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Abstract

“We would all like to vote for the best man, but he is never a candidate”

— Kin Hubbard

We study mechanisms for candidate selection that seek to minimize the social cost,
where voters and candidates are associated with points in some underlying metric
space. The social cost of a candidate is the sum of its distances to each voter. Some
of our work assumes that these points can be modeled on the real line, but other
results of ours are more general.
A question closely related to candidate selection is that of minimizing the sum of
distances for facility location. The difference is that in our setting there is a fixed set
of candidates, whereas the large body of work on facility location seems to consider
every point in the metric space to be a possible candidate. This setting gives rise
to three types of candidate selection mechanisms which differ in the granularity of
their input space (single candidate, ranking and location mechanisms). We study
the relationships between these three classes of mechanisms.
While it may seem that Black’s 1948 median algorithm is optimal for candidate
selection on the line, this is not the case. We give matching upper and lower bounds
for a variety of settings. In particular, when candidates and voters are on the line,
our universally truthful spike mechanism gives a [tight] approximation of two. When
assessing candidate selection mechanisms, we seek several desirable properties: (a)
efficiency (minimizing the social cost) (b) truthfulness (dominant strategy incentive
compatibility) and (c) simplicity (a smaller input space). We quantify the effect that
truthfulness and simplicity impose on the efficiency.

1 Introduction

The Hotelling-Downs model ([13], [20]) used to study political strategies, assumes that
individual voters occupy some point along the real line. Non-principled political parties (or
ice cream vendors) strategically position themselves at a point along the left-right axis (or
along a beach) so as to garner the greatest number of supporters (clients). Implicitly, voters
will vote for the closest candidate.

We consider an analogous problem to the Hotelling-Downs model, where candidates are
principled (i.e., non-strategic) whereas the voters have preferences but may misrepresent
them in order to achieve what is a better outcome from their perspective. In this model,
in which both voters and candidates are represented by points in the metric space, a closer
candidate is preferable to one further away.

Examples for candidate selection:

• A municipality plans to erect a public library on a street, and every resident seeks to
be as close as possible to the proposed library. However, the new library can only be
built on suitable locations (the candidates).

• Social choice issues in which the distance is not physical: there is a set of policies
ranging from left to right, and several political candidates stand for election, each one
advocating a different policy. Every voter is associated with a point along the real line.
An example of a collective decision problem which does not revolve around the political
sphere yet may also fit this setting is the task of determining the temperature of an air



conditioner in a room, where each individual has a different ideal point along the scale
of temperatures (a line). There are many additional settings of relevant candidate
selection problems, e.g., in the realms of recommendation systems and computational
economics. While our results do not necessarily apply to all social choice settings, there
are many such problems for which they do apply (whether in entirety or partially).

Assuming quasi-linear utilities, and allowing payments — the well known Vickrey-Clarke-
Groves (VCG) mechanism is truthful and can achieve the optimal social cost (see, e.g., [23]).
However, in many real-life situations we restrict the use of money due to ethical, legal or
other considerations, e.g, in democratic elections and in examples previously mentioned.

We study deterministic truthful mechanisms with no payments for the candidate selec-
tion problem. In such mechanisms, no agent can benefit from misreporting her location,
regardless of the reported locations of the other agents. Such mechanisms are also known as
dominant strategy incentive compatible mechanisms. We also consider randomized truthful
mechanisms, both universally truthful (ex-post Nash) and truthful in expectation.

Given a set of candidate and voter locations, it is polytime to find the candidate that
minimizes the social cost.

When restricted to deterministic truthful mechanisms, we show that the optimal can-
didate cannot be selected in the general case. Moreover, we show that the cost may be as
bad as three times the optimal cost (matching lower and upper bounds). When considering
randomized mechanisms on the line, the approximation factor drops to two (matching lower
and upper bounds).

There are other reasons that an optimal candidate may not be chosen. In particular, this
depends on the amount of information the agents supply to the mechanism. We formulate
three different types of mechanisms, based on the information each agent submits to the
mechanism. We note that all three mechanism types are candidate selection mechanisms,
that is – their output is a single candidate.

• Single Candidate [vote] mechanisms, in which every agent votes for one of the candi-
dates.

• Ranking [vote] mechanisms, in which every agent states ordinal preferences over the
candidates (a permutation).

• Location [vote] mechanisms, in which every agent sends a position.

Clearly, knowing the true location of an agent allows one to infer the ranking preferred by
that agent, which in turn unravels the favorite candidate of the agent (up to tie-breaking).

In the vast majority of previous work done on the facility location problem every point
in the metric space was considered to be a candidate. Therefore there was no difference
between these three mechanism types.

The social choice literature mostly considers social choice functions (which are ranking
mechanisms that are not necessarily truthful). Note that Arrow’s impossibility theorem
does not hold when assuming the preferences are single-peaked.

The more information an agent transmits, the more tools the mechanism has to devise
an accurate solution. Albeit, this information comes at a cost, since it might disclose more
private information which the agents wish to keep confidential. Furthermore, behavioral
economists have long argued that the agents cannot fully acquire their utility function, or
that obtaining this information requires a high cognitive cost. Additionally, sending more
information also casts a higher burden on the mechanism itself. For all of these reasons
deploying a simple mechanism1 which requires less information from agents is beneficial.

1We use the term “simplicity” from the perspective of the voters, who have a smaller action space, i.e,
less options to choose from. The mechanism itself can act in an arbitrarily complex fashion.



Indeed, in many practical scenarios, single candidate mechanisms are used rather than
ranking mechanisms. Generally there is a trade-off between the accuracy of a mechanism
and its simplicity.

1.1 Our Contributions

In the paper, we show the following:

• In Section 3 we formulate a framework of reductions that compare the various mecha-
nism types. We utilize this framework to show the relations (equivalence or strict con-
tainment) between the three classes of truthful mechanisms – single candidate, ranking
and location (see Figure 2 in the appendix). Furthermore, we show that for the case of
two candidates, the set of truthful in expectation location mechanisms is equivalent to
the set of truthful in expectation single candidate mechanisms. These results provide
a significant step towards a full characterization of truthful mechanisms.

• In Section 4 we define a family of universally truthful single candidate mechanisms
on the line called weighted percentile single candidate (WPSC) mechanisms, which
choose the ith vote with some predetermined probability pi. We introduce the spike
mechanism, which is a WPSC mechanism that carefully crafts the probability distri-
bution to account for misreports by any agent - whether they are near the center or
close to the extremes (see Figure 1). We then use backwards induction to show that
spike achieves an approximation ratio of two (Theorem 7).

Figure 1: The density function of the spike mechanism, which gives rise to the mecha-
nism’s name (the cumulative distribution function is given explicitly in Definition 3). In
this example there are 10000 agents and 4 candidates. The candidates, when ordered
from left to right, receive 2000, 2000, 3000 and 3000 votes respectively. The graph
depicts probability of choosing each vote – votes are chosen with higher probability
when they are closer to the 50th percentile. The area beneath the graph represents
the probability that each candidate will be elected, e.g., the probability of choosing the
second candidate (p2) is the integral of the function between 2000 and 4000.

• In Section 5 we show additional bounds for randomized mechanisms – On the line
there is a lower bound of two, even for location mechanisms, which shows that the
result for spike is tight. Furthermore, when combining this understanding with the
results of Section 3, it can be concluded that two is also the tight approximation ratio
for truthful in expectation mechanisms (single candidate, ranking or location) and for
universally truthful single candidate mechanisms.

We move on to show bounds for randomized mechanisms for more general metric
spaces2 (see Figure 5 in the appendix). An easy observation is that the random



dictator mechanism achieves an upper bound of three for any metric space. Theorem
11 shows a lower bound of 3− 2

d for any single candidate mechanism in <d (by using
a counterexample based on a regular simplex). This is enough to conclude that on an
arbitrary metric space, the bound of three is tight for single candidate mechanisms.
Theorem 14 displays a lower bound of 7/3 for any ranking mechanism in <2 (which
also holds in any higher dimension Euclidean space <d).

• In Section 6 we present deterministic bounds on the line – a lower bound of three is
met by a matching upper bound due to the median mechanism. All the results on
the line, deterministic or randomized, are displayed in the table in Figure 6 in the
appendix.

We highlight the following surprising phenomenon apparent in Figure 6 in the ap-
pendix. In both deterministic and randomized cases, imposing any constraint in ei-
ther information or truthfulness, yields the same ratio as taking the both of these
constraints simultaneously — when insisting on truthful mechanisms (in the strate-
gic case), there is no trade-off between high and low information settings, and one
can enjoy the benefits of minimal information mechanisms (single candidate mecha-
nisms) without incurring any additional cost to the approximation ratio. Similarly,
when deciding to reduce the information requirements to anything less than location
mechanisms, it is possible to devise a truthful [single candidate] mechanism, without
increasing the approximation ratio.

Due to space constraints, almost all of the proofs and figures are deferred to the appendix.

1.2 Related Work

Procaccia and Tennenholtz introduced game theoretical aspects to the facility location prob-
lem [25]. As mentioned before, their setting is similar to the one in this paper, except that
the location of the facility is not restricted to a set of candidates. This model was extended
in many different ways. The metric space was extended from the line to cycles ([1], [2]),
trees ([1], [14]) and general graphs ([1]). Many papers consider building several facilities (or
electing a committee of candidates), e.g. [16], [17], [21]. The goal of the majority of these
papers is to optimize over some global target function. The most popular target functions
are the social cost and the maximal cost of an agent, but additional target functions like
the L2 norm were also considered [14]. Some papers deal with “obnoxious facility location”
— a setting in which agents want to be as far away as possible from the facility, e.g., when
selecting a location for a central garbage dump (e.g., [11]).

[28] proposed deterministic percentile [location] mechanisms for locating multiple facili-
ties in <d. [27] showed that even when the location of the facilities are constrained to a set
of candidates (as in our paper), these percentile mechanisms are group-strategyproof on <.

[12] characterize deterministic truthful mechanisms for locating a facility on the discrete
line and the discrete cycle. In their model agents must be located precisely on candidates,
and the distance between neighbor candidates is constant.

When constraining the outcome to a set of candidates, the facility location setting resem-
bles social choice problems. The seminal Gibbard-Satterthwaite theorem (e.g, [18]) shows
that in a general setting the only onto truthful deterministic mechanisms are dictatorships.

2We do not present results for deterministic mechanisms in general metric spaces, since in these cases
the incentive compatibility constraints take a significant toll on the approximation ratio – according to [3]
in the non-strategic setting it is possible to reach a constant ratio in any metric space, while due to the
characterization of [26] there exist metric spaces (e.g., cycles) in which the approximation ratio is Ω(n) even
in the continuous model.



However, if there are limitations on the rankings, then the impossibility theorem of Gibbard-
Satterthwaite does not hold. In many cases the rankings can be limited to single-peaked
preferences, a notion used as early as 1948 by Black [6], and was later fully characterized
([22] and [26]).

There has been extensive work describing numerous candidate selection schemes (e.g,
[9]). These schemes typically have no assumptions on the preferences of the agents, and
according to Gibbard-Sattethwaite they are not truthful. [18] further characterizes truthful
randomized mechanisms under arbitrary preferences. Some work on social choice makes use
of randomized schemes in order to elicit truthfulness (e.g., [7] and [5]).

