Structure in Dichotomous Preferences

Edith Elkind and Martin Lackner

Abstract

Many hard computational social choice problems are known to become tractable
when voters’ preferences belong to a restricted domain, such as those of single-peaked
or single-crossing preferences. However, to date, all algorithmic results of this type
have been obtained for the setting where each voter’s preference list is a total order
of candidates. The goal of this paper is to extend this line of research to the setting
where voters’ preferences are dichotomous, i.e., each voter approves a subset of can-
didates and disapproves the remaining candidates. We propose several analogues of
the notions of single-peaked and single-crossing preferences for dichotomous profiles
and investigate the relationships among them. We then demonstrate that for some
of these notions the respective restricted domains admit efficient algorithms for com-
putationally hard approval-based multi-winner rules such as Proportional Approval
Voting (PAV) and Maximin Approval Voting (MAV).

1 Introduction

Preference aggregation is a fundamental problem in social choice, which has recently received
a considerable amount of attention from the Al community. In particular, an important
research question in computational social choice [9] is the complexity of computing the
output of various preference aggregation procedures. While for most common single-winner
rules winner determination is easy, many attractive rules that output a committee (a fixed-
size set of winners) or a ranking of the candidates are known to be computationally hard.

There are several ways to circumvent these hardness results, such as using approximate
and parameterized algorithms. These standard algorithmic approaches are complemented
by an active stream of research that analyzes the computational complexity of voting rules
on restricted preference domains, such as the classic domains of single-peaked [5] or single-
crossing [32] preferences. This research direction was popularized by Walsh [37] and Fal-
iszewski et al. [22], and has lead to a number of efficient algorithms for winner determination
under prominent voting rules as well as for manipulation and control, which can be used
when voters’ preferences belong to one of these restricted domains [4, 8, 22, 23, 31, 36, 37].

To the best of our knowledge, this line of work only considers settings where voters’
preferences are given by total orders over the set of candidates; indeed, this is perhaps the
most widely studied setting in the area of computational social choice. However, computa-
tionally complex preference aggregation problems may also arise when voters’ preferences
are dichotomous, i.e., each voter approves a subset of the candidates and disapproves the re-
maining candidates. Committee selection rules for voters with dichotomous preferences, or
approval-based rules, have recently attracted some attention from the computational social
choice community, and for two prominent such rules (specifically, Proportional Approval Vot-
ing (PAV) [26] and Maximin Approval Voting (MAV) [7]) computing the winning committee
is known to be NP-hard [2, 29]. It is therefore natural to ask if one could identify a suit-
able analogue of single-peaked /single-crossing preferences for the the dichotomous setting,
and design efficient algorithms for approval-based rules over such restricted dichotomous
preference domains.

To address this challenge, in this paper we propose and explore a number of domain
restrictions for dichotomous preferences that build on the same intuition as the concepts of
single-peakedness and single-crossingness. Some of our restricted domains are defined by



embedding voters or candidates into the real line, and requiring that the voters’ preferences
over the candidates “respect” this embedding; others are obtained by viewing dichotomous
preferences as weak orders and requiring them to admit a refinement that has a desirable
structural property. Surprisingly, these approaches lead to a large number of concepts
that are pairwise non-equivalent and capture different aspects of our intuition about what
it means for preferences to be “one-dimensional”. We analyze the relationships among
these restricted preference domains, (see Figure 5 for a summary), and provide polynomial-
time algorithms for detecting whether a given dichotomous profile belongs to one of these
domains. We then demonstrate that considering these domains is useful from the perspective
of algorithm design, by providing polynomial-time and FPT algorithms for PAV and MAV
under some of these domain restrictions.
A preliminary version of this paper appeared in the proceedings of IJCAI 2015 [18].

2 Basic Definitions

Let C = {c1,...,cm} be a finite set of candidates. A (strict) partial order = over C is a
antireflexive, antisymmetric and transitive binary relation on C; a (strict) total order is a
partial order that satisfies either ¢ > d or d > c for every ¢,d € C. We say that a partial
order >~ over C'is a dichotomous weak order if C' can be partitioned into two disjoint sets
C* and C~ (one of which may be empty) so that ¢ = d for each ¢ € C*,d € C~ and the
candidates within C™ and C'~ are incomparable under >.

An approval vote on C' is an arbitrary subset of C. We say that an approval vote v is
trivial if v = 0 or v = C. A dichotomous profile P = (v1,...,v,) is a list of n approval votes;
we will refer to v; as the vote of voter . We write 7; = C'\ v;. We associate an approval vote
v; with the dichotomous weak order >, that satisfies ¢ >, d if and only if ¢ € v;, d € ;.
Note that v; = ) and v; = C correspond to the same dichotomous weak order, namely the
empty one.

