of sm−r+i.

Average: Each candidate in Gi receives a score of

∑ki+‖Gi‖
j=ki+1

sj

‖Gi‖
.

The optimistic and pessimistic models from the work by Baumeister et al. [3] are the same as our

max and min extensions respectively, for top orders. All of the scoring-rule extensions for top orders

found in the work by Narodytska and Walsh [29] can be realized by our definitions above, with our

round-down and average extensions yielding the same scores for top orders as their round-down and

average extensions. With the additional modification that sm = 0 our min scoring-rule extension

yields the same scores for top orders as round up in the work by Narodytska and Walsh [29].

Notice that plurality using the max scoring-rule extension for bottom orders is the same as ap-

proval voting, where each voter indicates either approval or disapproval of each candidate and the

candidate(s) with the most approvals win. For example, given the set of candidates {a, b, c, d}, an

approval vector that approves of a and c, and a preference order a ∼ c > b > d yield the same

scores for approval and plurality using max respectively.

In addition to scoring rules, elections can be defined by the pairwise majority elections between

the candidates. One important example is Copelandα [7] (where α is a rational number between 0

and 1), which is scored as follows. Each candidate receives one point for each pairwise majority

election he or she wins and receives α points for each tie. We also mention that Copeland1 is often

referred to, and will be throughout this paper, as Llull [19]. We apply the definition of Copelandα to

weak orders in the obvious way (as was done for top orders in [3, 29]).

We sometimes look at voters whose preferences need not be rational and we refer to those voters

as “irrational.” This simply means that for every unordered pair a, b of distinct candidates, the voter

has a > b or b > a. For example, a voter’s preferences could be (a > b, b > c, c > a). We also look

at irrational votes with ties.

When discussing elections defined by pairwise majority elections we sometimes refer to the

induced majority graph of a preference profile. A preference profile V where each voter has prefer-

ences over the set of candidates C induces the majority graph with a vertex set equal to the candidate

set and an edge set defined as follows. For every a, b ∈ C the graph contains the edge a → b if more

voters have a > b than b > a.



2.1 Election Problems

We examine the complexity of the following election problems.

The coalitional manipulation problem (where a coalition of manipulators seeks to change the

outcome of the election) for weighted voters, first studied by Conitzer et al. [6], is described below.

Name: E-CWCM

Given: A candidate set C, a collection of nonmanipulative voters V where each voter has a positive

integral weight, a preferred candidate p ∈ C, and a collection of manipulative voters W .

Question: Is there a way to set the votes of the manipulators such that p is an E winner of the

election (C, V ∪W )?

Electoral control is the problem of determining if it is possible for an election organizer with

control over the structure of an election, whom we refer to as the election chair, to ensure that a

preferred candidate wins [2]. We formally define the specific control action of constructive control

by adding voters (CCAV) below. CCAV is one of the most natural cases of electoral control and it

models scenarios such as targeted voter registration drives where voters whose votes will ensure the

goal of the chair are added to the election.

Name: E-CCAV

Given: A candidate set C, a collection of voters V , a collection of unregistered voters U , a preferred

candidate p ∈ C, and an add limit k ∈ N.

Question: Is there a subcollection of the unregistered voters U ′ ⊆ U such that ‖U ′‖ ≤ k and p is

an E winner of the election (C, V ∪ U ′)?

Bribery is the problem of determining if it is possible to change the votes of a subcollection

of the voters, within a certain budget, to ensure that a preferred candidate wins [9]. The case for

unweighted voters is defined below, but we also consider the case for weighted voters.

Name: E-Bribery

Given: A candidate set C, a collection of voters V , a preferred candidate p ∈ C, and a bribe limit

k ∈ N.

Question: Is there a way to change the votes of at most k of the voters in V so that p is an E winner?

2.2 Computational Complexity

We use the following NP-complete problems in our proofs of NP-completeness.

Name: Exact Cover by 3-Sets [22]

Given: A nonempty set of elements B = {b1, . . . , b3k} and a collection S = {S1, . . . , Sn} of

3-element subsets of B.

Question: Does there exist a subcollection S ′ of S such that every element of B occurs in exactly

one member of S ′?

Name: Partition [22]

Given: A nonempty set of positive integers {k1, . . . , kt} such that
∑t

i=1
ki = 2K .