The advantages of simple mechanisms (in which each voter has less options to choose
from) have been widely acknowledged. For instance, aiming for simplicity is a major reason
for which the vast majority of the candidate selection schemes above accept ordinal rankings
rather than cardinal rankings as input. Truthfulness is also a very common and desired trait
of mechanisms at large. Nonetheless, we do not know of any work formally describing the
three types of mechanisms, or any similar framework for uncovering relationships between
these mechanism types, as in Theorem 1.

Since in the lack of cardinal costs no global objective functions can be measured (e.g, the
social cost), the focus of many of the aforementioned schemes is on achieving some desirable
axiomatic properties. However, the use of utilitarianism in the realm of social choice has
firm and ancient roots (e.g, [15] and [19]).

Moreover, in recent years a line of work in computational social choice regarded distor-
tion, a measure for assessing social choice functions (i.e, ranking mechanisms) which also
refers to the utilitarian goal of minimizing social cost. The term distortion was coined by
Procaccia and Rosenschein in [24], and was followed by several other papers (e.g., [10],
[8], [3] and [4]). Roughly speaking, the distortion is the worst case ratio between the so-
cial cost of the candidate elected and the social cost of the optimal candidate. Note that
while the distortion stems from an information deficiency (access only to ordinal rankings
of the agents), the approximation ratio in this paper is greater than one both because of
this information deficiency (for ranking and single candidate mechanisms), and because of
incentive compatibility constraints. Computing the approximation ratio and the distortion
can quantify the affect of these two deficiencies in various settings.

Caragiannis and Procaccia deal with a setting in which the utility functions of agents are
more general than ours, which leads to a higher deterministic lower bound on the distortion
[10].

Anshelevich et. al. provide a deterministic lower bound of 3 on the distortion in a
general metric space, and show that both Copeland and uncovered set reach a distortion of
5 [3].

Spike is a truthful mechanism which achieves an approximation ratio of 2 on the line.
Independently from us, Anshelevich et. al. recently showed a mechanism which also achieves
a distortion of 2 on <, albeit it is not truthful [4].

2 Model

Let N = {1, . . . n} be a set of agents, where each agent i ∈ N is located at some point xi. We
refer to the location of agent i as agent i’s type. Let x = (x1, . . . , xn) be the location profile
of the agents. There exist m candidates located at publicly known points y = (y1, . . . , ym)
(we refer to yi as the ith candidate and as the location of the ith candidate interchangeably).
The agents and candidates are located on some metric space. Significant parts of the paper
deal with specific metric spaces, and these parts will be noted. When the metric space is <,
we assume that the agents and the candidates are both numbered in ascending order based



on their locations (otherwise they could be renamed).
A deterministic mechanism M , is a function which maps an action profile a =

(a1, . . . , an) ∈ An to a candidate, that is: M : An → y. We consider three classes of
mechanisms that differ in the input they accept, i.e., in the action space A of the agents:

• Single candidate mechanisms, in which each agent casts a vote for a candidate, that
is: ai ∈ y.

• Ranking mechanisms, in which every agent reports ordinal preferences over all the m
candidates. The notation yj � yk indicates a preference of candidate yj over candidate
yk (or indifference between the two). In ranking mechanisms ai ∈ Π, where Π is the
set of all permutations of the candidates y. These mechanisms are sometimes referred
to in the literature as social choice functions.

• Location mechanisms, in which every agent reports a location, that is ai is some point
in the metric space.

Given a joint action profile a, the cost of point x is its distance to the facility, that is:
costx(M,a) = |x−M(a)|. For agent i ∈ N located at point xi, we refer to costxi(M,a) as
the cost of agent i. The goal of each agent is to minimize their cost.

Truthful mechanisms are usually defined in the context of direct revelation mechanisms.
Since in ranking and single candidate mechanisms the action space does not coincide with
the type space, we extend this notion in the following trivial manner. For an agent in
location xi and for any mechanism (location, ranking or single candidate), let A(xi) be the
set of true actions of this agent — the actions which convey the real preferences of this
agent. For instance, in single candidate mechanisms A(xi) is the set of candidates closest
to xi, which we refer to as the favorite candidates of xi (this might be a set since there may
be ties). An agent reporting ai ∈ A(xi) is said to be reporting truthfully, and an action
profile a in which all agents report truthfully is called a truthful profile. The set of truthful
profiles is denoted A(x). A truthful mechanism M is one in which no agent can suffer from
reporting truthfully, regardless of the actions of the other agents:

∀i ∈ N, ∀xi,∀ai ∈ A(xi),∀a−i ∈ An−1,∀a′i ∈ A : costxi
(M, (ai,a−i)) ≤ costxi

(M, (a′i,a−i))

A randomized mechanism is a mapping from an action profile to a distribution over
the candidates, that is: M : An → ∆(y). The cost of agent i is the expected cost of
this agent according to the probability distribution returned by the mechanism, that is:
costxi(M,a) = Eyj∼M(a)|xi − yj |.

Two different notions of randomized truthful mechanisms have been studied in the lit-
erature, and we extend them naturally based on our definitions of truthful reports:

• Truthful in expectation (TIE) mechanisms — where the expected cost of an agent
reporting truthfully is never higher than any other action. That is: ∀i ∈ N , ∀ai ∈
A(xi), ∀a−i ∈ An−1, ∀a′i ∈ A: costxi

(M, (ai,a−i)) ≤ costxi
(M, (a′i,a−i)). In these

mechanisms the agent may regret her action ex-post for some of the instances.

• Universally truthful mechanisms are mechanisms which can be expressed as a prob-
ability distribution over deterministic truthful mechanisms. In these mechanisms an
agent never regrets reporting truthfully, even after the random outcome is unraveled.

Clearly, every universally truthful mechanism is truthful in expectation, but not necessarily
vice versa. Throughout the paper, in the randomized setting we use the term “truthful” to
refer to truthful in expectation mechanisms, unless otherwise stated.

The social cost of a mechanism is the sum of the agents’ costs. For a location profile
x and an action profile a the social cost is: SC(M,x,a) =

∑
i costxi

(M,a). The cost of a



candidate is the cost of the mechanism which locates the facility on that candidate, that
is: SC(yj ,x) =

∑
i∈N |yj − xi|. Given a location profile x, the optimal mechanism, denoted

OPT(x), is one which chooses a candidate that minimizes the social cost (yopt). When
there are when there are several optimal candidates, we break ties consistently (e.g., when
the metric space is <, we refer to the leftmost among them as yopt). For any truthful in
expectation mechanism M (including universally truthful mechanisms), the social cost of M
given a location profile x is the maximal social cost it yields by any truthful action profile
a, that is: SC(M,x) = maxa∈A(x) SC(M,x,a). The approximation ratio of a truthful in
expectation mechanism M is the maximal ratio for any location profile x, between social

cost of M given x and the optimal social cost given x: maxx
SC(M,x)

SC(OPT,x) .

For single candidate mechanisms when the metric space is a line:

• For the line, let τ be a permutation on indices 1, . . . , n such that

aτ(1) ≤ aτ(2) ≤ · · · ≤ aτ(n)

Note that there are many permutations satisfying the above, each of which represents
a different version of breaking ties amongst votes for the same candidate. τ is an
arbitrary such permutation. Let zj = aτ(j) for j = 1, . . . , n. I.e., zj is the [location of
the] reported ideal candidate for voter τ(j).

• A percentile mechanism is a mechanism specified by an index 1 ≤ i ≤ n, which chooses
candidate zi.

• A weighted percentile single candidate (WPSC) mechanism is specified by a vector
of probabilities p1, . . . , pn, such that

∑
j pj = 1, and chooses yi with probability∑

j:zj=yi
pj .

This can be interpreted as follows: a mechanism is WPSC if and only if there exists
some τ as described above, such that for every profile a voter τ(j) determines the
winning candidate with probability pj .

In single candidate mechanisms, the set of candidates y induces a partition of the metric
space in the following manner — the candidate zone of candidate yi, denoted Zi, is the set
of points whose favorite candidate is yi: Zi = {x : ∀yj : |x− yi| ≤ |x− yj |}. The candidate
zones are bounded by candidate borders. For example, when the metric space is <, there are
n − 1 borders, which are the midpoints between two consecutive candidates: bi = yi+yi+1

2
(see Figure 7). When the metric space is <d, the candidate zones form a Voronoi diagram.
A candidate which receives at least one vote is called active.

In ranking mechanisms, y induces a partition which divides the metric space into ranking
zones. All points in some ranking zone Ri share some ranking πi. In this case, we say that
the ranking πi is consistent with ranking zone Ri. The ranking zones bounded by ranking
borders. For example, when the metric space is < the ranking borders are the midpoints
between any two candidates: bi,j =

yi+yj
2 .

3 Classes of Mechanisms

In this section we go over the containment hierarchy of various classes of truthful mechanisms
(e.g., Figure 2). We start with some intuition, then define some necessary terms, and finally
present the main theorem of this section.

Intuitively, for any mechanism M , there exists a mechanism M ′ which receives a “richer”
input than M , and acts identically to M . For instance, for some arbitrary single candidate



mechanism M , there obviously exists a ranking mechanism M ′ which disregards all of the
preferences except the top choice of each agent, and behaves essentially just like M does.

We generalize this notion in the following informal definition — a mechanism M (whether
location/ranking/or single candidate) is said to be reducible to a mechanism M ′ (loca-
tion/ranking/or single candidate) if for every location profile x and true reports, the output
of M is identical to the output of M ′ (a formal definition, which is based on M simulating
M ′, is deferred to appendix A.2).

As pointed out, it is clear that every single candidate mechanism M is reducible to
some ranking mechanism M ′ (or some location mechanism M ′). In these cases, if M is
truthful then so is M ′, since M ′ only uses the information which is inputted to M , so any
misreports to M ′ which would not change the input of M do not affect the outcome at all.
Note that the same reasoning also shows that every ranking mechanism is reducible to some
location mechanism, and that any single candidate mechanism is reducible to some location
mechanism.

On the other hand, it is not true that every location mechanism is reducible to some
ranking mechanism. Somewhat surprisingly, we will soon show that when we restrict our-
selves to deterministic truthful mechanisms this does hold, that is — every deterministic
truthful location mechanism is reducible to some deterministic truthful ranking mechanism.

Two sets of mechanisms, A and B, are said to be equivalent if every a ∈ A is reducible
to some b ∈ B, and every b ∈ B is reducible to some a ∈ A.

A set of mechanisms A is said to be strictly contained in a set of mechanisms B if every
mechanism a ∈ A is reducible to some mechanism b ∈ B, yet not every mechanism b ∈ B is
reducible to some mechanism a ∈ A. This is a slight abuse of terminology since the sets A
and B may be disjoint, as their input space may be different.

The following theorem shows several claims regarding relations (equivalence or strict
containment) between sets of truthful mechanisms. Notice that not only does this theo-
rem show the hierarchy of the different classes, but it also provides notions relevant to a
full characterization of truthful mechanisms. For instance, the second claim proves that no
mechanism can use any information regarding the location of the agents beyond their rank-
ing, while maintaining truthfulness. In addition, in the claims showing strict containment,
the examples in the proofs portray the expressiveness that the additional information gives
the mechanism.

Theorem 1. The following claims hold in the Euclidean metric space <d (for any d ∈ N):

1. The set of truthful deterministic ranking mechanisms strictly contains the set of truth-
ful deterministic single candidate mechanisms.

2. The set of truthful deterministic location mechanisms is equivalent to the set of truthful
deterministic ranking mechanisms.

3. The set of truthful in expectation randomized ranking mechanisms strictly contains the
set of truthful in expectation randomized single candidate mechanisms.