A partial order =’ over C is a refinement of a partial order = over C' if for every ¢,d € C
it holds that ¢ > d implies ¢ >’ d. A profile P’ = (>1,..., =) of total orders is a refinement
of a dichotomous profile P = (v1,...,v,) if >; is a refinement of >, for each i =1,...,n.

Let <1 be a total order over C. A total order > over C is said to be single-peaked with
respect to < if for any triple of candidates a, b, c € C with a <<b<ic or ¢<1b<la it holds that
a > b implies b > c¢. A profile P of total orders over C' is said to be single-peaked if there
exists a total order <1 over C' such that all orders in P are single-peaked with respect to <.

A profile P = (>1,...,>,) of total orders over C' is said to be single-crossing with respect
to the given order of votes if for every pair of candidates a,b € C such that a =1 b all votes
where a is preferred to b precede all votes where b is preferred to a; P is single-crossing if the
votes in P can be permuted so that it becomes single-crossing with respect to the resulting
order of votes.

A profile P = (>-1,...,>y) of total orders over C is said to be 1-Fuclidean if there is
a mapping p of voters and candidates into the real line such that ¢ >; d if and only if
lp(i) — p(e)| < |p(i) — p(d)|. A 1-Euclidean profile is both single-peaked and single-crossing.

3 Preference Restrictions

We will now define a number of constraints that a dichotomous profile may satisfy. Most
of these constraints can be divided into two basic groups: those that are based on ordering
voters and/or candidates on the line and requiring the votes to respect this order (this
includes VEI, VI, CEI, CI, DE, and DUE), and those that are based on viewing votes
as weak orders and asking if there is a single-peaked/single-crossing/1-Euclidean profile of
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total orders that refines the given profile (this includes PSP, PSC, and PE). Some of these
constraints have been studied before under other names: for instance, the CI domain was
discussed in the context of judgement aggregation [15, 30] and manipulation [22]. The
study of the latter type of constraints was initiated by Lackner [28]. We will also consider
constraints that are based on partitioning voters/candidates (2PART and PART), as well
as two constraints (WSC and SSC) that have been introduced in a recent paper of Elkind
et al. [20] in order to understand the best way of extending the single-crossing property to
weak orders.
Fix a profile P = (vy,...,v,) over C.

1.

2-partition (2PART): We say that P satisfies 2PART if P contains only two distinct
votes v,v', and vNv' =0, v Uv =C.

Partition (PART): We say that P satisfies PART if C' can be partitioned into pairwise
disjoint subsets C1, ..., Cy such that {vy,...,v,} = {C1,...,C¢} (ie., each voter in P
approves one of the sets C1,...,Cy). Note that this constraint contains as a special
case profiles where every voter approves of exactly one candidate.

Voter Extremal Interval (VEI): We say that P satisfies VEI if the voters in P can be
reordered so that for every candidate ¢ the voters that approve ¢ form a prefix or a
suffix of the ordering. Equivalently, both the voters who approve ¢ and the voters who
disapprove ¢ form an interval of that ordering (Figure 1).

Voter Interval (VI): We say that P satisfies VI if the voters in P can be reordered so
that for every candidate ¢ the voters that approve ¢ form an interval of that ordering
(Figure 2).

Candidate Extremal Interval (CEI): We say that P satisfies CEI if candidates in C
can be ordered so that each of the sets v; forms a prefix or a suffix of that ordering.
Equivalently, both v; and 7; form an interval of that ordering (Figure 3).

Candidate Interval (CI): We say that P satisfies CI if candidates in C' can be ordered
so that each of the sets v; forms an interval of that ordering (Figure 4).

Dichotomous Uniformly Euclidean (DUE): We say that P satisfies DUE if there is a
mapping p of voters and candidates into the real line and a radius r such that for
every voter 4 it holds that v; = {c: |p(i) — p(c)| < 7}.
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Figure 5: Relations between notions of structure. Dashed lines indicate that the respective
containment holds only subject to additional conditions.

8. Dichotomous Fuclidean (DE): We say that P satisfies DE if there is a mapping p of
voters and candidates into the real line such that for every voter ¢ there exists a radius

r; with v; = {c: |p(i) — p(c)| < 7}

9. Possibly single-peaked (PSP): We say that P satisfies PSP if there is a single-peaked
profile of total orders P’ that is a refinement of P.

10. Possibly single-crossing (PSC): We say that P satisfies PSC if there is a single-crossing
profile of total orders P’ that is a refinement of P.

11. Possibly Euclidean (PE): We say that P satisfies PE if there is a 1-Euclidean profile
of total orders P’ that is a refinement of P.

12. Seemingly single-crossing (SSC): We say that P satisfies SSC if the voters in P can
be reordered so that for each pair of candidates a,b € C' it holds that either all votes
v; with a € v;, b € v; precede all votes v; with a & v;, b € v; or vice versa.