Question: Does there exist a subset A of {k1, . . . , kt} such that
∑

A = K?1

Some of our results utilize the following variation of Partition, referred to as Partition′, for which

we prove NP-completeness by a reduction from Partition.

Name: Partition′

1Here and elsewhere we write
∑

A to denote
∑

a∈A
a.



Given: A nonempty set of positive even integers {k1, . . . , kt} and a positive even integer K̂ .

Question: Does there exist a partition (A,B,C) of {k1, . . . , kt} such that
∑

A =
∑

B + K̂?

Theorem 1 Partition′ is NP-complete.

The proof of Theorem 1 is deferred to the appendix.

3 Results

3.1 Complexity Goes Up

The related work on the complexity of manipulation of top orders [29] did not find a natural case

where manipulation complexity increases when moving from total orders to top orders. We will

show such cases in this section.

Single-peakedness is a restriction on the preferences of the voters introduced by Black [4]. Given

a total order A over the candidates, referred to as an axis, a collection of voters is single-peaked with

respect to A if each voter has preferences that strictly increase to a peak and then strictly decrease,

only strictly increase, or only strictly decrease with respect to A.

For our purposes we consider the model of top order single-peakedness introduced by Lack-

ner [25] where given an axis A, a collection of voters is single-peaked with respect to A if no

voter has preferences that strictly decrease and then strictly increase with respect to A. Notice that

for total orders, if a preference profile is single-peaked with respect to Black’s model [4] it is also

single-peaked with respect to Lackner’s model [25].

For single-peaked preferences we follow the model of manipulation from Walsh [34] where the

axis is given and both the nonmanipulators and the manipulators all cast votes that are single-peaked

with respect to the given axis. 3-candidate Borda CWCM is known to be in P for single-peaked

voters [12].

Theorem 2 [12] 3-candidate Borda CWCM for single-peaked total orders is in P.

We now consider the complexity of 3-candidate Borda CWCM for top orders that are single-

peaked. In all of our reductions the axis is a <A p <A b. Single-peakedness with respect to this axis

allows the following top order votes: a > p > b, a ∼ p ∼ b, a > p ∼ b, p > a > b, p > b > a,

p > a ∼ b, b > p > a, and b > p ∼ a. It does not allow a > b > p or b > a > p.

Theorem 3 3-candidate Borda CWCM for single-peaked top orders using max is NP-complete.

Proof. Given a nonempty set of positive integers {k1, . . . , kt} such that
∑t

i=1
ki = 2K we

construct the following instance of manipulation.

Let the set of candidates be C = {a, b, p}. We have two nonmanipulators with the following

weights and votes.

• One weight 3K nonmanipulator voting a > p ∼ b.
• One weight 3K nonmanipulator voting b > p ∼ a.

From the nonmanipulators, score(p) = 6K , while score(a) and score(b) are both 9K .

Let there be t manipulators, with weights k1, . . . , kt. Without loss of generality, all of the ma-

nipulators put p first. Then p receives a score of 10K overall. However, a and b can score at most K
each from the votes of the manipulators, for p to be a winner. So the manipulators must split their

votes so that a subcollection of manipulators with weight K votes p > a > b and a subcollection

with weight K votes p > b > a. Notice that these are the only votes possible to ensure that p wins

and that the manipulators cannot simply all vote p > a ∼ b since both a and b receive a point from

that vote (since we are using max) and we have no points to spare. ❑



The above argument for max does not immediately apply to the other scoring-rule extensions.

In particular, for min the optimal vote for the manipulators is always to rank p first and to rank

the remaining candidates tied and less preferred than p (as in Proposition 3 of Narodytska and

Walsh [29]). So that case is in P, with an optimal manipulator vote of p > a ∼ b.
It is not hard to modify the proof to show that the reduction of the proof of Theorem 3 also works

for the round-down case.

Theorem 4 3-candidate Borda CWCM for single-peaked top orders using round down is

NP-complete.

The average scoring-rule extension case is more complicated since it is less close to Partition

than the previous cases. We will still be able to show NP-completeness, but we have to reduce from

the special, restricted version of Partition that we defined previously in Section 2.2 as Partition′.2

Theorem 5 3-candidate Borda CWCM for single-peaked top orders using average is NP-complete.

Proof. Let {k1, . . . , kt}, K̂ be an instance of Partition′. We are asking whether there exists a

partition (A,B,C) of {k1, . . . , kt} such that
∑

A =
∑

B+ K̂. Recall that all numbers involved are

even. Let k1, . . . , kt sum to 2K . Without loss of generality, assume that K̂ ≤ 2K .