4. The set of truthful in expectation randomized location mechanisms strictly contains the
set of truthful in expectation randomized ranking mechanisms.

5. The set of truthful in expectation randomized single candidate mechanisms strictly
contains the set of universally truthful randomized single candidate mechanisms.

6. When there are two candidates, the set of truthful in expectation randomized loca-
tion mechanisms is equivalent to the set of truthful in expectation randomized single
candidate mechanisms.



4 The Spike Mechanism

In the upcoming sections we will prove that both the median mechanism and the random
dictator mechanism achieve an approximation ratio of three on <. However, the source for
this ratio in these two cases is different - for median it is due to an instance which is costly
for the median agent, while for random dictator it is due to a bad instance for an agent in
one of the extremes. The spike mechanism was devised with the objective of being resistant
to costly instances of any agent.

This section contains foundations needed for the introduction of the spike mechanism,
the definition of spike, and the theorem showing that spike achieves an approximation ratio
of 2. The reductions in Section 3 show that this positive result extends to ranking and
location mechanisms as well. In the entirety of this section, the metric space is < and the
mechanisms are single candidate mechanisms.

Lemma 2. Any weighted percentile single candidate (WPSC) mechanism M on < is uni-
versally truthful.

Definition 3 (Spike Mechanism). Let P (j) be the following function for any 0 ≤ j ≤ n:

P (j) =


0 if j = 0

j
2(n−j) if 0 < j ≤ n/2
1.5− n

2j if j > n/2

Let pj = P (j)− P (j − 1).
The spike mechanism chooses candidate yi with probability

∑
j:zj=yi

pj.

Equivalently, the spike mechanism chooses voter τ(j) with probability pj , and then
locates the facility on aτ(j).

The mechanism is named after the shape of the function that pj creates (see Figure
1). We note that the result of the mechanism depends on the number of votes that each
candidate received and on the order of the candidate along the line, but not on the distances
between the candidates,

Observation 4. Spike induces a symmetric distribution: ∀i : F (i) = 1− F (n− i).
Proof. Without loss of generality let 1 ≤ i ≤ n/2, then:

F (i) =
i

2(n− i)

1− F (n− i) = 1−
(

1.5− n

2(n− i)

)
=

n

2(n− i)
− 1

2
=
n− (n− i)

2(n− i)
=

i

2(n− i)

We now define a few terms needed for the proof of the approximation ratio. Recall that
yopt is uniquely defined for a location profile x, since ties are broken in favor of the leftmost
candidate. Denote the set of borders {bi}m−1

i=1 by B.

Definition 5 (Tight profile of x, see Figure 12). Given a location profile x, the profile x′

is said to be the tight profile of x if it moves all agents who are not on a border as close as
possible to yopt within their zones, that is:

∀i : x′i =


xi if xi ∈ B
yopt if xi ∈ Zopt \B
bj if xi ∈ Zj \B and j < yopt

bj−1 if xi ∈ Zj \B and j > yopt



Definition 6 (Left-compressed profile of x). Given a tight location profile x, a left-
compressed profile of x moves all the agents on the leftmost border to their neighboring
border on the right, if this border is left of yopt. Formally: let the location of the leftmost
agent be x1 = bj, then the left-compressed profile of x is:

∀i : x′i =

{
bj+1 if (xi = bj) ∧ (bj+1 < yopt)

xi otherwise.

Left-compressed profiles can be seen in the transition between Figures 15 and 16, and
in Figure 13. Note that the left-compressed profile of a tight profile is also a tight profile.
The right-compressed profile of x is defined in a completely symmetrical fashion.

After compressing location profiles, there are likely to be locations in which there are
many agents. We therefore use the following notation: the location profile is written as
x = {(x̂1, n1), ..., (x̂k, nk)}, which means that for each j : 1 ≤ j ≤ k, there are nj agents
located at x̂j (see, e.g, Figure 16).

We now use these definitions to prove the main result of this section:

Theorem 7. The spike mechanism is universally truthful, and it achieves an approximation
ratio of 2 on <.

Proof. Spike is a WPSC mechanism, so from Lemma 2 it is universally truthful.
The analysis of the approximation ratio is more involved, and is based on backwards

induction which follows these steps (see Figures 14 through 17):

1. Figure 14: Start with an arbitrary location profile x, and compute its optimal candi-
date, yopt.

2. Figure 15: Let x(1) be the tight profile of x. We show that the transition from x to
x(1) cannot reduce the approximation ratio (Lemma 8).

3. Figure 16: Let x(2) be the left-compression of x(1). We show that if the ratio of x(2)

is not higher than 2, then so is the ratio of x(1) (Lemma 9).

4. Figure 17: Repeat left and right compressions until we can no longer compress. At
this stage, the profile is tight with at most 3 active candidates, and we note this profile
x(3). We show that the approximation ratio of x(3) is not above 2 (Lemma 10).

Proving these steps is sufficient to complete the proof of the theorem, since in Lemma
10 we show that the ratio of x(3) is not higher than 2 (the base case). According to Lemma
9, this implies that the ratio of x(1) (prior to all of the compressions) is also not higher than
2 (the induction steps). Since the ratio of the x is not higher than that of x(1), this means
that the approximation ratio of x is not above 2, as needed.

Notice that throughout this process yopt remains the optimal candidate, since it was
optimal in the original profile x, and in each step all agents move towards it, so the cost of
any other candidate can decrease by no more than what the cost of yopt decreases.

Since spike is a single candidate mechanism and agents may be on borders, truthful
reports are not necessarily unique. In cases of ties, we show that the worst-case ratio always
occurs when the agents vote for the candidate located farther away from yopt (Lemma 27,
whose statement and proof appear in Appendix A.3).

We now present the aforementioned lemmas formally. Their proofs, which are given in
the appendix, prove the backwards induction and conclude the proof of the theorem.



Lemma 8. Let x be an arbitrary location profile on <, let x′ be the tight profile of x and
let M be an arbitrary WPSC mechanism. Then the approximation ratio of M given x′ is
not lower than that of M given x:

SC(M,x)

SC(OPT,x)
≤ SC(M,x′)

SC(OPT,x′)
.

The previous lemma holds for any WPSC mechanism, and in particular for spike.

Lemma 9. Let x be a tight location profile on <, let x′ be the left-compressed profile of
x and let S be the spike mechanism. Then if the approximation ratio of S given x′ is not
higher than 2, then so is that of S given x:

SC(S,x′)

SC(OPT,x′)
≤ 2⇒ SC(S,x)

SC(OPT,x)
≤ 2

Observation 4 shows that the cumulative function defining the spike mechanism is sym-
metrical, so the lemma can be trivially extended to right-compressions as well.

After reapplying compressions on both sides, the resulting profile has agents in three
locations at most (see Figure 17). The last lemma in the proof states that in this final
stage, the ratio is not higher than 2:

Lemma 10. Let x be a tight location profile on < in which there are at most 3 active
candidates: yopt−1 < yopt < yopt+1. The ratio of the spike mechanism S given x is not

higher than 2: SC(S,x)
SC(OPT,x) ≤ 2.

5 Additional Results for Randomized Mechanisms

5.1 Lower Bounds

This section shows lower bounds of randomized mechanisms in different settings. When the
network is <, we present a lower bound of 2 for any truthful in expectation mechanism, even
if it is a location mechanism. By the hierarchy from Theorem 1, this lower bound holds for
truthful in expectation ranking and single candidate mechanisms as well. Additionally, we
show a lower bound of 2 for any randomized ranking mechanism, even when the mechanism
need not be truthful (in the non-strategic setting). These results prove that the ratio
achieved by spike is tight (see Figure 6).

For more general metric spaces the lower bound changes — In <d we show a lower bound
of 3− 2

d+1 for truthful single candidate mechanisms. We also present a lower bound of 7/3

for any truthful ranking mechanism in <2 (this bound also holds for <d, for any d > 2).

Theorem 11. In the d dimensional real space <d, any truthful in expectation single candi-
date mechanism has an approximation ratio of at least 3− 2

d+1 .

Observation 12. Any truthful in expectation location mechanism has an approximation
ratio of at least 2, even on the line.

Observation 13. The bound of 3 by random dictator is tight for a general metric space.

Theorem 14. In <2, any truthful in expectation ranking mechanism has an approximation
ratio of at least 7/3.

Lemma 15. No randomized ranking mechanism can achieve an approximation ratio strictly
below 2, even if the metric is < and even if there are no truthfulness requirements from the
mechanism (non-strategic case).



5.2 Upper Bound

We previously showed that spike achieves an approximation ratio of 2 on the line. We now
show that for a general metric space, random dictator has a ratio of 3 (ergo, the upper
bound is 3). Recall that random dictator locates the facility on vote ai with probability 1/n
for all i ∈ N , and achieves an approximation ratio of 2 in the continuous model.

Lemma 16. On any metric space, random dictator yields a 3 approximation of the optimal
social cost.

We note that in contradiction to the continuous model, in our candidate model random
dictator is not group-strategyproof (see Appendix A.4.2).

Corollary 17. The combination of the lower bound in Theorem 11 with the upper bound
of random dictator show that for a general metric space the bound of 3 is tight for single
candidate mechanisms.

6 Deterministic Mechanisms on the Line

In the continuous model, choosing the location of the median agent is both truthful and
optimal [25]. The following theorem shows that in the candidate model “median” results in a
ratio of 3, and that this is the best one can hope for with any deterministic mechanism (even
location mechanisms). The proof, as well as the formal definition of the median mechanism,
are deferred to Appendix 6.

Theorem 18. The following claims hold:

1. No deterministic truthful mechanism (location, ranking or single candidate) has an
approximation ratio strictly below 3 for the social cost, even on <.

2. Median is truthful on < and results in a 3 approximation of the social cost.

7 Discussion and Open Problems

We defined three types of truthful mechanisms, and showed the relations between these
sets of truthful mechanisms. Then, we gave bounds on the approximation ratio of these
mechanism types in various settings. In particular, we introduced the spike mechanism, a
truthful single candidate mechanism which achieves a [tight] bound of 2 on <.

We believe that there are many possible manifestations of this setting, though it has
barely been investigated, so there is plenty of room for future work, for instance:

• Electing a committee of multiple candidates, i.e., locating multiple facilities.

• Closing the gap in the bounds for ranking and location mechanisms in <d.

• More generally, we studied the affects of information deficiency and truthfulness in
the context of voting. These affects can be addressed for many additional problems.

Acknowledgements. The work of M. Feldman and I. Golomb was partially supported
by the European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement number 337122.



References

[1] Noga Alon, Michal Feldman, Ariel D Procaccia, and Moshe Tennenholtz. Strategyproof
approximation mechanisms for location on networks. arXiv preprint arXiv:0907.2049,
2009.

[2] Noga Alon, Michal Feldman, Ariel D Procaccia, and Moshe Tennenholtz. Walking in
circles. Discrete Mathematics, 310(23):3432–3435, 2010.

[3] Elliot Anshelevich, Onkar Bhardwaj, and John Postl. Approximating optimal social
choice under metric preferences. 2014.

[4] Elliot Anshelevich and John Postl. Randomized social choice functions under metric
preferences. arXiv preprint arXiv:1512.07590, 2015.

[5] Haris Aziz, Florian Brandl, and Felix Brandt. On the incompatibility of efficiency and
strategyproofness in randomized social choice. In AAAI, pages 545–551. Citeseer, 2014.