13. Weakly single-crossing (WSC): We say that P satisfies WSC if the voters in P can be
reordered so that for each pair of candidates a,b € C' it holds that each of the vote
sets Vi ={v;:a€v,bdv}, Vo={v;:ag€uv,bev}, Vs ={veP:vdViUVy}
forms an interval of this ordering, with V3 appearing between V; and V5.

3.1 Relations

The relationships among the properties defined above are depicted in Figure 5, where arrows
indicate containment, i.e., more restrictive notions are at the top. All these containments
are strict.

The four arrows at the top level of the diagram are immediate: any profile with at most
two distinct votes where each candidate is approved in at least one of these votes satisfies
VEI, CEI and WSC, and by definition 2PART is a special case of PART.

To understand the arrows in the next level, we first characterize the dichotomous profiles
that are weakly single-crossing.

Lemma 1. A dichotomous profile P satisfies WSC' if and only if there exist three votes
u, v, w such that (1) for every v; € P it holds that =, € {>u, v, =w}, and (2) =, is equal
to either >, nw OT >yUw-



Proof sketch. It is easy to check that every profile satisfying (1)—(2) satisfies WSC. For
the converse direction, assume without loss of generality that the ordering of the votes
v1 C vy C -+ C v, witnesses that P satisfies WSC. Let u = vy, w = v,, and set C; = uNw,
Cy =unw, C3 =unw, Cy =unw. The WSC property implies that for every £ = 1,2, 3,4,
every a,b € Cy, and every v; € P we have a € v; if and only if b € v, i.e., candidates in
each Cy occur as a block in all votes. Note that vy =u=C; UCs, v, = w = C; U C}.
Suppose that C1,Cy # 0. Then Cy C v;, Cy C 7; for all v; € P. Indeed, fix a pair
of candidates a € C1, b € C4. Both the first and the last voter strictly prefer a to b, and
therefore so do all other voters. Thus, if P contains a vote v; # u,w, it has to be the case
that v; = C1 = unw or v; = C; UCy UC3 = uwU w; moreover, if both of these votes
occur simultaneously and are distinct from each other and u,w (i.e., Co, C3 # @), the WSC
property is violated. Indeed, suppose that v; = Cq, v; = C; U C2 U C3. Fix candidates
a € C1, b e Cy. If v; appears before v;, consider a candidate ¢ € Ca: we get a contradiction
as voters v1 and v; are indifferent between a and ¢, but v; strictly prefers a to c. If v;
appears after v;, consider a candidate d € C3: we get a contradiction as voters vy and v;
are indifferent between d and b, but v; strictly prefers d to b. When C; or Cy is empty,
the analysis is similar; note, however, that trivial votes (v; = C' and v; = () may alternate
arbitrarily without violating the WSC property (this is why the lemma is stated in terms
of weak orders rather than approval votes). O

We can now show that under mild additional conditions (no trivial voters/candidates)
WSC implies VEI and CEIL

Proposition 2. Let P be a dichotomous profile that either contains only two distinct votes
or contains no vote v; with v; = (. If P satisfies WSC, then it satisfies VEI.

Proof. Assume without loss of generality that P satisfies WSC with respect to an ordering
of voters vy C -+ C vy, and let u = v, w = v,. We will show that P satisfies VEI with
respect to C. If P only contains two distinct votes, this claim is immediate, so assume that
() ¢ P. Consider a vote v € P that is distinct from w and w. Since §) ¢ P, by Lemma 1
there exist 7,7 with 1 < ¢ < j < n such that vy = v for k < i, vp = v for k =i,...,7,
vy =w for k > j, and v € {uUw,uNw}. Suppose first that v = uNw. Then candidates in
uNw are approved by all voters, candidates in u \ w are approved by the first ¢ — 1 voters,
candidates in w \ u are approved by the last n — j voters, and the remaining candidates are
not approved by anyone. On the other hand, if v = v U w, then candidates in u N w are
approved by all voters, candidates in u \ w are approved by the first j voters, candidates
in w \ u are approved by the last n — i + 1 voters, and the remaining candidates are not
approved by anyone. O

The condition that the profile must not contain () is necessary: the profile ({a,b}, 0, {b,c})
satisfies WSC, but not VEL

Proposition 3. Let P be a dichotomous profile that either contains only two distinct votes

or in which every candidate is approved in at least one vote and disapproved in at least one
vote. If P satisfies WSC, then it satisfies CEL

Proof. Suppose that P is WSC with respect to some ordering of voters; let v and w be,
respectively, the first and the last vote in this ordering. If P contains a trivial vote, it
contains at most two non-trivial votes, in which case the claim is obvious. Thus, assume
that it contains no trivial votes. Then we have uNw = () (any candidate in u Nw would be
approved by all voters) and 7 Nw = ) (any candidate in u N w would be disapproved by all
voters). It is now easy to see that ordering the candidates so that all candidates approved
by u precede all candidates approved by w witnesses that P is CEI. O



To see that conditions of Proposition 3 are necessary, consider the profile ({a,b}, {b,c})
over {a,b, c¢,d} and the profile ({a, b}, {b}, {b, c}) over {a,b, c}: both of these profiles satisfy
WSC, but not CEL

Interestingly, requiring a dichotomous profile to satisy WSC, CEI and VEI simultane-
ously, turns out to be very demanding: we obtain 2-partition profiles.