Let the candidates C = {a, b, p}. We have two nonmanipulators with the following weights and

votes.

• One weight 6K + K̂ nonmanipulator voting a > p ∼ b.
• One weight 6K − K̂ nonmanipulator voting b > p ∼ a.

From the nonmanipulators, score(p) is 6K , score(a) + score(b) = 30K and score(a)− score(b) =

3K̂.

Let there be t manipulators, with weights 3k1, . . . , 3kt.
First suppose there exists a partition (A,B,C) of {k1, . . . , kt} such that

∑
A =

∑
B + K̂.

For every ki ∈ A, let the weight 3ki manipulator vote p > b > a. For every ki ∈ B, let the

weight 3ki manipulator vote p > a > b. For every ki ∈ C, let the weight 3ki manipulator vote

p > a ∼ b. Notice that after this manipulation that score(p) = 18K , score(a) = score(b), and

score(a) + score(b) = 30K + 6K . It follows that score(p) = score(a) = score(b) = 18K .

For the converse, suppose that p can be made a winner. Without loss of generality, assume that p
is ranked uniquely first by all manipulators. Then score(p) = score(a) = score(b) = 18K . Let A′

be the set of manipulator weights that vote p > b > a, let B′ be the set of manipulator weights that

vote p > a > b, and let C′ be the set of manipulator weights that vote p > a ∼ b. No other votes

are possible. Let A = {ki | 3ki ∈ A′}, B = {ki | 3ki ∈ B′}, and C = {ki | 3ki ∈ C′}. Therefore

(A,B,C) corresponds to a partition of {k1, . . . , kt}. Note that
∑

A =
∑

B + K̂. ❑

We now consider cases where the complexity of control can increase when moving from total

order votes to votes with ties. We examine the complexity of CCAV, which is one of the most natural

models of control and known to be in P for plurality for total orders [2].

Theorem 6 [2] Plurality CCAV for total orders is in P.

However below we show two cases where CCAV for plurality is NP-complete for bottom orders and

weak orders.

As mentioned in the Preliminaries, plurality using max for bottom orders is the same as ap-

proval voting. So the theorem below immediately follows from the proof of Theorem 4.43 from

Hemaspaandra et al. [21].

2A similar situation occurred in the proof of Proposition 5 in Narodytska and Walsh [29], where a (very different) spe-

cialized version of Subset Sum was constructed to prove that 3-candidate Borda CWCM (in the non-single-peaked case) for

top orders using average remained NP-complete.



Theorem 7 Plurality CCAV for bottom orders (and thus also for weak orders) using max is

NP-complete.

We now show that the case of plurality for bottom orders and weak orders using average is

NP-complete.

Theorem 8 Plurality CCAV for bottom orders (and thus also for weak orders) using average is

NP-complete.

Proof. Let B = {b1, . . . , b3k} and a collection S = {S1, . . . Sn} of 3-element subsets of B be an

instance of Exact Cover by 3-Sets, where each Sj = {bj1 , bj2 , bj3}. Without loss of generality let k
be divisible by 4 and let ℓ = 3k/4. We construct the following instance of control by adding voters.

Let the candidates C = {p} ∪ B. Let the addition limit be k. Let the collection of registered

voters consist of the following (3k2 + 9k)/4 + 1 voters. (When “· · · ” appears at the end of a vote

the remaining candidates from C are ranked lexicographically. For example, given the candidate set

{a, b, c, d}, the vote b > · · · denotes the vote b > a > c > d.)

• For each i, 1 ≤ i ≤ ℓ, k + 3 voters voting bi ∼ bi+ℓ ∼ bi+2ℓ ∼ bi+3ℓ > · · · .

• One voter voting p > · · · .

Let the collection of unregistered voters consist of the following n voters.

• For each Sj ∈ S, one voter voting p ∼ bj1 ∼ bj2 ∼ bj3 > · · · .

Notice that from the registered voters, the score of each bi candidate is (k − 1)/4 greater than the

score of p. Thus the chair must add voters from the collection of unregistered voters so that no bi
candidate receives more than 1/4 more points, while p must gain k/4 points. Therefore the chair

must add the voters that correspond to an exact cover. ❑

We now present a case where the complexity of bribery goes from P for total orders to

NP-complete for votes with ties.