[6] Duncan Black. On the rationale of group decision-making. The Journal of Political
Economy, pages 23–34, 1948.
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A Appendix

A.1 Figures from the Introduction

Figure 2: Relationships between classes of mechanisms(Theorem 1): For deterministic
truthful mechanisms, the set of ranking mechanisms strictly contains the set of single
candidate (SC) mechanisms, yet the set of location mechanisms is equivalent to the set
of ranking mechanisms.
In the randomized case, there is a hierarchy of strict containment in the following
order - truthful in expectation (TIE) location mechanisms, TIE ranking mechanisms,
TIE single candidate (SC) mechanisms and universally truthful (UT) single candidate
(SC) mechanisms. Refer to Section 3 for formal definitions of equivalence and strict
containment in our setting.

Median

SC

Ranking ≡ Location

Figure 3: Deterministic truthful
mechanisms

Spike

UT SC

TIE SC

TIE Ranking

TIE Location

Figure 4: Randomized truthful mecha-
nisms



Figure 5: Summary of our results for randomized mechanisms in <d. The columns cor-
respond to the truthfulness constraints, while the rows show the information constraints
and are further divided into lower and upper bounds. Note that for non-strategic lo-
cation mechanisms the result is always optimal by definition, since there are neither
information nor strategic constraints.
Most of the results here are rather straightforward, except for the upper bounds of
3− 2

d+1 and of 7/3, which are more involved.

Strategic Non-Strategic
Single Candidate LB 3− 2

d+1 (Thm. 11) 2 (Lemma 15)

(low information) UB 3 (Lemma 16) 3 (Lemma 16)
Ranking LB 7/3 (Thm. 14) 2 (Lemma 15)

UB 3 (Lemma 16) 3 (Lemma 16)
Location (high information) LB 2 (Obs. 12) 1

UB 3 (Lemma 16) 1

Figure 6: The approximation ratios of mechanisms on the line (<) in various
settings. All the results in the table are tight. In particular, the randomized
upper bound of two in the strategic case holds due to the spike mechanism.

Deterministic Randomized
Strategic Non-Strategic Strategic Non-Strategic

Single Candidate 3∗ 3† 2‡ 2§

Ranking 3∗ 3† 2‡ 2∗∗

Location 3∗ 1 2‡ 1

∗LB and UB: Thm. 18
†LB: Thm. 3 from [3], UB: Thm. 18
‡LB: Obs. 12, UB: Thm.7
§LB: Lm. 15, UB: Thm.7
∗∗Lm. 15, UB: Thm. 18

Figure 7: Illustration of candidates (white circles), agents (black circles), candidate
borders and candidate zones when the metric space is <.
For example, in this case the favorite candidate of x3 is y2: y(x3) = {y2}. The candidate
borders divide the distance between two consecutive candidates exactly in half, for
example: |b1 − y1| = |y2 − b1|.

y1 y2 y3b1 b2

x1 x2 x3 x4 x5

Z1 Z2 Z3



A.2 Missing Proofs from Section 3

In this part we aim to define reducibility of some mechanism type (single candidate, ranking
or location) to some other mechanism type. The definition of the reduction requires a couple
of additional definitions, which we will express formally as well as explain intuitively.

Intuitively, we say that a mechanism type Â is of finer granularity than mechanism type
B̂, if the information of a true action in Â can determine a true action in B̂. For instance,
a location determines a ranking (or several rankings, if a point is on a border), therefore
location mechanisms are of finer granularity than ranking mechanisms. Similarly, ranking
mechanisms are of finer granularity than single candidate mechanisms, and location mech-
anisms are also of finer granularity than single candidate mechanisms. However, ranking
mechanisms are not of finer granularity than location mechanisms, since a ranking does not
determine a location. That is, for a ranking π1 there exist different locations x1, x2 whose
true ranking is π1. Formally, a mechanism type Â : A → y is of finer granularity than
mechanism type B̂ : B → y if for any point x and any a ∈ A there exists some b ∈ B such
that: if a is a true action of an agent at point x under Â, then b is a true action of point x
under B̂. In this case we denote Â � B̂.

We now utilize this notion of granularity to define consistent functions. Intuitively, we
would like to define functions which map between inputs of different mechanism types in
a “consistent” manner. For instance, when mapping from rankings (the input to ranking
mechanisms) to votes (candidates, that is - the input to single candidate mechanisms), we
search for functions which map each ranking to the top candidate in that ranking. When
mapping from votes to rankings, we seek functions which map a vote for a candidate to
some ranking in which this candidate is first. Formally, given mechanism types Â : A → y
and B̂ : B → y such that Â � B̂, a function f : A→ B is called consistent if for any point
x and for any a ∈ A, then if a is a true action under Â, then f(a) is a true action under
B̂. Notice that in these cases a function f is unique (except for the cases in which Â is a
location mechanism and x is a point on a border). If B̂ � Â then we define f : A → B to
be consistent if for any point x, if f(a) is a true action for x under B̂ then a is a true action
for x under Â. In these cases the function f is not unique (for example, there are several
rankings in which a specific candidate is first).

The function f may be randomized, as long as it is a randomization over deterministic
consistent functions. For example, a consistent function f mapping locations (the input of
location mechanisms) to candidates (the inputs of single candidate mechanisms) must map
every point which is not on a border to their favorite candidate. On the other hand, for a
point x on some border, f may randomize the output of x arbitrarily over the set of favorite
candidates of x.

A candidate selection mechanism M (whether location, ranking or single candidate) is
said to be reducible to a candidate selection mechanism M ′ (location, ranking, or single
candidate) if there exists a consistent function f mapping every action profile a, which
is an input of M , to some action profile f(a) = a′ which is the input of M ′, such that
the distribution over the candidates, M(a), is identical to the distribution over candidates
M ′(a′) (see Figure 8).

For example, every single candidate mechanism, M , is reducible to some ranking mecha-
nism M ′. The reduction is as follows: Let f be the consistent function describes previously
– it receives a vector of n candidates, and outputs a vector of n rankings (permutations),
where for each i, the ith candidate is ranked first in the ith ranking. We choose a ranking
mechanism M ′ which ignores all entries in the rankings but the first, and simulates the single
candidate mechanism M on the top entries of the rankings. By definition, M is reducible to
M ′. Moreover, note that M was an arbitrary single candidate mechanism, so we conclude
that indeed every single candidate mechanism is reducible to some ranking mechanism. This



logic further shows that for mechanism types Â, B̂ such that B̂ � Â, any mechanism M of
type Â is reducible to some mechanism M ′ of type B̂.

As written in Section 3, two sets of mechanisms, S1 and S2, are said to be equivalent
if every M1 ∈ S1 is reducible to some M2 ∈ S2, and every M2 ∈ S2 is reducible to some
M1 ∈ S1. A set of mechanisms S1 is said to be strictly contained in a set of mechanisms
S2 if every mechanism M1 ∈ S1 is reducible to some mechanism M2 ∈ S2, yet not every
mechanism M2 ∈ S2 is reducible to some mechanism M1 ∈ S1. This is a slight abuse of
terminology since the sets S1 and S2 may be disjoint, as their input space may be different.

The following lemma will be of use in the main theorem of this section.

Lemma 19. In any metric space, let Â, B̂ be mechanism types such that B̂ � Â. Let S1, S2

be the sets of truthful mechanisms of type Â, B̂ respectively. Then for any M1 ∈ S1 there
exists some M2 ∈ S2 such that M1 is reducible to M2.

Proof. By the fact that B̂ is of finer granularity than Â and by the definition of the consistent
function f , it is eminent that M1 is reducible to some M2 of type B̂ since M2 can completely
disregard any input beyond any information in Â and simulate M1 (as explained previously
for the example in which a ranking mechanism disregards any candidate except for the top
candidate in each ranking).

In order to complete the proof, it is left to show that there exists such a mechanism M2

which is truthful. Since the only reports which change the outcome of M2 are consistent
with reports which would change the outcome of M1, then if M2 weren’t truthful this would
contradict the truthfulness of M1.

Observation 20. Notice that this reasoning also holds for truthful in expectation mecha-
nisms (that is if S1, S2 are defined as the sets of truthful in expectation mechanisms of types
Â, B̂).

We move on to proving the main theorem of this section:

Proof. of Theorem 1: The proof of each claim is given separately:

Claim 21. The class of truthful deterministic ranking mechanisms strictly contains the
class of truthful deterministic single candidate mechanisms.

Proof. According to Lemma 19 any truthful single candidate mechanism is reducible to
some truthful ranking mechanism. We exhibit a deterministic truthful ranking mechanism
M which is not reducible to any single candidate mechanism (even on <). We show this
by exhibiting an example in which M acts differently under two ranking profiles which are
mapped by any consistent function to the same candidate zone.

Figure 8: A graphic sketch of a mechanism M which is reducible to a mechanism M ′.



Figure 9: The 4 ranking zones. Every border bi,j is the midpoint between candidates yi, yj .
The points x1, x2 have different rankings – the ranking of x1 is π2 = y2 � y1 � y3 whereas
the ranking of x2 is π3 = y2 � y3 � y1. However, both strictly prefer y2 over any other
candidate, therefore for any consistent function f : f(π2) = f(π3) = y2.

y1 y2 y3b1,2 b1,3 b2,3

R1 R2 R3 R4

x1 x2

Let there be 3 candidates, and denote the ranking zones R1,R2,R3,R4, which match
the permutations over candidates π1, π2, π3, π4 respectively (see Figure 9). Let there be 2
agents. M acts as follows: If a1 ∈ π1 ∪ π2 and a2 ∈ π1 ∪ π2, then choose y1. Otherwise,
choose y3.

M is truthful — if y1 is chosen, then both agents prefer it over y3 and have no incentive
to misreport. If y3 is chosen, then at least one of the agents is in zones R3 or R4 - this agent
has no incentive to misreport since she prefers y3 over y1. The other agent has no influence
over the outcome, therefore also has no incentive to misreport.

M is not reducible to any single candidate mechanism — any consistent function f must
map both π2 and π3 to y2. However, whilst M acts differently under inputs (π1, π2) and
(π1, π3), then if there were a reduction, then both of these would have been mapped to the
same location M ′(y1, y2) in contradiction.

Claim 22. The set of truthful deterministic location mechanisms is equivalent to the set of
truthful deterministic ranking mechanisms.

Proof. According to Lemma 19, every truthful deterministic ranking mechanism is reducible
to some truthful deterministic location mechanism. It is left to show that every truthful
deterministic location mechanism M in <d is reducible to a truthful deterministic ranking
mechanism M ′.

The proof consists of several parts. For an arbitrary location profile x and an arbitrary
truthful deterministic mechanism M , we define a location profile x′ which has no locations
on borders, and show that it necessarily holds that M(x) = M(x′). We then define a
different location profile x′′ and show the same: M(x) = M(x′′). The profile x′′ is special
in the sense that it is uniquely defined by some ranking profile π. Finally, we show that
given some input π = fM (x) a consistent function fM (a function which depends on M ,
and will be defined later), there exists a ranking mechanism M ′ which simulates M on x′′

(see Figure 10). The result is a constructive reduction which maintains the same output as
the original location mechanism M(x), as needed.

Let M be an arbitrary truthful deterministic location mechanism, and let x be an arbi-
trary location profile. Let M(x) = yj for some candidate yj . Denote the ranking borders
as B.