Proposition 4. A dichotomous profile is WSC, CEI and VEI if and only if it is a 2-
partition.

Proof. Tt is immediate that a 2-partition profile is WSC, CEI, and VEI. For the converse
direction, let P be a CEI, VEI and WSC profile. By Lemma 1, P contains at most three
distinct votes u, v, w with v = uNw or v = uUw. Since P is CEI, we know from Proposition 3
that every candidate is approved at least once. Hence u Uw = C. Furthermore, every
candidate is disapproved at least once. Thus, u N w = (), since this intersection is also
approved by v. Thus, v is a trivial vote. This is possible because of Lemma 2 and hence v
does not appear in P. We have shown that P is a 2-partition profile. O

Next, we will relate CEI and VEI to DUE.
Proposition 5. If a dichotomous profile P satisfies CEI or VEI, then it satisfies DUE.

Proof. Suppose first that P satisfies CEI with respect to the ordering ¢y < --- < ¢, of
candidates. Map the candidates into the real line by setting p(¢;) = 4, and let »r = m. We
can now place each voter i to the left or to the right of all candidates at an appropriate
distance so that the set of candidates within distance r from him coincides with v;. For
VEI the argument is similar: if P satisfies VEI with respect to the ordering v; C -+ C v,
of voters, we place voters on the real line according to p(i) = i, let » = n, and place each
candidate to the left or to the right of all voters at an appropriate distance. O

The proof that WSC implies DUE is also based on our characterization of WSC prefer-
ences.

Proposition 6. If a dichotomous profile P satisfies WSC, then it satisfies DUE.

Proof. Clearly empty votes can be ignored when checking whether a profile satisfies DUE,
so assume P contains no empty votes. Then it contains at most three distinct votes u, v, w
with v =uNw or v =uUw. Set p(c) =1 for c € u\ w, p(c) =2 for c € uNw, p(c) =3 for
cew\u, plc)=10forcguUw. Weset r=1ifv=uNwand r =2if v = uwUw, and
position the voters accordingly. O

The last arrow on this level is from PART to DUE: here, the containment is straightfor-
ward, as the candidates approved by each voter can be placed as a block on the axis, with
the respective voter(s) placed in the center of this block.

Proposition 7. If a dichotomous profile P satisfies DUE then it satisfies both VI and CI.
The converse direction does not hold: there are profiles that satisfy VI and CI but not DUE.

Proof. Since P satisfies DUE, we have an embedding p of voters and candidates into the
real line. For VI, we order voters as induced by the p mapping; the voters approving some
candidate form an interval on this induced order. For CI, we order candidates as induced
by the p mapping; voters always approve a single interval on this ordering.

For showing that the converse direction does not hold, counsider the profile ({a,b, c},
{b,c,d}, {b}, {c}). Towards a contradiction assume that p is a mapping of voters and
candidates into the real line that witnesses the DUE property for a fixed radius r. The
given profile satisfies CI only with respect to the orders a <lb<c<d, a <lc<1b<d and



their reverses. Since the profile is symmetric with respect to a and d and with respect to
b and ¢, we can assume without loss of generality that p orders candidates as the order
a <1b<c<d does. Then it has to hold that |p(a) — p(c)| < 2r since a and ¢ appear in the
same vote. However, due to the vote {b}, it also has to hold that |p(a) — p(c)| > 2r; this is
a contradiction. O

We see that similar to total orders, where the intersection of the single-peaked and
the single-crossing domain is a strict subset of the 1-Euclidean domain (see discussion in
[16, 19]), for dichotomous preferences the intersection of VI and CI does not yield DUE.
The next results show that the classes of CI, DE, PSP and PE preferences coincide. We
remark that the equivalence between CI and DE was observed by Faliszewski et al. [22] in
the conference version of their paper.

Proposition 8. Let P be a dichotomous profile. Then the following conditions are equiva-
lent: (a) P satisfies PE (b) P satisfies PSP (c) P satisfies CI (d) P satisfies DE.

Proof sketch. Suppose P satisfies PE, and let P’ be a refinement of P that, together with
a mapping p, witnesses this. Then P’ is single-peaked and therefore P satisfies PSP. If
P satisfies PSP, as witnessed by a refinement P’ and an axis <1, then P satisfies CI with
respect to <. If P satisfies CI with respect to an order < of candidates, we can map the
candidates into the real axis in the order suggested by < so that the distance between
every two adjacent candidates is 1. We can then choose an appropriate approval radius and
position for each voter. Finally, if P satisfies DE, as witnessed by a mapping p, we can use
this mapping to construct a refinement of P; by construction, this refinement is 1-Euclidean
(we may have to modify p slightly to avoid ties). O

Also, every PE profile is PSC since every 1-Euclidean refinement is also single-crossing.
Interestingly, the converse is not true.