Theorem 9 [9] Unweighted bribery for plurality for total orders is in P.

The proof that bribery for plurality for bottom orders and weak order using max is NP-complete

immediately follows from the proof of Theorem 4.2 from Faliszewski et al. [9], which showed

bribery for approval to be NP-complete.

Theorem 10 Unweighted bribery for plurality for bottom orders and weak orders using max is

NP-complete.

3.2 Complexity Goes Down

Narodytska and Walsh [29] show that the complexity of coalitional manipulation can go down when

moving from total orders to top orders. In particular, they show that the complexity of coalitional

manipulation (weighted or unweighted) for Borda goes from NP-complete to P for top orders using

round-up. This is because in round-up an optimal manipulator vote is to put p first and have all other

candidates tied for last.

In contrast, notice that the complexity of a (standard) control action cannot decrease when more

lenient votes are allowed. This is because the votes that create hard instances of control are still able

to be cast when more general votes are possible. The election chair is not able to directly change

votes, except in a somewhat restricted way in candidate control cases, but it is clear to see how this

does not affect the statement below.

Observation 11 If a (standard) control problem is hard for a type of vote with ties, it remains hard

for votes that allow more ties.



What about bribery? Bribery can be viewed as a two-phase action consisting of control by delet-

ing voters followed by manipulation. Hardness for a bribery problem is typically caused by hard-

ness of the corresponding deleting voters problem or the corresponding manipulation problem. If

the deleting voters problem is hard, this problem remains hard for votes that allow ties, and it is

likely that the bribery problem remains hard as well. Our best chance of finding a bribery problem

that is hard for total orders and easy for votes with ties is a problem whose manipulation problem is

hard, but whose deleting voters problem is easy. Such problems exist, e.g., all weighted m-candidate

t-approval systems except plurality and triviality.3

Theorem 12 [9] Weighted bribery for m-candidate t-approval for all t ≥ 2 and m > t is

NP-complete.

Form-candidate t-approval elections (except plurality and triviality) the corresponding weighted

manipulation problem was shown to be NP-complete by Hemaspaandra and Hemaspaandra [20] and

the corresponding deleting voters problem was shown to be in P by Faliszewski et al. [10].

Theorem 13 Weighted bribery for m-candidate t-approval for weak orders and for top orders using

min is in P.

Proof Sketch. To perform an optimal bribery, we cannot simply perform an optimal deleting voter

action followed by an optimal manipulation action. For example, if the score of b is already at most

the score of p, it does not make sense to delete a voter with vote b > p ∼ a. But in the case of

bribery, we would change this voter to p > a ∼ b, which could be advantageous.

However, the weighted constructive control by deleting voters (WCCDV) algorithm from [10]

still basically works. Since m is constant, there are only a constant number of different votes pos-

sible. And we can assume without loss of generality that we bribe only the heaviest voters of each

vote-type and that each bribed voter is bribed to put p first and have all other candidates tied for last.

In order to find out if there exists a successful bribery of k voters, we look at all the ways we can

distribute this k among the different types of votes. We then manipulate the heaviest voters of each

type to put p first and have all other candidates tied for last, and see if that makes p a winner. ❑

3.3 Complexity Remains the Same

Narodytska and Walsh [29] show that 4-candidate Copeland0.5 CWCM remains NP-complete for top

orders. They conjecture that this is also the case for 3 candidates and point out that the reduction that

shows this for total orders from Faliszewski et al. [13] won’t work. We will prove their conjecture,

with a reduction similar to the proof of Theorem 5.4

Theorem 14 3-candidate Copelandα CWCM remains NP-complete for top orders, bottom orders,

and weak orders, for all rational α ∈ [0, 1) in the nonunique winner case (our standard model).

Proof. Let {k1, . . . , kt}, K̂ be an instance of Partition′, which asks whether there exists a partition

(A,B,C) of {k1, . . . , kt} such that
∑

A =
∑

B + K̂.

Let k1, . . . , kt sum to 2K and without loss of generality assume that K̂ ≤ 2K . We now construct

an instance of CWCM. Let the candidate set C = {a, b, p} and let the preferred candidate be p. Let

there be two nonmanipulators with the following weights and votes.

• One weight K + K̂/2 nonmanipulator voting a > b > p.

• One weight K − K̂/2 nonmanipulator voting b > a > p.