Informally, we define x′ as a location profile which moves all agents in x which are on a
border, an infinitesimal distance towards the chosen candidate yj . The resulting profile x′

has no agents on borders. We now define this formally: let ε be some small positive number.
For all i such that xi ∈ B, let ~εi be a vector of size ε in direction yj − xi 5. For any i such
that xi /∈ B, let |~εi| = 0. Let x′ = (x1 + ε1, . . . xn + εn). We choose an ε sufficiently small
such that for each i, x′i remains in the ranking zone of xi.

5If xi = yj then the direction of ~εi can be set arbitrarily.



Figure 10: A graphic sketch of the reductions in the proof of Claim 22.

We now show that M(x) = M(x′) by moving agents from x to x′ one by one, and
showing that if any of these transitions were to change the chosen candidate, this would
lead to a violation of truthfulness of M . Let:

w0 = (x1, . . . , xn) = x

w1 = (x′1, x2, . . . , xn)

. . .

wi = (x′1, . . . , x
′
i, xi+1, . . . , xn)

. . .

wn = (x′1, . . . , x
′
n) = x′

Assume towards a contradiction that M(w0) 6= M(wn). Let i be the minimal index such
that M(wi−1) 6= M(wi). It is known that M(wi−1) = M(x) = yj . Let M(wi) = yl. There
are two options:

• If |yl − xi| < |yj − xi|, then in profile wi−1, xi has an incentive to misreport to x′i.

• If |yl−xi| ≥ |yj −xi|, then |yj −x′i| = |yj −xi| − ε < |x′i− yl|. Therefore in profile wi,
x′i has an incentive to misreport to xi.

Hence, M(x) = M(x′) as needed.
Intuitively, we create the location profile x′′ by moving all agents in x′ to some specific

point within their ranking zone. Since x′ contained no agents on borders, each agent in x′ is
located in exactly one ranking zone, hence x′′ is well defined. We now define this formally:
For any ranking zone Ri such that Ri \B 6= ∅, let x̂i be some point in Ri \B (for instance,
the centroid of the ranking zone Ri)6. Denote the ranking zone which contains x′i as Rj .
For all i ∈ N , let x′′i = x̂j . Let x′′ = (x′′1 , . . . , x

′′
n).

We now show that M(x′) = M(x′′) in a similar fashion as we showed that M(x) = M(x′)

6We can safely disregard ranking zones which do not have any points which are not on a border, as no
point in x′ will be in such a zone, since x′ does not contain any points on borders.



previously. Let:

h0 = (x′1, . . . , x
′
n) = x′

h1 = (x′′1 , x
′
2, . . . , x

′
n)

. . .

hi = (x′′1 , . . . , x
′′
i , x
′
i+1, . . . , x

′
n)

. . .

hn = (x′′1 , . . . , x
′′
n) = x′′

Assume towards a contradiction that M(h0) 6= M(hn). Let i be the minimal index such
that M(hi−1) 6= M(hi). Let M(hi) = ym. Since x′i, x

′′
i are in the same ranking zone and

not on a border, there are two options:

• If |ym − x′i| < |yj − x′i|, then in profile hi−1, x′i has an incentive to misreport to x′′i .

• If |ym − x′i| > |yj − x′i|, then it also holds that |ym − x′′i | > |yj − x′′i |, and in profile hi,
x′′i has an incentive to misreport to x′i.

Therefore, M(x′) = M(x′′)⇒M(x) = M(x′′).
It is left to show that it is possible to perform the “nested reductions” as shown in

Figure 10. Let fM be the consistent function which breaks ties just like M does. That
is, fM simulates M on input x, finds the candidate yj and breaks ties in favor of rankings
closer to yj . The output of fM is a ranking profile denoted by π. Given π, there exists some
M ′ that simulates M on x′′7 — let f ′ be a consistent function which maps every ranking πi
(consistent with ranking zone Ri) to the point x̂i. Therefore, such a reduction exists, and
the output is M(x′′) = M(x).

Claim 23. The set of truthful in expectation ranking mechanisms strictly contains the set
of truthful in expectation single candidate mechanisms.

Proof. As shown in Observation 20, any truthful in expectation single candidate mechanism
is reducible to some truthful in expectation ranking mechanism. The proof of Claim 21
exhibits a truthful in expectation ranking mechanism which is not reducible to any single
candidate mechanism.

Claim 24. The set of truthful in expectation randomized location mechanisms strictly con-
tains the set of truthful in expectation randomized ranking mechanisms.

Proof. As shown in Observation 20, any truthful in expectation ranking mechanism is re-
ducible to some truthful in expectation location mechanism.

We will show a truthful in expectation location mechanism M which is not reducible to
any ranking mechanism: Let there be 3 candidates at points y1 = 0, y2 = 3, y3 = 4. M acts
as follows:

Choose an agent i uniformly at random. Choose the candidates with the following
probabilities:

M(a) =

{
y1 = 1/3, y2 = 1/3, y3 = 1/3 if ai ≤ 1

y1 = 1/4, y2 = 1/2, y3 = 1/4 otherwise.

7To avoid a circular definition, one can think of M ′ simulating a location mechanism which acts precisely
like M does.



M is not reducible to any ranking mechanism — any consistent function f must map
both points x1 = 0.75 and x2 = 1.25 to π1 = y1 � y2 � y3. However, mechanism M treats
these two inputs differently.

It is left to show that M is truthful in expectation. We do so by assessing all possibilities
of misreports. Obviously, the mechanism is not affected by any agents except the one who
was chosen. Since there are only two possible outcomes, it is sufficient to compare truthful
reports ai with misreports a′i such that a′i changes the outcome. Let a = (ai,a−i) and
a′ = (a′i,a−i).

• If xi ≤ 0 it holds that

costxi
(M,a) =

1

3
[−xi + (3− xi) + (4− xi)] = −xi + 7/3

costxi
(M,a′) =

1

4
[−xi + (4− xi)] +

1

2
(3− xi) = −xi + 5/2.

Therefore: costxi (M,a) ≤ costxi (M,a′).

• If 0 < xi < 3 it holds that

– If the outcome is y1 = 1/3, y2 = 1/3, y3 = 1/3, the cost of agent i is:

1

3
[xi + (3− xi) + (4− xi)] = −xi/3 + 7/3.

– If the result is y1 = 1/4, y2 = 1/2, y3 = 1/4 the cost of agent i is:

1

4
(xi + 4− xi) +

1

2
(3− xi) = −xi/2 + 5/2.

It holds that −xi/3+7/3 ≥ −xi/2+5/2⇔ xi ≥ 1. Therefore the first outcome is
preferable to agents for which 0 < xi ≤ 1 and the second is better for agents for
which 1 < xi < 3, and the mechanism is truthful in expectation in this interval.

• If 3 ≤ xi < 4 it holds that

costxi
(M,a) =

1

4
(xi + 4− xi) +

1

2
(xi − 3) = xi/2− 1/2

costxi (M,a′) =
1

3
[xi + (xi − 3) + (4− xi)] = xi/3 + 1/3.

Therefore: costxi
(M,a) ≤ costxi

(M,a′) ⇔ xi ≤ 5, therefore agent i cannot benefit
from misreporting.

• If xi ≥ 4 it holds that

costxi
(M,a) =

1

4
(xi + xi − 4) +

1

2
(xi − 3) = xi − 5/2

costxi
(M,a′) =

1

3
[xi + (xi − 3) + (xi − 4)] = xi − 7/3.

Therefore: costxi
(M,a) ≤ costxi

(M,a′).

Claim 25. The set of truthful in expectation randomized single candidate mechanisms
strictly contains the set of universally truthful randomized single candidate mechanisms.



Proof. Any universally truthful single candidate mechanism is reducible to a truthful in
expectation single candidate mechanism using the identity function f (which is consistent).

We exhibit a truthful in expectation (TIE) single candidate mechanism M which is not
reducible to any universally truthful mechanism. Let there be 2 candidates. M chooses an
agent i uniformly at random, and chooses ai with probability 0.9 and the other candidate
y \ ai with probability 0.1.

M is truthful in expectation since for any agent j, if they are chosen, they are better off
receiving their favorite candidate with probability 0.9 than with probability 0.1. M is not
universally truthful, since for each agent i there exist cases in which reporting truthfully
would lead to choosing their less favorite candidate, while there exist cases in which reporting
non-truthfully would lead to choosing the favorite candidate. Clearly, no composition with
a consistent function f can transform M to a universally truthful mechanism (for instance,
let ai = yj for some j. From consistency, f(ai) = yj , so f does not change the outcome at
all).

Claim 26. When there are two candidates, the set of truthful in expectation randomized
location mechanisms is equivalent to the set of truthful in expectation randomized single
candidate mechanisms.

Proof. As shown in Observation 20, any truthful in expectation single candidate mechanism
is reducible to some truthful in expectation location mechanism. This also holds for single
candidate mechanisms for two candidates. We now show that any truthful in expectation
location mechanism with two candidates is reducible to some truthful in expectation single
candidate mechanism. The proof follows similar lines as the proof of Claim 22.

Let x be an arbitrary location profile, let M be an arbitrary truthful in expectation
location mechanism, and let B be the border between y1 and y2. Define x′ as the location
profile which moves all agents which are not on borders to their favorite candidate, that is:

x′i =


y1 if xi ∈ Z1 \B
y2 if xi ∈ Z2 \B
xi if xi ∈ B

We now show that M(x) = M(x′) by using a hybrid argument. Define:

w0 = (x1, . . . , xn) = x

w1 = (x′1, x2, . . . , xn)

. . .

wi = (x′1, . . . , x
′
i, xi+1, . . . , xn)

. . .

wn = (x′1, . . . , x
′
n) = x′

Assume towards a contradiction that M(w0) 6= M(wn). Then there exists some index j
such that Pr [M(wj) = y1] 6= Pr [M(wj−1) = y1]. If this is the case then necessarily xj /∈ B
since that would imply that wj−1 and wj are precisely the same profile. Assume without
loss of generality that Pr [M(wj) = y1] > Pr [M(wj−1) = y1]. There are 2 options:

• If xj , x
′
j ∈ Z1, then under location profile wj , agent j has an incentive to misreport to

x′j .

• If xj , x
′
j ∈ Z2, then under location profile wj−1, agent j has an incentive to misreport

to xj .



Figure 11: A graphic sketch of the reductions in the proof of Claim 26.

Therefore is necessarily holds that M(x) = M(x′).
We now use x′ to show the reduction: Let f be a function which maps single candidate

profiles to location profiles, by mapping each vote to candidate yi to location yi. This
function is clearly consistent. Let M ′ be a single candidate mechanism which receives a
single candidate profile, translates it to a location mechanism using the consistent function
f , and then simulates M on the output of f (see Figure 11).

For cases in which no agent is on the border, then the function f ′ mapping location pro-
files to single candidate profiles is uniquely defined, and it holds that M(x) = M ′(f ′(x)) =
M(f(f ′(x))). It is left to show that in cases of agents on borders, there exists some consistent
function f ′ which breaks ties in the same manner that M does.

Let x′(1) be a location profile with n1 agents at y1, n2 agents somewhere on the border B
and n3 agents at y2. In short, we note x′(1) = (n1, n2, n3). We remark that x′(1) is a general
location profile, after moving agents to their favorite candidates. Using these amounts,
define the following two location profiles:

• Let x′(2) be the profile in which there are n1 + n2 agents at y1 and n3 agents at y2

(that is x′(2) = (n1 + n2, 0, n3)).

• Let x′(3) be the profile in which there are n1 agents at y1 and n2 + n3 agents at y2

(that is x′(3) = (n1, 0, n2 + n3)).