Example 1. Consider the profile P = ({a,b},{a,c},{b,c}) over C = {a,b,c}. It satisfies
PSC, as witnessed by the single-crossing refinement (a > b = ¢,¢ = a = b,c > b > a).
However, in every refinement of P the first voter ranks c last, the second voter ranks b
last, and the third voter ranks a last. Thus, no such refinement can be single-peaked, and,
consequently, no such refinement can be 1-Euclidean.

The equivalence between PSC and SSC is not entirely obvious: while it is clear that
a profile that violates SSC also violates PSC, to prove the converse one needs to use an
argument similar to the proof of Theorem 4 in [20]. This has been shown in the extended
version of [20].

Proposition 9. If a dichotomous profile P satisfies VI, it also satisfies SSC.

Proof. Assume that an VI profile is not SSC. Since it is not SSC, for every ordering of votes
C there are two candidates a,b and votes v; C v; C vy such that v; :a >~ b, v; : b > a
and vg : a = b. This implies, however, that for every C there is a candidate a and votes
v; C v; C vy such that v; and v approve of a and v; disapproves a. This contradicts our
assumption that the given profile is VI. O

We omit all remaining examples showing non-containment due to space constraints.

3.2 Detection

To exploit the constraints defined in Section 3, we have developed algorithms that can decide
whether a given profile belongs to one of the restricted domains defined by these constraints.



In the following we present polynomial-time detection algorithms for all constraints under
consideration.

Clearly, verifying whether a given profile satisfies 2PART or PART is straightforward.
For most of the remaining problems, we can proceed by a reduction to the classic CON-
SECUTIVE 18 problem [6] (for CI, this was shown by Faliszewski et al. [22]; subsequently,
Faliszewski (personal communication) observed that this result extends to VI). This prob-
lem asks if the columns of a given 0-1 matrix can be permuted in such a way that in each
row of the resulting matrix the 1s are consecutive, i.e., the 1s form an interval in each row;
it admits a linear-time algorithm [6].

Theorem 10. Detecting whether a dichotomous profile satisfies CEI, CI, VI or VEI is
possible in O(m - n) time.

Proof. Let C = {c1,¢a,...,¢m} and P = (v1,v2,...,v,). We construct an instance of
CONSECUTIVE 15 in slightly different ways, depending on the property we want to detect.
In all cases, we obtain a “yes”-instance if and only if the given profile has the desired
property.

Let us start with CI. For each vote, we create one row of the matrix: for each i € [n]
and j € [m], the j-th entry of the i-th row is 1 if ¢; € v; and 0 otherwise. In this way, we
obtain an m-by-n matrix. Permuting the columns of this matrix so that 1s form an interval
in each row is equivalent to permuting candidates so that the set of candidates approved by
each voter forms an interval. For CEI, we combine the matrix for CI with its complement,
i.e., we add a second row for each vote v;, so that the j-th entry of that row is 0 of ¢; € v;
and 1 otherwise. A column permutation of the resulting m-by-2n matrix such that 1s form
an interval in each row corresponds to permuting candidates so that for each voter both the
set of her approved candidates and the set of her disapproved candidates form an interval;
this is equivalent to the CEI property. For VI it suffices to transpose the matrix constructed
for CI, and for VEI this matrix has to be combined with its complement. O

The following lemma shows how to verify the DUE property!.

Theorem 11. Detecting whether a dichotomous profile satisfies DUE is possible in O(m-n)
time.

Proof. Let C = {c1,c¢a,...,¢m}and P = (v1,va,...,v,). The profile P satisfies DUE if there
is a mapping p of voters and candidates into the real line and a radius r such that for every
voter 4 it holds that v; = {c : |p(i) — p(¢)| < r}. This is equivalent to requiring that for every
voter and candidate there exists an interval on the real line of length r such that the interval
of a voter and a candidate overlap if and only if the voter approves the candidate. (Given an
interval, the function p maps to the center of the corresponding interval; given p, intervals
are centred around the corresponding values of p.) This is exactly the characterization of
unit interval bigraphs, i.e., a bipartite graph (bigraph) (V, F) with partition V=X UY is a
unit interval bigraph if for every vertex v € V' there exists an interval I(v) on the real line
with [I(v)| = 1 such that {z,y} € Eifandonly if z € X, y € Y, and I(z) N I(y) # 0. Unit
interval bigraphs are equivalent to proper interval bigraphs [34, 38]. A bigraph (V| E) with
partition V = X UY is a proper interval bigraphs if for every vertex v € V there exists an
interval I(v) on the real line such that no interval contains another and {z,y} € F if and
onlyifzxe X,ye€Y,and I(z)NI(y) #0.