3By triviality we mean a scoring rule with a scoring vector that gives each candidate the same score.
4Menon and Larson independently proved the top order case of the following theorem [27].



From the votes of the nonmanipulators, score(a) = 2, score(b) = 1, and score(p) = 0. In the

induced majority graph, there is the edge a → b with weight K̂ , the edge a → p with weight 2K ,

and the edge b → p with weight 2K . Let there be t manipulators with, weights k1, . . . , kt.
Suppose that there exists a partition of {k1, . . . , kt} into (A,B,C) such that

∑
A =

∑
B + K̂.

Then for each ki ∈ A, have the manipulator with weight ki vote p > b > a, for each ki ∈ B, have

the manipulator with weight ki vote p > a > b, and for each ki ∈ C have the manipulator with

weight ki vote p > a ∼ b. From the votes of the nonmanipulators and manipulators, score(a) =
score(b) = score(p) = 2α.

For the other direction, suppose that p can be made a winner. When all of the manipulators put p
first then score(p) = 2α (the highest score that p can achieve). Since α < 1, the manipulators must

have voted such that a and b tie. This means that a subcollection of the manipulators with weight K
voted p > b > a, a subcollection with weight K − K̂ voted p > a > b, and a subcollection with

weight K̂ voted p > a ∼ b. No other votes would cause b and a to tie. Notice that the weights of the

manipulators in the three different subcollections form a partition (A,B,C) of {k1, . . . , kt} such

that
∑

A =
∑

B + K̂ . ❑

3-candidate Copelandα CWCM is unusual in that the complexity can be different if we look at

the unique winner case instead of the nonunique winner case (our standard model). We can prove

that the only 3-candidate Copeland CWCM case that is hard for the unique winner model remains

hard using a very similar approach.

Theorem 15 3-candidate Copeland0 CWCM remains NP-complete for top orders, bottom orders,

and weak orders, in the unique winner case.

The proof of Theorem 15 is deferred to the appendix.

Theorem 16 3-candidate Copelandα CWCM remains in P for top orders, bottom orders, and weak

orders, for α = 1 for the nonunique winner case and for all rational α ∈ (0, 1] in the unique winner

case.

The proof of this theorem follows using the same arguments as the proof of the case without ties

from Faliszewski et al. [13].

Majority graph result

We now state a general theorem on two-voter majority graphs for votes with ties. See Brandt et al. [5]

for related work on majority graphs constructed from a fixed number of voters with total orders.

Theorem 17 A majority graph can be induced by two weak orders if and only if it can be induced

by two total orders.

Proof Sketch. Given two weak orders v1 and v2 that describe preferences over a candidate set C,

we construct two total orders, v′1 and v′2 iteratively as follows.

For each pair of candidates a, b ∈ C and i ∈ {1, 2}, if a > b in vi then set a > b in v′i.
For each pair of candidates a, b ∈ C, if a > b in v1 (v2) and a ∼ b in v2 (v1) then the majority

graph induced by v1 and v2 contains the edge a → b. To ensure that the majority graph induced by

v′1 and v′2 contains the edge a → b we must set a > b in v′2 (v
′
1).

After performing the above steps there may still be a set of candidates C′ ⊆ C such that v1
and v2 are indifferent between each pair of candidates in C′. For each pair of candidates a, b ∈ C′,

a ∼ b in v1 and v2, which implies the majority graph does not contain and edge between a and b. To

ensure that majority graph induced by v′1 and v′2 does not contain an edge between a and b, without

loss of generality set v′1 to strictly prefer the lexicographically smaller to the lexicographically larger

candidate and the reverse in v′2.



The process described above constructs two orders v′1 and v′2 and ensures that the majority graph

induced by v1 and v2 is the same as the majority graph induced by v′1 and v′2. Since for each pair

of candidates a, b ∈ C and i ∈ {1, 2} we consider each possible case where a ∼ b is in vi and set

either a > b or b > a in the corresponding order v′i, it is clear that v′1 and v′2 are total orders. ❑

Observe that as a consequence of Theorem 17 we get a transfer of NP-hardness from total orders

to weak orders for two manipulators when the result depends only on the induced majority graph.

The proofs for Copelandα unweighted manipulation for two manipulators for all rational α for total

orders depend only on the induced majority graph [13, 14], so we can state the following corollary

to Theorem 17.