Let p1 = Pr[M(x′(1)) = y1], and similarly: p2 = Pr[M(x′(2)) = y1] and p3 = Pr[M(x′(3)) =
y1]. Under these definitions, we show that: p3 ≤ p1 ≤ p2:

• p1 ≤ p2: Start with the profile x′(1), and move agents on the border one by one to
y1. If in each step the probability of choosing y1 does not decrease then p1 ≤ p2 as
needed. Otherwise, there exists a profile x̂ = (ni, nj , n3) for which the probability of

choosing y1 is smaller than in the profile with x̂′ = (ni−1, nj + 1, n3). If this were the
case, then the agents on y1 in profile x̂ would benefit from misreporting to the point
on a border, in contradiction to truthfulness.

• p3 ≤ p1 is proved in the exact symmetrical manner, by moving agents from B to y2

one by one.

By definition, a consistent function can map agents on borders to either of the two
candidates, and can also choose any probabilities over the two agents. Therefore, for any
0 ≤ q ≤ 1, there exists a consistent function which takes n agents on the border and maps
all of them to y1 with probability q and maps all of them to y2 with probability 1− q. For



Figure 12: A tight profile – The first figure shows the original profile x. For instance,
b1 is the inner border of x1 since it is it’s neighbor border closer to yopt. The second
figure shows the tight profile of x (where the arrows display the movements).

y1 y2 = yopt y3 y4

b1 = IB(x1) b2 = IB(x3) b3

x1 x2 x3 x4

y1 y2 = yopt y3 y4

b1 b2 b3

x1

x2

x3 x4

Figure 13: A left-compressed profile – The first figure shows the original tight profile x,
and the second shows the left-compressed profile of x (after x1 moves to b2).

y5

y4 = yopt

y3y2y1

b4b3b2b1

x5x4x3x2x1

y5

y4 = yopt

y3y2y1

b4b3b2b1

x5x4x3x1, x2

any p1, we choose the consistent function f ′ which uses a q such that p2 ·q+p3 · (1−q) = p1.
Under this function f ′, the reduction does not change the outcome of the mechanism, as
needed.

A.3 Missing Proofs from Section 4

We start by showing that any weighted percentile single candidate mechanism M is univer-
sally truthful:

Proof. of Lemma 2: [27] show that percentile mechanisms are truthful on <. WPSC mech-
anisms take a given distribution over truthful mechanisms, and are therefore universally
truthful.

We now move on to the lemmas regarding the spike mechanism, from Theorem 7.



Figure 14: Initial state: A general location profile x

y1 y2 y3 y4 = yopt y5 y6

b1 b2 b3 b4 b5

x1 x2 x3 x4 x5 x6 x7 x8

Figure 15: x(1): The tight profile of x, using the notation in which there are ni
agents at point x̂i.

y1 y2 y3 y4 = yopt y5 y6

b1 b2 b3 b4 b5

x̂1

n1 = 1
x̂2

n2 = 2
x̂3

n3 = 1

x̂4
n4 = 1 x̂5

n5 = 2

x̂6

n6 = 1

Figure 16: x(2): The left-compressed profile of x(1) (moves n1 agents from b1 to
b2).

y1 y2 y3 y4 = yopt y5 y6

b1 b2 b3 b4 b5

x̂1

n1 = 3
x̂2

n2 = 1

x̂3
n3 = 1 x̂4

n4 = 2

x̂5

n5 = 1

Figure 17: x(3): The final profile after reapplying left and right compressions on
x(2) repeatedly. The active candidates are denoted yL, yC and yR, the number of
agents as L, C and R respectively, and we scale the distances by bC−yC

2 = 1 and
yC−bL

2 = β.

y1 y2 yL

y3
yC

y4 = yopt

yR

y5
y6

bL bC

x̂1

L =

opt−1∑
i=1

ni = 4

x̂2
C = nopt = 1 x̂3

R =

n∑
i=opt+1

ni = 3

β β 1 1



Proof. of Lemma 8: . For any candidate j define pj = Pr[M(a) = yj ] and p′j = Pr[M(a′) =
yj ]. Define ∆j as the difference in the cost of candidate j under profile x and their cost under
x′, that is: ∆j =

∑n
i=1 |yj − xi| −

∑n
i=1 |yj − x′i|. Since x′ was defined by moving all agents

towards yopt, then: ∀j : ∆opt ≥ ∆j . As noted previously, this means that yopt remains
the optimal candidate under a′. According to Lemma 27, the worst-case ratio occurs when
all agents on borders vote outwards (farther from yopt), so the votes (and therefore the
probabilities) given a′ remain the same as under a: ∀j : pj = p′j .

We now assess the approximation ratio given profile x′:

SC(OPT,x′) =
∑
i

|yopt − x′i| = SC(OPT,x)−∆opt

The cost of the spike mechanism given x′ is:

SC(M,x′) =
∑
j

p′j ·

[∑
i

|yj − x′i|

]

=
∑
j

pj ·

[(∑
i

|yj − xi|

)
−∆j

]

≥
∑
j

pj ·

[(∑
i

|yj − xi|

)
−∆opt

]
= SC(M,x)−∆opt

Therefore, the approximation ratio is:

SC(M,x′)

SC(OPT,x′)
=

SC(M,x′)

SC(OPT,x)−∆opt
≥ SC(M,x)−∆opt

SC(OPT,x)−∆opt
≥ SC(M,x)

SC(OPT,x)

The last inequality holds since
SC(M,x)−∆opt

SC(OPT,x)−∆opt
≥ 1 and since ∆opt ≥ 0.

Proof. of Lemma 9. We use the same notation as in Figures 15 and 16 where there are ni
agents at point x̂i.

Let ∆ = SC(OPT,x)− SC(OPT,x′) = n1 · (x̂2 − x̂1) > 0.
It is sufficient to show that in the worst case scenario (according to Lemma 27, when all

agents on borders vote outwards) it holds that SC(S,x)− SC(S,x′) ≤ 2∆, since that would
imply:

SC(S,x)

SC(OPT,x)
=

SC(S,x)

SC(OPT,x′) + ∆
≤ SC(S,x′) + 2∆

SC(OPT,x′) + ∆
≤ 2 · SC(OPT,x′)) + 2∆

SC(OPT,x′) + ∆
= 2

The last inequality holds since the approximation ratio of spike given x′ is not greater than
2.

Denote the probabilities as follows: pi = Pr[S(a) = yi], p
′
i = Pr[S(a′) = yi]. Similarly,

the costs of the candidates are denoted by: ci = SC(yi,x) =
∑n
j=1 |xj − yi| and c′i =

SC(yi,x
′) =

∑n
j=1 |x′j − yi|. The worst-case probabilities given profile x′ are:

p′i =


0 if i = 1

p1 + p2 if i = 2

pi if i ≥ 3



Define δ = n1 (|x̂2 − y2| − |y2 − x̂1|), so the costs given profile x′ are:

c′i =

{
c2 + n1 (|x2 − y2| − |y2 − x1|) = c2 + δ if i = 2

ci −∆ if i ≥ 3

Therefore, the difference in the cost is:

SC(S,x)− SC(S,x′) =
∑
i

(pici − p′ic′i)

= p1c1 + p2c2 − (p1 + p2) (c2 + δ) +
∑
i≥3

pi [ci − (ci −∆)]

= p1 (c1 − c2 − δ)− p2 · δ +
∑
i≥3

pi∆

= p1 (c1 − c2 − δ)− p2 · δ + (1− p1 − p2) ∆

Due to the triangle inequality:

|x̂2 − y2| ≤ |x̂2 − x̂1|+ |x̂1 − y2|
⇔ δ = n1 (|x̂2 − y2| − |x̂1 − y2|) ≤ n1|x̂2 − x̂1| = |∆|

That is: δ ≤ |∆|.
Therefore:

p1 (c1 − c2 − δ)− p2 · δ + (1− p1 − p2) ∆

≤ p1 (c1 − c2 + ∆) + p2 ·∆ + (1− p1 − p2) ∆

= p1 (c1 − c2) + ∆

Also c1 − c2 = (n− n1)|y2 − y1|, so together:

SC(S,x)− SC(S,x′) ≤ p1 [(n− n1)|y2 − y1|] + ∆

To conclude the proof it is left to show that p1 [(n− n1)|y2 − y1|] ≤ ∆ = |x̂2 − x̂1|n1. Since
|y2−y1|

2 = |y2 − x̂1| < |x̂2 − x̂1|, it is sufficient to show that: p1(n − n1) ≤ n1

2 . S is a spike
mechanism, so we can compute the value of p1 (and as a result, of p1(n− n1)):

• If n1 ≤ n/2 then: p1 = n1

2(n−n1) ⇒ p1(n− n1) = n1

2(n−n1) (n− n1) = n1/2.

• If n1 > n/2 then: p1 = 1.5− n
2n1

= 3n1−n
2n1

, so:

p1(n− n1) =
3n1 − n

2n1
(n− n1) =

−n2 − 3n2
1 + 4nn1

2n1
=
−n2 − 4n2

1 + 4nn1

2n1
+

n2
1

2n1

=
−(n− 2n1)2

2n1
+
n1

2
≤ n1

2
.

This concludes the proof of the lemma.

Proof. of Lemma 10. We use the notations of the location of the left, center and right
candidates in the following manner yL = yopt−1, yC = yopt, yR = yopt+1, and the number
of agents in bL, yC , bC as L,C,R respectively (see Figure 17). Denote the probabilities of
choosing the candidates as pL = Pr(S(x) = yL), pC = Pr(S(x) = yC), pR = Pr(S(x) = yR).



Also, without loss of generality, the distances can be scaled such that bC − yC = 1. Define:
β = yC − bL.

According to Lemma 27, the worst-case ratio occurs when the agents at yL, yR choose
yL, yR respectively.

The costs of the different candidates are:

SC(yL,x) = β · (L+ 2C + 2R) +R

SC(yC ,x) = L · β +R = SC(OPT,x)

SC(yR,x) = Lβ + (2L+ 2C +R)

Due to the definition of the spike mechanism, the proof is broken into two parts:

1. The median agent is on yC

2. The median agent is on bL

Note that the last option (in which the median agent is on bC) is identical to the second
case due to symmetry, therefore proving for these two cases is sufficient.