Now, define the bigraph of P to be (V, E') with vertices being candidates and voters. Two
vertices are connected by an edge if and only if one vertex represents a voter and the other
a candidate and the voter approves the candidate. Then, the profile P satisfies DUE if and

! Nederlof and Woeginger [33] have communicated to us an alternative proof for the detecting whether a
profile satisfies DUE in polynomial time.



only if the bipartite graph of P is a unit interval graph and hence a proper interval bigraph.
Checking whether a graph is a proper interval bigraph can be done in time O(|V| + |E|)
[14, 24]. In our case we have |V| =m + n and E can be trivially bounded by m - n.

The algorithm of [24] actually outputs a proper interval representation if possible. This
representation can be used to compute the mapping p that witnesses the DUE property.
Let us briefly sketch how to obtain a unit interval representation of a graph (V, E); it is
then straightforward to actually obtain p via the correspondence mentioned above. We
assume that the intervals I, ..., I}y are ordered with respect to their left endpoint. First,
by scaling we ensure that the first interval has length 1. Then, we iteratively apply the
following step for interval Ix: let = be the rightmost point of the interval I_;. We stretch
or shrink the interval [z, +00) such that I; has length 1. Note that [z, +00) contains at
least a part of I}, because otherwise the proper interval property would be violated. In this
way intersections are preserved and we ensure that every interval has length 1. O

For WSC, Elkind et al. [20] provide an algorithm that works for any weak orders (not just
dichotomous ones). They leave the complexity of detecting PSC and SSC as an open prob-
lem. The corresponding result for dichotomous preferences, i.e., detecting SSC in polynomial
time, follows from a result by Beresnev and Davydov [3] (in Russian; for an English descrip-
tion of this result, see Klinz et al. [27]). Let us briefly summarize this result. An m-by-n
matrix A = (a; ;) is 1-connected if for every pair of rows ¢, the sequence (a; ;j —a; j)j=1..n
has exactly one sign change, i.e., there is an index j' € [1 : n] such that for all j < j/,
a;; —ay; > 0 and for all j > j', a;; —ay; < 0 or vice versa. Beresnev and Davy-
dov [3] show that this property can be checked in O(m? - n?) time for (0, 1)-matrices. Let
C ={c1,ca,...,¢m} and P = (v1,v9,...,0,). We define A to be the m-by-n (0, 1)-matrix
corresponding to the dichotomous profile P by setting a; ; to 1 if ¢; € v; and 0 otherwise.
Now observe that P satisfies SSC if and only if for every pair of candidates ¢;, ¢;, either all
votes v; with ¢; € vj, cr € v; precede all votes vj with ¢; & vjr, ¢iy € vy or vice versa. This
is exactly the case if the positive entries of (a; ; — ai’ ;);=1...n precede all negative entries or
vice versa, i.e., A is 1-connected. Hence we obtain the following result.

Lemma 12. Detecting whether a dichotomous profile satisfies SSC is possible in O(m?-n?)
time.

4 Algorithms for Committee Selection

In this section, we consider two classic approval-based committee selection rules—
Proportional Approval Voting (PAV) and Maximin Approval Voting (MAV)—and argue
that we can design efficient algorithms for these rules when voters’ preferences belong to
some of the domains in our list (for some of the richer domains, we may need to place mild
additional restrictions on voters’ preferences). Due to space constraints we omit some of the
algorithm descriptions and proofs. We start by providing formal definitions of these rules.

Definition 1. Every non-increasing infinite sequence of non-negative reals w = (wy, wa, .. .)
that satisfies w; = 1 defines a committee selection rule w-PAV . This rule takes a set of
candidates C, a dichotomous profile P = (v1,. .., v,) and a target committee size k < |C| as
its input. For every size-k subset W of C, it computes its w-PAV score as »_, p uw(|W N
v;]), where uy(p) = Z;’:l wj, and outputs a size-k subset with the highest w-PAV score,

breaking ties arbitrarily. The w-PAV rule with w = (1, %, %, ...) is usually referred to
simply as the PAV rule, and we write u(p) =1+ ---+ %.

Definition 2. Given a set of candidates C, a dichotomous profile P = (v1,...,v,) and a
target committee size k < |C|, the MAV-score of a size-k subset W of C' is computed as



maxy,ep (W \ vi| + |v; \ W|). MAV outputs a size-k subset with the lowest MAV score,
breaking ties arbitrarily.

The w-PAV rule is defined by Kilgour and Marshall [26], see also [25]. Intuitively, under
this rule each voter is assumed to derive a utility of 1 from having exactly one of his
approved candidates in the winning set; his marginal utility from having more of his approved
candidates in the winning set is non-increasing. The goal of the rule is to maximize the sum
of voters’ utilities. In what follows we assume that the entries of w are rational and w;
can be computed in time poly(i). PAV is of particular interest since it is the only known
approval-based committee selection rule that satisfies the Extendend Justified Representation
property [1], which intuitively states that every large enough homogenous group has to be
represented in the committee. In contrast, MAV [7] has an egalitarian objective: for each
candidate committee, it computes the dissatisfaction of the least happy voter, and outputs
a committee that minimizes the quantity.