Corollary 18 Copelandα unweighted manipulation for two manipulators for all rational α 6= 0.5
for weak orders is NP-complete.

Irrational voter Copeland results

As mentioned in the preliminaries, another way to give more flexibility to voters is to let the voters be

irrational. A voter with irrational preferences can state preferences that are not necessarily transitive

and as mentioned in Faliszewski et al. [11] a voter is likely to have preferences that are not transitive

when making a decision based on multiple criteria.

Additionally, the preferences of voters can include ties as well as irrationality. When voters are

able to state preferences that can contain irrationality and ties they can represent all possible pairwise

preferences that they may have over all of the candidates.

It is known that unweighted Copelandα manipulation is NP-complete for total orders for all

rational α except 0.5 [13, 14]. For irrational voters, this problem is in P for α = 0, 0.5, and 1, and

NP-complete for all other α [14]. Weighted manipulation for Copelandα has not been studied for

irrational voters. We will do so here.

Theorem 19 3-candidate Copelandα CWCM remains in P for irrational voters with or without ties,

for α = 1 for the nonunique winner case and for all rational α ∈ (0, 1] in the unique winner case.

Theorem 20 3-candidate Copelandα CWCM remains NP-complete for irrational voters with or

without ties, for α = 0 in the unique winner case and for all rational α ∈ [0, 1) in the nonunique

winner case.

The proofs of the above two theorems follow from the arguments in the proofs of the corresponding

rational cases, i.e., the proofs of Theorem 4.1 and 4.2 from Faliszewski et al. [13] for the case of

voters without ties and the proofs of Theorems 14, 15, and 16 above for the case of voters with ties.

When α = 1, also known as Llull, interesting things happen. It is known that 4-candidate Llull

CWCM is in P for the unique and nonunique winner cases [15]. For larger fixed numbers of candi-

dates, this is open. Though it is known that unweighted manipulation for Llull (with an unbounded

number of candidates) is NP-complete in the nonunique winner case [14]. In contrast, we will show

now that for irrational voters, all these problems are in P.

Theorem 21 Llull CWCM is in P for irrational voters with or without ties, in the nonunique winner

case and in the unique winner case.

Proof. Given a set of candidates C, a collection of voters V , k manipulators, and a preferred

candidate p ∈ C, the preferences of the manipulators will always contain p > a for all candidates

a 6= p. This determines the score of p. In addition, let the initial preferences of the manipulators be

a > b for each pair of candidates a, b ∈ C − {p} such that a defeats b in V or such that a ties b
in V and a is lexicographically smaller than b. Note that, if k > 0, there are no pairwise ties in the

election with the manipulators set in this way and that the manipulators all have strict preferences



between every pair of candidates (i.e., no ties in their preferences). For every a 6= p, let score0(a)
be the score of a with the manipulators set as above.

Construct the following flow network. The nodes are: a source s, a sink t, and all candidates

other than p. For every a ∈ C − {p}, add an edge with capacity score0(a) from s to a and add an

edge with capacity score(p) from a to t. For every a, b ∈ C − {p}, add an edge from candidate a to

candidate b with capacity 1 if, when all manipulators set b > a, the score of a decreases by 1 (and

the score of b increases by 1).

If there is manipulation such that p is a winner, then for every candidate a ∈ C−{p}, score(a) ≤
score(p) so there is a network flow that saturates all edges that go out from s.

If there is a network flow that saturates all edges that go out from s then for every a, b ∈ C−{p}
such that there is a unit of flow from a to b, change a > b to b > a in all manipulators.

This construction can be adapted to the unique winner case by letting the capacity of the edge

from a to t be score(p)− 1 instead of score(p). ❑

Axioms

Scoring rules on total orders satisfy a number of important axioms such as neutrality, anonymity,

consistency, continuity, and monotonicity.

It is interesting to see whether these axioms still hold if we allow weak orders using our scoring-

rule extensions. Informally, an anonymous election system treats all of the voters the same, and a

neutral election system treats all of the candidates the same. It is immediate that all of our scoring-

rule extensions satisfy anonymity and neutrality.

An election system is consistent if for all elections (C, V ) and (C, V ′) if there are common

winners, then these are exactly the winners of (C, V ∪ V ′). An election system is continuous if

for all elections (C, V ) and (C, V ′) if x ∈ C is the unique winner of (C, V ) then there exists an

n ∈ N such that x is the unique winner of (C, kV ∪ V ′) for all k ≥ n. Consistency and continuity

each follow from the same arguments used for the case for total orders (see [35, 36]). Basically,

consistency follows because the score of a candidate in the union of two elections is the sum of the

scores in the individual elections. Similarly, continuity holds since we can multiply scores.