In the first case, the median agent is at the center, therefore L < C +R and R < L+C,
and from the definition of the spike mechanism:

pL =
L

2(C +R)

pR =
R

2(C + L)

pC = 1− pL − pR = 1− L

2(C +R)
− R

2(C + L)

Therefore the ratio is:

SC(M,x)

SC(OPT,x)
=

pLSC(yL,x) + pCSC(yC ,x) + pRSC(yR,x)

SC(yC ,x)

=
pLSC(yL,x) + pRSC(yR,x)

SC(yC ,x)
+ pC

=
1

Lβ +R

[
L(β(L+ 2C + 2R) +R)

2(C +R)
+
R(Lβ + (2L+ 2C +R))

2(L+ C)

]
+

(
1− L

2(C +R)
− R

2(L+ C)

)
=

L(Lβ + 2Cβ + 2Rβ +R)

2(C +R)(Lβ +R)
+
R(Lβ + 2L+ 2C +R)

2(L+ C)(Lβ +R)

+ 1− L(Lβ +R)

2(C +R)(Lβ +R)
− R(Lβ +R)

2(L+ C)(Lβ +R)

= 1 +
L(Lβ + 2Cβ + 2Rβ +R)

2(C +R)(Lβ +R)
− L(Lβ +R)

2(C +R)(Lβ +R)

+
R(Lβ + 2L+ 2C +R)

2(L+ C)(Lβ +R)
− R(Lβ +R)

2(L+ C)(Lβ +R)

= 1 +
L(2Cβ + 2Rβ)

2(C +R)(Lβ +R)
+

R(2L+ 2C)

2(L+ C)(Lβ +R)

= 1 +
Lβ

Lβ +R
+

R

Lβ +R
= 2



Therefore the ratio cannot exceed 2 in the first case.
In the second case the median agent is at bL and the probabilities are:

pL = 1.5− L+ C +R

2L
= 1− C +R

2L

pR =
R

2(C + L)

pC = 1− pL − pR = 1−
(

1− C +R

2L

)
− R

2(C + L)

=
C +R

2L
− R

2(C + L)

Therefore the approximation ratio is:

SC(M,x)

SC(OPT,x)
=
pLSC(yL,x) + pRSC(yR,x)

SC(yC ,x)
+ pC

=
1

Lβ +R

[(
1− C +R

2L

)
(Lβ + 2Cβ + 2Rβ +R) +

R

2(L+ C)
(Lβ + 2L+ 2C +R)

]
+

C +R

2L
− R

2(C + L)

=
1

Lβ +R

[
Lβ +R+ 2Cβ + 2Rβ − (C +R)(Lβ + 2Cβ + 2Rβ +R)

2L
+
R(2L+ 2C + Lβ +R)

2(L+ C)

]
+

C +R

2L
− R

2(C + L)

= 1 +
1

Lβ +R

[
2β(C +R)− (C +R)Lβ

2L
− (C +R)(2Cβ + 2Rβ +R)

2L
+R+

R(Lβ +R)

2(L+ C)

]
+

C +R

2L
− R

2(L+ C)

= 1 +
1

Lβ +R

[
3β(C +R)

2
− (C +R)(2Cβ + 2Rβ +R)

2L
+

2R

2

]
+

R

2(L+ C)

+
C +R

2L
− R

2(L+ C)

= 1 +
3β(C +R) + 2R

2(Lβ +R)
− (C +R)(2Cβ + 2Rβ +R)

2L(Lβ +R)
+

(C +R)

2L

Now, in order to show this is a 2 approximation:

1 +
3β(C +R) + 2R

2(Lβ +R)
− (C +R)(2Cβ + 2Rβ +R)

2L(Lβ +R)
+

(C +R)

2L
≤ 2

⇔ 3β(C +R) + 2R

2(Lβ +R)
− (C +R)(2Cβ + 2Rβ +R)

2L(Lβ +R)
+

(C +R)(Lβ +R)

2L(Lβ +R)
≤ 1

And by multiplying both sides by the common denominator 2L(Lβ +R):

L[3β(C +R) + 2R] + (C +R)(−2Cβ − 2Rβ −R+ Lβ +R) ≤ 2L(Lβ +R)

⇔ L[3β(C +R) + 2R] + (C +R)(Lβ − 2Cβ − 2Rβ) ≤ 2L(Lβ +R)

⇔ L[3β(C +R)] + β(C +R)(L− 2C − 2R) ≤ 2L · Lβ



Since β is always positive, it is possible to divide both sides by β:

L[3(C +R)] + (C +R)(L− 2C − 2R) ≤ 2L2

⇔ 3LC + 3LR+ LC − 2C2 − 2CR+ LR− 2CR− 2R2 ≤ 2L2

⇔ 0 ≤ 2L2 + 2C2 + 2R2 − 4LC − 4LR+ 4CR

⇔ 0 ≤ L2 + C2 +R2 − 2LC − 2LR+ 2CR

⇔ 0 ≤ (L− C −R)2

This term is indeed always non-negative, so this concludes the proof.

The following lemma shows that for any WPSC mechanism, when agents on borders vote
outwards (farther from the optimal candidate) the approximation ratio cannot decrease.

Lemma 27. Let x be an arbitrary location profile, and let agent i be on a border bj such
that yj < xi = bj < yj+1 ≤ yopt.
Let a1 = (ai = yj ,a−i), let a2 = (ai = yj+1,a−i), and let M be some WPSC mechanism.
Then SC(M,x,a1) ≥ SC(M,x,a2).

Proof. Let pi = Pr[M(a1) = yi] and qi = Pr[M(a2) = yi]. According to the definition of
WPSC mechanisms, the change of vote only affects the probabilities of candidates yj and
yj+1, that is: ∀k 6= j, j + 1: pk = qk. Denote: pj = qj + α and pj+1 + α = qj+1 for some
α > 0. Therefore:

SC(M,x,a1)− SC(M,x,a2) =
∑
k

pk · SC(yk,x)−
∑
k

qk · SC(yk,x)

= α [SC(yj ,x)− SC(yj+1,x)]

Therefore it is sufficient to show that SC(yj ,x) ≥ SC(yj+1,x). We define the cost
function for any point on the line: f(x) =

∑
k |x− xk|. By definition, for any candidate yl:

SC(yl,x) = f(yl), therefore we need to show that f(yj) ≥ f(yj+1).
Clearly, f(x) is single-peaked, with a peak at the median xdn/2e, since moving in any

direction away from the median only increases the distance to at least half of the agents.
We check the different cases:

• If yopt ≤ xdn/2e: Then yj < yj+1 ≤ yopt ≤ xdn/2e. From the fact that f ’s peak is at
xdn/2e, it holds that f(yj) ≥ f(yj+1).

• If yopt > xdn/2e:

– If yj+1 = yopt: Then the proof is concluded by definition of optimality.

– If yj+1 < yopt, then by definition of optimality and from the fact that f ’s peak is
at xdn/2e, it holds that yj < yj+1 < xdn/2e < yopt. Therefore: f(yj) ≥ f(yj+1).

The proof also holds for the symmetrical case in which yopt ≤ yj < bj = xi < yj+1.

A.4 Missing Proofs from Section 5

A.4.1 Lower Bounds

We begin with a lemma which is used in the proof of Theorem 11



Lemma 28. For any truthful in expectation ranking mechanism M in any metric space, let
bi,j be the border between ranking zones Ri,Rj. Let πi, πj be the rankings consistent with
Ri,Rj respectively. Let agent l be located on this border, that is: xl ∈ bi,j.
Then the cost at point xl remains the same whether the agent reports πi or πj, that is:

costxl
(M, (al = πi,a−l)) = costxl

(M, (al = πj ,a−l))

Proof. of Lemma 28. Proof via contradiction. Assume costxl
(M, (al = πj ,a−l)) =

costxl
(M, (al = πi,a−l)) + δ for some δ > 0. Let there be an agent k located in rank-

ing zone Rj such that |xk − xl| = ε < δ
2 .

Then agent k has an incentive to misreport:

costxk
(M, (ak = πj ,a−k)) ≥ costxl

(M, (ak = πj ,a−k))− ε
= costxl

(M, (ak = πi,a−k)) + δ − ε
> costxl

(M, (ak = πi,a−k)) + ε

≥ costxk
(M, (ak = πi,a−k))

The transitions in the first and last rows are due to the triangle inequality (for any location
the mechanism may choose), the second row holds by the assumption, and the third row
holds since ε < δ

2 .
Agent k has an incentive to misreport, contradicting the assumption and completing the

proof.

Observation 29. Lemma 28 also holds for single candidate mechanisms.

Proof. of Theorem 11. Let there be d + 1 candidates, located on the vertices of a regular
simplex H (all d + 1 vertices are equally distanced from one another). Let there be d + 1
agents, and let M be an arbitrary truthful in expectation single candidate mechanism.

Let x be the profile in which each agent i is located precisely on candidate yi. Therefore
a = (y1, y2 . . . yd+1) is the only truthful single candidate profile for x. Denote the probability
of choosing candidate i as pi(a), that is: pi(a) = Pr(M(a) = yi). Clearly there exists some
candidate which is chosen by M with probability at least 1

d+1 . Assume without loss of

generality that this candidate is yd+1, that is: pd+1(a) ≥ 1
d+1 .

We move on to define another location profile, x′, which is also consistent with the
single candidate profile a. Let H ′ be the regular simplex in which candidates y \ yd+1 are
on the vertices. Let P be the point with equal distance to all d vertices in H ′ (H ′ is a
regular simplex, so such a point necessarily exists). Denote this distance as t. However, this
distance is different from the distance from P to yd+1: |P − yd+1| = u 6= t. Let x′ be the
profile in which there are k agents at P and one agent at yd+1 (see Figure 18).

According to Lemma 28 (which also holds for single candidate mechanisms, as explained),
the cost of an agent at point P should not change under any truthful vote, that is for any vote
yj : 1 ≤ j ≤ d. In particular, this holds when any agent on point P votes for candidate y1.
We make use of this observation several times by changing the votes for each of the points at
P to y1, one at a time, such that the final single candidate profile is a′ = (y1, y1 . . . y1, yd+1)
(d agents vote for y1, one agent votes for yd+1).. Due to Observation 29, the cost of point
P must remain the same throughout these transitions, that is: costP (M,a′) = costP (M,a).



Therefore:

costP (M,a) = costP (M,a′)

⇒ u · pd+1(a) + t · (1− pd+1(a)) = u · pd+1(a′) + t · (1− pd+1(a′))

⇒ t+ (u− t) · pd+1(a) = t+ (u− t) · pd+1(a′)

⇒ pd+1(a′) = pd+1(a)

⇒ pd+1(a′) ≥ 1

d+ 1

Denote the midpoint between y1 and yd+1 as Q. Without loss of generality, scale the
distances such that |y1 − Q| = |Q − yd+1| = 1. Examine the following location profile
x′′ = (y1, y1 . . . y1, Q), which is also consistent with the single candidate profile a′. In this
case the cost of y1, which is the optimal candidate, is: SC(y1,x

′′) = 1. The cost of yd+1 is
SC(yd+1,x

′′) = d · 2 + 1 = 2d+ 1. Therefore the approximation ratio of M is at least:

SC(M,x′′)

SC(OPT,x′′)
= pd+1(a′)(2d+ 1) + (1− pd+1(a′))(1)

= 2d · pd+1(a′) + 1

≥ (2d)
1

d+ 1
+ 1

=
2d+ 2− 2

d+ 1
+ 1 = 3− 2

d+ 1

Figure 18: An illustration of the proof of Theorem 11 for the case of d = 2. The
three candidates are on the vertices of an equilateral triangle (a regular simplex with 3
vertices). The lines within the triangle denote the borders between a pair of candidates.
The simplex H ′ is the line between y1, y2, and its midpoint is P .
These three figures, from left to right, show the dynamics of the proof (location profiles
x,x′ and x′′ respectively). The key observation is that the agents at point P are at
equal distance to all candidates except y3, therefore the transitions do not change the
probability that y3 be chosen.

y1, x1

y2, x2

y3, x3

P

Q

y1

y2

y3, x3

Q

P, x1, x2
y1, x1, x2

y2

y3

P

Q, x3

1

Proof. of Observation 12. Let there be two candidates on the line. According to Theorem
1 (6), any truthful in expectation location mechanism is equivalent to a single candidate
mechanism. One can apply the same proof as in Theorem 11 for the case of d = 1 (in this
case, both point P and point Q are the midpoint between the two candidates), to achieve a
lower bound of 3− 2

d+1 = 2.