Computing the winning committee under MAV and PAV is NP-hard, see, respectively,
[29] and [2, 35]. The hardness result for PAV extends to w-PAV as long as w satisfies
wy > ws; moreover, it holds even if each voter approves of at most two candidates or if each
candidate is approved by at most three voters.

We will now show that PAV admits an algorithm whose running time is polynomial in
the number of voters and the number of candidates if the input profile satisfies CI or VI
and, furthermore, each voter approves at most s candidates or each candidate is approved
by at most d voters, where s and d are given constants. More specifically, we prove that
PAV winner determination for CI and VI preferences is in FPT with respect to parameter
s and in XP with respect to parameter d. For simplicity, we state our results for PAV;
however, all of them can be extended to w-PAV.

In what follows, we write [z : y] to denote the set {z € Z: z < z < y}.

Theorem 13. Given a dichotomous profile P = (v1,...,v,) over a candidate set C =
{c1,...,cm} and a target committee size k, if |v;| < s for allv; € P and P satisfies VI, then
we can find a winning committee under PAV in time O(2% -k -n).

Proof. Assume that P satisfies VI with respect to the order of voters vy C --- C v,. For
each triple (i, A,¢), where i € [1: n|, A C v;, and £ € [0 : k], let (4, A, £) be the maximum
utility that the first ¢ voters can obtain from a committee W such that Wnv, = A, |[W| = ¢,
and W C vy U...Uuw;.

We have r(1, A, |A]) = u(|A]) for every A C vy and r(1, A,¢) = —oo for every A C vy,
¢ef0:k]\{|A]}. To compute r(i+1,A,¢) fori € [l:n—1], ACv;y1 and £ € [0: k], we
let p = |A\ v;| and set

r(i+1,A,0)= max r(i,DU(ANv;),¢—p)+u(|A]).

DCvi\vit1

Indeed, every committee W with [W| = ¢, WNv; 11 = A, W C v1U...Uv; 41 contains exactly
¢ — p candidates from v1 U ...Uwv; and its intersection with v; is of the form D U (A Nw;),
where candidates in D are approved by v;, but not v;41. We output maxac,, 7(n, 4, k).
This dynamic program has n-2° - (k + 1) states, and the value of each state is computed
using O(2%) arithmetic operations. Assuming that basic calculations take constant time, we
obtain a total runtime of O(22%% - k - n). O

A similar dynamic programming algorithm can be used if voters’ preferences satisfy CI.

Theorem 14. Given a dichotomous profile P = (v1,...,vy,) over a candidate set C =
{c1,...,cm} and a target committee size k, if |v;| < s for allv; € P and P satisfies CI, then
we can find a winning committee under PAV in time O(2° -n - m).



Our next two theorems also considers CI and VI preferences, and deal with the case
where no candidate is approved by too many voters. Just as the algorithms in the proofs of
Theorems 13 and 14, the algorithms for this case are based on dynamic programming.

Theorem 15. Given a dichotomous profile P = (v1,...,v,) over a candidate set C =
{c1,...,em} and a target committee size k, if |[{i | ¢ € v;}| < d for all c € C and P satisfies
CI or VI, then we can find a winning committee under PAV in time poly(d, m,n, k?).

It is an open question whether the constraints on s and d in Theorems 13, 14 and 15
are necessary. The dynamic programming algorithms presented here seem to fundamentally
rely on the s or d; a polynomial-time algorithm for winner determination of PAV under
CI and VI preferences would require a substantially different approach. It is of course also
possible that PAV remains hard under CI and VI preferences.

For “truncated” weight vectors w we can find w- PAV winners in polynomial time. As the
(1,0,...)-PAV rule is essentially the classic Chamberlin—Courant rule [11] for dichotomous
preferences, our next result can be seen as an extension of the results of [4] and [36] for the
Chamberlin—Courant rule and single-peaked and single-crossing preferences: while we work
on a less expressive domain (dichotomous preferences vs. total orders), we can handle a
larger class of rules (all weight vectors with a constant number of non-zero entries rather
than just (1,0,...,)).

Theorem 16. Consider a weight vector w where w; = 0 for i > iy for some constant ig.
Then given a dichotomous profile P = (v1,...,v,) over a candidate set C = {c1,...,cm}
and a target committee size k, if P satisfies VI, we can find a winning committee under
w-PAV in polynomial time.

Proof. Assume that P satisfies VI with respect to the order of voters vy C -+ C vy,.

The following algorithm is a refinement of Theorem 13. For each triple (i, A, ¢), where

€[l:n], ACwv; and £ € [0: k], let (i, A, £) be the maximum utility that the first ¢ voters

can obtain from a committee W such that [W|=¢,and W Cv; U...Uv; and A C W.