That leaves monotonicity, which for total orders and resolute election systems (a single candidate

wins) requires that for all elections (C, V ), if x ∈ C is the winner then if x is “lifted” in a vote vi ∈ V
(i.e., the preference of x is increased in the vote vi and the relative positions of candidates in C−{x}
remain unchanged) to yield the vote v′i then x is the winner of (C, v′i ∪ V − {vi}).

To extend this definition for irresolute election systems Pegel [30] states that when a winning

candidate x is lifted in a vote that x must remain a winner and no new winners are added. (See

also footnote 52 of [36] and [31] for a discussion of monotonicity for irresolute election systems.)

We consider the obvious analogue for weak orders, and the following is an example of the lifting

operation. For an election ({x, y, z}, V ) where x is a winner, consider the vote vi ∈ V and vi =
y > x ∼ z, so x can be lifted to yield v′i = y > x > z, v′i = y ∼ x > z, or v′i = x > y > z.

It is easy to see that the max, min, and average scoring-rule extensions all satisfy monotonicity

by a similar argument. For each of these extensions, when a winning candidatex is lifted in a vote the

score of x can only increase or remain the same, while the scores of every other candidate can only

decrease or remain the same. The round down scoring-rule extension does not satisfy monotonicity.

Consider the following counterexample.

Example 2 Consider the candidate set {a, b, c, d, e}, the votes v1 = a > c ∼ b > d > e and

v2 = c > a > d > b > e, and the scoring vector 〈10, 3, 2, 1, 0〉 using round down.

Notice that score(a) = 6, score(b) = 3, score(c) = 12, score(d) = 3 and score(e) = 0. If we

lift the winning candidate c in vote v1 to yield v′1 = a > c > b > d > e we increase the number of

groups in the vote, so the score of a increases. So given v′1 and v2 score(a) = score(c) = 13. Since

a became a winner when c was lifted round down does not satisfy monotonicity.



Notice that if we used the scoring vector 〈4, 3, 2, 1, 0〉 (5-candidate Borda), our counterexample

would not work, since by lifting a winning candidate we can increase the number of groups in v1 by

at most one, and for Borda this means that no other candidate’s score will increase by more than one

(while a winning candidate’s score increases by at least one), so no candidate will become a winner

when x is lifted if she was not already a winner.

We mention here that Gärdenfors considers extensions to Borda for votes with ties that are

equivalent to Borda using average, min, and round down and finds that monotonicity holds (though

Gärdenfors looks at election systems that produce a social ordering instead of a set of winners and

uses a somewhat different definition of monotonicity) [17].

4 Related Work

The recent work by Narodytska and Walsh [29] studied the complexity of manipulation for top

orders and is very influential to our computational study of more general votes with ties. Baumeister

et al. [3] and Narodytska and Walsh [29] studied several extensions for election systems for top

orders, which we further extend for weak orders. Menon and Larson consider the complexity of

weighted manipulation for all three-candidate scoring rules for top orders [27] and in more recent

work generalized our results on the weighted manipulation of single-peaked Borda elections for top

orders for all three-candidate scoring rules for single-peaked top orders [28].

Most of the related work in the computational study of election problems assumes that the partial

or tied preferences of the voters must be extended to total orders. We mention the important work on

partial orders by Konczak and Lang [24] that introduces the possible and necessary winner problems.

Given a preference profile of partial votes, a possible winner is a candidate that wins in at least one

extension of the votes to total orders, while a necessary winner wins in every extension [24].

Baumeister et al. [3] also look at the possible winner problem and in their case they examine the

problem given different types of incomplete votes, i.e., top truncated, bottom truncated, and top and

bottom truncated. Baumeister et al. also introduced the problem of extension bribery, where given

voters with preferences that are top truncated, voters are paid to extend their vote to ensure that a

preferred candidate wins [3]. We do not consider the problem of extension bribery, but instead we

use the standard model of bribery introduced by Faliszewski et al. [9]. In this model the briber can

set the entire preferences of a subcollection of voters to ensure that a preferred candidate wins [9].