Proof. Proof of Theorem 14. Let there be 3 candidates located such that they form an
equilateral triangle, and let M be a truthful in expectation ranking mechanism. Let a =
(a1, a2, a3) be the following ranking profile:

a1 = y1 � y2 � y3

a2 = y2 � y3 � y1

a3 = y3 � y1 � y2

Let x be some location profile consistent with a (Figure 19). Denote pi(a) = Pr[M(a) = yi].
From symmetry, there exists some candidate chosen with probability at least 1/3. Assume
without loss of generality that this is candidate y3, that is: p3(a) ≥ 1/3.

Let P1 be a point such that |P1−y1| = |P1−y2| = t1, and |P1−y3| = u1, where t1 6= u1.
Let x′ = (P1, x2, x3). Let a′1 = y2 � y1 � y3 and let a′ = (a′1, a2, a3). Notice that x′

is consistent with both a and a′, therefore according to Lemma 28 the cost at P1 should
remain the same for a,a′:

costP1
(M,a) = costP1

(M,a′)

⇒ u1 · p3(a) + t1 · (1− p3(a)) = u1 · p3(a′) + t1 · (1− p3(a′))

⇒ t1 + (u1 − t1) · p3(a) = t1 + (u1 − t1) · p3(a′)

⇒ p3(a′) = p3(a)

⇒ p3(a′) ≥ 1

3

Let P2 be a point such that |P2−y2| = |P2−y1| = t2, and |P2−y3| = u2, where t2 6= u2.
Let x′′ = (x′1, x2, P2). Let a′′3 = y3 � y2 � y1 and let a′′ = (a′1, a2, a

′′
3). According to Lemma

28 the cost at P2 should remain the same for a′,a′′:

costP2
(M,a′) = costP2

(M,a′′)

⇒ u2 · p3(a) + t2 · (1− p3(a′)) = u2 · p3(a′′) + t2 · (1− p3(a′′))

⇒ p3(a′′) = p3(a′)

⇒ p3(a′′) ≥ 1

3

Let Q be the midpoint between y2, y3, and let x′′′ = (y2, y2, Q). Without loss of gen-
erality, scale the distances such that |y3 − Q| = |Q − y2| = 1. Therefore the cost of y2,
the optimal candidate, is: SC(y2,x

′′′,a′′) = SC(OPT,x′′′,a′′) = 1. The cost of y3 is:
SC(y3,x

′′′,a′′) = 2 · 2 + 1 = 5. Therefore the approximation ratio of M is at least:

SC(M,x′′′,a′′)

SC(OPT,x′′′,a′′)
= p3(a′′) · 5 + (1− p3(a′′)) · 1 = 1 + 4 · p3(a′′) ≥ 1 +

4

3
=

7

3

Proof. of Lemma 15: We prove the lower bounds for the case of two agents and two candi-
dates. Let y1 = −1, y2 = 1. Let a = (a1, a2) be the ranking profile in which the two agents
prefer different candidates, that is: a1 = y1 � y2, a2 = y2 � y1.

Examine the following two location profiles x,x′, (in both cases for which a is a truthful
single candidate profile): x = (−1, ε), x′ = (−ε, 1).

We show that any decision of the mechanism makes will cause an approximation ratio
of 2 either in x or in x′.



Figure 19: An illustration of the proof of Theorem 14. The four figures, from left to
right, show the dynamics of the proof (profiles x, x′, x′′ and x′′′ respectively).
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It is easy to see that:

SC(y1,x) = 1 + ε = SC(OPT,x)

SC(y2,x) = 3− ε
SC(y1,x

′) = 3− ε
SC(y2,x

′) = 1 + ε = SC(OPT,x′)

Denote p = Pr[M(a) = y1]. Therefore:

SC(M,x) = p(1 + ε) + (1− p)(3− ε)
SC(M,x′) = p(3− ε) + (1− p)(1 + ε)

The approximation ratio is therefore at least:

min
0≤p≤1

{
max

{
SC(M,x)

SC(OPT,x)
,

SC(M,x′)

SC(OPT,x′)

}}
=

min
0≤p≤1

{
max

{
p(1 + ε) + (1− p)(3− ε)

1 + ε
,

(1− p)(1 + ε) + p(3− ε)
1 + ε

}}
=

min
0≤p≤1

{max {1 + 2p− pε, 3− 2p+ 2pε− ε}}

The optimal value is reached at p = 0.5, and it is 2− ε
2 , which tends to 2 as ε tends to 0.

A.4.2 Upper Bound

Proof. of Lemma 16 (Random Dictator): Random dictator (RD) is a WPSC mechanism
and so it is universally truthful according to Lemma 2.

We start by showing that the ratio can be arbitrarily close to 3 (up to a factor of 2
n ).

Let y1 = −1, y2 = 1, and let x1 = . . . = xn−1 = −1 and xn = 1. Therefore the costs are:
SC(y1,x) = 1 + ε = SC(OPT,x) and SC(y2,x) = 2(n− 1) + (1− ε).

Ergo: SC(RD,x) = n−1
n · SC(y1,x) + 1

n · SC(y2,x) = 3− 2
n + 2ε

n + ε. The approximation
ratio is therefore:

SC(RD,x)

SC(OPT,x)
=

3− 2
n + 2ε

n + ε

1 + ε
= 3−

2ε+ 2
n −

2ε
n

1 + ε

Clearly this ratio tends to 3 as n→∞, ε→ 0.



We now show that the approximation ratio is bounded from above by 3. The social cost
is:

SC(RD,x) =
1

n

∑
i

∑
j

|xj − y(ai)|


≤ 1

n

∑
i

∑
j

|xj − yopt|+ |yopt − y(ai)|


≤ 1

n

∑
i

∑
j

|xj − yopt|+ |yopt − xi|+ |xi − y(ai)|


≤ 1

n

∑
i

∑
j

|xj − yopt|+ 2|yopt − xi|


=

1

n

∑
i

∑
j

|xj − yopt|

+
1

n

∑
i

∑
j

2|yopt − xi|


=

1

n

∑
j

(
|xj − yopt|

∑
i

(1)

)
+

2

n

∑
i

|yopt − xi|
∑
j

(1)


=

1

n

∑
j

(|xj − yopt| · n) +
2

n

∑
i

(|yopt − xi| · n)

= SC(OPT,x) + 2 · SC(OPT,x) = 3 · SC(OPT,x)

The first two transitions hold due to the triangle inequality, and the third inequality
holds due to fact that no candidate is closer to xi than y(ai) is.

Notice that this holds in any metric space since we only used the triangle inequality, and
did not use any notion which is specific to the line.

A mechanism is group-strategyproof (GSP) if for any location profile and any coalition
S ⊆ N , there is no joint deviation of the agents in S from the truthful reports such that
they all gain. That is:

∀S ⊆ N, ∀aS ∈ A(xS),∀a−S ∈ An−|S|,∀a′S ∈ A|S|,∃i ∈ S :

costxi
(M, (aS , a−S)) ≤ costxi

(M, (a′S , a−S))

In the continuous model, random dictator is GSP on the line (and even on the circle,
see [2]). We show that in our candidate model random dictator is not GSP on the line.
Notice that random dictator is in particular a WPSC mechanism, therefore a corollary of
the lemma is that there exist WPSC mechanisms which are not GSP.

Lemma 30. Random dictator is not group group-strategyproof

Proof. Let there be three candidates at locations y1 = 1, y2 = 0, y3 = 1 and let there be
two agents at x1 = −0.51 and x2 = 0.51. When both agents report truthfully (a1 = y1,
a2 = y3), the mechanism chooses y1, y3, each with probability 0.5. The cost of each of the
agents in this case is: costx1

(RD,a) = costx2
(RD,a) = 0.5 · (0.51 + 1.49) = 1.

However, if both agents misreport together to a′ = (a′1 = y2, a
′
2 = y2), then y2 will always

be chosen. The costs in this case will be: costx1(RD,a′) = costx2(RD,a′) = 0.51.



A.5 Missing Proofs from Section 6

As noted previously, in the continuous model on <, the mechanism which locates the facility
on the report of the median agent is truthful and results in the optimal social cost. We define
the median mechanism in the context of candidate constraints, and assess its social cost.

Definition 31 (Median mechanism). Median is a single candidate mechanism which chooses
the median vote, that is aτ(dn/2e).

Proof. of Theorem 18: The proofs of the two claims are:

1. Claim 1: Let there be 2 candidates such that y1 = −1 and y2 = 1. According
to the sixth claim in Theorem 1 (Claim 26), any truthful location mechanism M is
necessarily reducible to a single candidate mechanism. Let x = (−1, ε), x′ = (−ε, 1)
be two location profiles, and let B be the border between them. Clearly, both profiles
correspond with the same votes (x1, x

′
1 ∈ Z1 \B and x2, x

′
2 ∈ Z2 \B), therefore their

outcome will be identical.

If M(x) = M(x′) = y1, then the ratio for M given x is SC(M,x)
SC(OPT,x) = 3−ε

1+ε .

If M(x) = M(x′) = y2 then the ratio for M given x′ is SC(M,x′)
SC(OPT,x′) = 3−ε

1+ε .

In either case, the approximation ratio tends to 3 as ε tends to 0.

2. Claim 2: “Median” is truthful - any agent located at the median location has no
incentive to misreport since the only possible consequence is for the mechanism to
select a different location. Similarly, other agents have no incentive to misreport,
since misreporting either has no effect or moves the chosen location further away.

We now move on to the approximation ratio - For a given single candidate profile a,
let aτ(dn/2e) and yopt be the median and optimal candidates respectively.

Let A be the set of agents which not farther from aτ(dn/2e) than from yopt, and let B
be the set of all other candidates:

A = {i : |xi − aτ(dn/2e)| ≤ |xi − yopt|}
B = {i : |xi − aτ(dn/2e)| > |xi − yopt|}

The social cost of median is:

SC(aτ(dn/2e),a) =
∑
i∈A
|xi − aτ(dn/2e)|+

∑
i∈B
|xi − aτ(dn/2e)|

Denote the first term as α, and the second as β.

The social cost of the optimal candidate is:

SC(yopt,a) =
∑
i∈A
|xi − yopt|+

∑
i∈B
|xi − yopt|

Denote the first term by γ, and the second by δ.

It is easy to see that α ≤ γ since for any agent i ∈ A: |xi − aτ(dn/2e)| ≤ |xi − yopt|,
and this obviously holds when taking the sum.



We now show that β ≤ α + γ + δ, due to the following inequalities (justifications for
the transitions appear below):

β =
∑
i∈B
|xi − aτ(dn/2e)|

≤
∑
i∈B
|aτ(dn/2e) − yopt|+

∑
i∈B
|yopt − xi|

=

(∑
i∈B
|aτ(dn/2e) − yopt|

)
+ δ

≤

(∑
i∈A
|aτ(dn/2e) − yopt|

)
+ δ

≤

(∑
i∈A
|aτ(dn/2e) − xi|+ |xi − yopt|

)
+ δ = α+ γ + δ

The inequalities in the second and fifth lines hold due to the triangle inequality, and
the inequality in the fourth line holds because we are summing over a greater or equal
amount of non-negative numbers (since |A| ≥ |B|, by definition of the median – moving
away from the median gets does not get us closer to at least half of the agents).

Putting this all together:

SC(aτ(dn/2e),x)

SC(OPT,x)
=
α+ β

γ + δ
≤ γ + α+ γ + δ

γ + δ
≤ 3γ + δ

γ + δ
≤ 3γ + 3δ

γ + δ
= 3
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