We have r(1, A, ¢) = u(?) for every £ € [0 : |v1]] and A C vy with |A| = min(ig, £). In
addition, we have r(1, A,¢) = —oo for every other A C v; and ¢ € [0 : k]. To compute
r(i+1,A,¢) fori € 1 : n—1], A C v;y1 with |A] < ip and ¢ € [|A4] : k], we let s =
[vig1 \ (v; U A)|, i.e., the maximal number of candidates that might have been added in the
i+ 1st step to the committee but that do not show up in A, and set

r(i+1,A,4) =maxr(i, DU (ANwv;), ¢ — |A] —r) + u(|4]),

where the maximum is taken over all D C v; \ v;41 with |D] € [0 : 49 — [A N v;|] and all
re0:s].

This dynamic program has n-m - (k+1) states, and the value of each state is computed
using O(m + 1) arithmetic operations. Assuming that basic calculations take constant
time, we obtain a total runtime of O(n-m?%°+!.k) which is polynomial for constant ig. [

Theorem 17. Consider a weight vector w where w; = 0 for i > ig for some constant ig.
Then given a dichotomous profile P = (v1,...,vy,) over a candidate set C = {c1,...,cm}
and a target committee size k, if P satisfies CI, we can find a winning committee under
w-PAV in polynomial time.

Moreover, for the more restricted domains, such as VEI, CEI, WSC and PART we can
design polynomial-time algorithms for both MAV and PAV, under no additional constraints
on preferences (again, our results extend to w-PAV).



Theorem 18. Given a dichotomous profile P = (v1,...,vy,) over a candidate set C =
{c1,...,¢cm} and a target committee size k, if P satisfies VEI, we can find a winning com-
mittee under MAV and PAV in polynomial time.

Proof. Assume without loss of generality that P satisfies VEI for voter order v; C -+ - C vy,.
Each candidate in C belongs to one of the following four groups: C; = v1 Ny, Co = vy \ Un,
C3 = v, \ v1, and Cy = U1 NTy; candidates in C are approved by all voters and candidates
in Cy are not approved by any of the voters.

Suppose first that |C; U Cs U C3| < k. Then there exists an optimal committee for both
PAV and MAV that contains all candidates in C7 U Ce U C3 and exactly k — |C; UCy U Cs|
candidates from Cy. Hence, we can now assume that this is not the case. Then there exist
an optimal committee that contains no candidates from Cj.

Now, if |C1| > k, an optimal committee for both PAV and MAV consists of k candidates
from C1, and if |C}| < k, there exists an optimal committee that contains all candidates in
(. It remains to decide how to allocate the remaining places among candidates in Cs and
Cs. To do so, we observe that there is a natural ordering over each of these sets: given a
pair of candidates (¢,¢’) in Cy x Cq or C3 x C3, we write ¢ < ' if {i: c€v;} C{i:c €v;}.
Note that every two candidates in C; are comparable with respect to <, and so are every
two candidates in C3. It is now easy to see that there exists an optimal committee (for
PAV or MAV') that consists of candidates in Cy, top p candidates in Co with respect to
< and top r candidates in C3 with respect to < for some non-negative values of p,r with
p+ 7+ |C1| = k. Thus, by considering at most k? possibilities for p and r, we can find an
optimal committee. O

For CEI, we employ a dynamic programing algorithm, somewhat similar to the one used
in Theorem 14. Since we consider a more constrained preferences (CEI instead of CI), we
do not require to maintain an exponential number of states.

Theorem 19. Given a dichotomous profile P = (v1,...,vy,) over a candidate set C =
{c1,...,¢cm} and a target committee size k, if P satisfies CEIL, we can find a winning com-
mittee under MAV and PAV in polynomial time.

The same statement holds for WSC and PART as well.

5 Conclusions and Open Problems

We have initiated research on analogues of the notions of single-peakedness and single-
crossingness for dichotomous preference domains. We have proposed many constraints that
capture some aspects of what it means for dichotomous preferences to be single-dimensional,
explored the relationship among them, and showed that these constraints can be useful
for identifying efficiently solvable special cases of hard voting problems on dichotomous
domains. The algorithmic results in Section 4 can be seen as a proof that our approach has
merit; however, there is certainly room for improvement there, both in terms of removing
restrictions on the sizes of approval sets and number of voters that approve each candidate
(for PAV) and in terms of considering larger domains, such as PSC for PAV and CI or VI
for MAV .

We have provided polynomial-time algorithms for checking whether a given dichotomous
profile satisfies one of the constraint. We can also ask if it is possible to detect if a given
dichotomous profile is close to satisfying a structural constraint, and whether such “almost-
structured” profiles have useful algorithmic properties; similar issues for profiles of total
orders have recently received a lot of attention in the literature [10, 12, 13, 17, 21, 23].
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