5 Conclusions and Future Work

We examined the computational complexity of the three most commonly studied manipulative at-

tacks on elections when voting with ties. We found a natural case for manipulation where the com-

plexity increases for voters with ties, whereas it is easy for total orders. For bribery we found ex-

amples where the complexity increases and where it decreases. We examined the complexity of

Copelandα elections for voters with ties and even irrational votes with and without ties. It would

be interesting to see how the complexity of other election problems are affected by voters with

ties, specifically weak orders, which we consider to be a natural model for preferences in practical

settings.
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A Deferred Proofs

Proof of Theorem 1. The construction here is similar to the first part of the reduction to a different

version of Partition from Faliszewski et al. [9].

Given {k1, . . . , kt} such that
∑t

i=1
ki = 2K , corresponding to an instance of Partition, we

construct the following instance {k′1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t}, K̂ of Partition′. Let k′i = 4i + 4t+1ki,

ℓ′i = 4i, and K̂ = 4t+1K +
∑t

i=1
4i. (Note that in Faliszewski et al. [9] “3”s were used, but we use

“4”s here so that when we add a subset of {k′1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t, K̂}, we never have carries in the

last t+ 1 digits base 4, and we set the last digit to 0 to ensure that all numbers are even.)

If there exists a partition (A,B,C) of {k′1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t} such that

∑
A =

∑
B + K̂,

then ∀i, 1 ≤ i ≤ t, ⌊(
∑

A)/4i⌋ mod 4 = ⌊(
∑

B+ K̂)/4i⌋ mod 4. Note that ⌊(
∑

A)/4i⌋ mod 4 =

‖A∩{k′i, ℓ
′
i}‖, ⌊(

∑
B)/4i⌋ mod 4 = ‖B∩{k′i, ℓ

′
i}‖, and ⌊K̂/4i⌋ mod 4 = 1. So, ‖A∩{k′i, ℓ

′
i}‖ =

‖B ∩{k′i, ℓ
′
i}‖+1. It follows that exactly one of k′i or ℓ′i is in A and neither is in B. Since this is the

case for every i, it follows that B = ∅. Now look at all ki such that k′i is in A. That set will add up

to K , and so our original Partition instance is a positive instance.

For the converse, it is immediate that a subset D of {k1, . . . , kt} that adds up to K can be con-

verted into a solution for our Partition′ instance, namely, by putting k′i in A for every ki in D, putting

ℓ′i in A for every ki not in D, letting B = ∅, and putting all other elements of {k′1, . . . , k
′
t, ℓ

′
1, . . . , ℓ

′
t}

in C. ❑

Proof of Theorem 15. Let {k1, . . . , kt}, K̂ be an instance of Partition′, which asks whether there

exists a partition (A,B,C) of {k1, . . . , kt} such that
∑

A =
∑

B + K̂ .

Let k1, . . . kt sum to 2K and without loss of generality assume that K̂ ≤ 2K . We now construct

an instance of CWCM. Let the candidate set C = {a, b, p}. Let the preferred candidate be p ∈ C.

Let there be two nonmanipulators with the following weights and votes.

• One weight K + K̂/2 nonmanipulator voting a > p > b.

• One weight K − K̂/2 nonmanipulator voting b > a > p.

From the votes of the nonmanipulators score(a) = 2, score(b) = 0, and score(p) = 1. The induced

majority graph contains the edge a → b with weight K̂, the edge a → p with weight 2K , and the

edge p → b with weight K̂. Let there be t manipulators, with weights k1, . . . , kt.
Suppose that there exists a partition of {k1, . . . , kt} into (A,B,C) such that

∑
A =

∑
B + K̂.

Then for each ki ∈ A have the manipulator with weight ki vote p > b > a, for each ki ∈ B have the

manipulator with weight ki vote p > a > b, and for each ki ∈ C have the manipulator with weight

ki vote p > a ∼ b. From the votes of the nonmanipulators and the manipulators score(p) = 1 and

score(a) = score(b) = 0.

For the other direction, suppose that p can be made a unique winner. When all of the manipulators

put p first then score(p) = 1. So the manipulators must have voted so that a and b tie, since otherwise

either a or b would tie with p and p would not be a unique winner. Therefore a subcollection of the

manipulators with weight K voted p > b > a, a subcollection with weight K− K̂ voted p > a > b,
and a subcollection with weight K̂ voted p > a ∼ b. No other votes would cause a and b to tie. ❑
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