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Abstract

We present a systematic study of Plurality elections with strategic voters who, in
addition to having preferences over election winners, also have secondary prefer-
ences, governing their behavior when their vote cannot affect the election outcome.
Specifically, we study two models that have been recently considered in the litera-
ture: lazy voters, who prefer to abstain when they are not pivotal, and truth-biased
voters, who prefer to vote truthfully when they are not pivotal. For both lazy and
truth-biased voters, we are interested in their behavior under different tie-breaking
rules (lexicographic rule, random voter rule, random candidate rule). Two of these
six combinations of secondary preferences and tie-breaking rules have been studied
in prior work; for the remaining four, we characterize pure Nash equilibria (PNE)
of the resulting strategic games and study the complexity of related computational
problems. We then use these results to analyze the impact of different secondary
preferences and tie-breaking rules on the election outcomes. Our results extend to
settings where some of the voters are non-strategic.

1 Introduction

Plurality voting is a popular tool for collective decision-making in many domains, including
both human societies and multiagent systems. Under this voting rule, each voter is supposed
to vote for her most favorite candidate (or abstain); the winner is then the candidate that
receives the highest number of votes. If several candidates have the highest score, the
winner is chosen among them using a tie-breaking rule; popular tie-breaking rules include
the lexicographic rule, which imposes a fixed priority order over the candidates; the random
candidate rule, which picks one of the tied candidates uniformly at random; and the random
voter rule, which picks the winner among the tied candidates according to the preferences
of a randomly chosen voter.

In practice, voters are often strategic, i.e., they may vote non-truthfully if they can
benefit from doing so. In that case, an election can be viewed as a game, where the voters
are the players, and each player’s space of actions includes voting for any candidate or
abstaining. For deterministic rules (such as Plurality with lexicographic tie-breaking), the
behavior of strategic voters is determined by their preference ordering, i.e., a ranking of the
candidates, whereas for randomized rules a common approach is to specify utility functions
for the voters; i.e., the voters are assumed to maximize their expected utility under the
lottery induced by tie-breaking. The outcome of the election can then be identified with a
pure Nash equilibrium (PNE) of the resulting game.

However, under Plurality and with 3 or more voters, this approach fails to provide a
useful prediction of voting behavior: for each candidate c there is a PNE where c is the
unique winner, irrespective of the voters’ preferences. Indeed, if there are at least 3 voters,
the situation where all of them vote for c is a PNE, as no voter can change the election
outcome. Such equilibria may disappear if we use a more refined model of voters’ preferences
that captures additional aspects of their decision-making. For instance, in practice, if a voter

1An earlier version of this paper appeared in SAGT’15
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feels that her vote is unlikely to have any effect on the outcome, she may decide to abstain
from the election. Also, voters may be averse to lying about their preferences, in which case
they can be expected to vote for their top candidate unless there is a clear strategic reason
to vote for someone else. By taking into account these aspects of voters’ preferences, we can
obtain a more faithful model of their behavior.

The problem of characterizing and computing the equilibria of Plurality voting, both for
“lazy” voters (i.e., ones who prefer to abstain when they are not pivotal) and for “truth-
biased” voters (ones who prefer to vote truthfully when they are not pivotal), has recently
received a considerable amount of attention. However, it is difficult to compare the existing
results, since they rely on different tie-breaking rules. In particular, Desmedt and Elkind
[6], who study lazy voters, use the random candidate tie-breaking rule, and Obraztsova et
al. [18] consider truth-biased voters and the lexicographic tie-breaking rule. Thus, it is not
clear whether the differences between the results in these papers can be attributed to the
voters’ secondary preferences, or to the tie-breaking rule.

The primary goal of our paper is to tease out the effects of different features of these
models, by systematically considering all the combinations of secondary preferences and
tie-breaking rules. We consider two types of secondary preferences (lazy voters and truth-
biased voters) and three tie-breaking rules (the lexicographic rule, the random voter rule,
and the random candidate rule); while two of these combinations have been studied earlier
by [6] and [18], to the best of our knowledge, the remaining four possibilities have not been
considered before. For each of the new scenarios, we characterize the set of PNE for the
resulting game; in doing so, we also fill in a gap in the characterization of [6] for lazy voters
and random candidate tie-breaking. We then consider the problems of deciding whether
a given game admits a PNE and whether a given candidate can be a co-winner/unique
winner in some PNE of a given game. For all settings, we determine the computational
complexity of each of these problems, classifying them as either polynomial-time solvable
or NP-complete. Our characterization results enable us to analyze the impact of various
features of our model on the election outcomes, and thereby evaluate the plausibility of our
assumptions about voters’ secondary preferences. Finally, we briefly discuss the implications
of our results in the setting where some of the voters may be principled, i.e., always vote
truthfully.

Related Work Equilibria of Plurality voting have been investigated by a number of
researchers, starting with [11]. However, most of the earlier works either consider solu-
tion concepts other than pure Nash equilibria, such as iterative elimination of dominated
strategies [7, 14], or assume that voters have incomplete information about each others’
preferences [15]. Both types of secondary preferences (lazy voters and truth-biased voters)
appear in the social choice literature, see, respectively, [2, 3, 20] and [8, 12]. In computational
social choice, truth-biased voters have been considered by Meir et al. [13] in the context of
dynamics of Plurality voting; subsequently, Plurality elections with truth-biased voters have
been investigated empirically by Thompson et al. [21] and theoretically by Obraztsova et
al. [18]. To the best of our knowledge, the first paper to study computational aspects of Plu-
rality voting with lazy voters is that of Desmedt and Elkind [6]. In a follow-up paper [10],
we study the complexity of computing Nash equilibria in the six models considered here
under the assumption that voters’ preferences are single-peaked or single-crossing.

Our approach to tie-breaking is well-grounded in existing work. Lexicographic tie-
breaking is standard in the computational social choice literature. The random candidate
rule has been discussed by [6], and, more recently, by [17] and [16]. The random voter rule
is used to break ties under the Schulze method [19]; the complexity of manipulation under
this tie-breaking rule has been studied by [1].
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2 Preliminaries

For any positive integer t, we denote the set {1, . . . , t} by [t]. We consider elections with a
set of voters N = [n] and a set of alternatives, or candidates, C = {c1, . . . cm}. Each voter is
associated with a preference order, i.e., a strict linear order over C; we denote the preference
order of voter i by �i. The list (�1, . . . ,�n) is called a preference profile. For each i ∈ N ,
we set ai to be the top choice of voter i, and let a = (a1, . . . , an). Given two disjoint sets of
candidates X, Y and a preference order �, we write X � Y if in � all candidates from X
are ranked above all candidates from Y .

We also assume that each voter i ∈ N is endowed with a utility function ui : C → N;
ui(cj) is the utility derived by voter i if cj is the unique election winner. We require that
ui(c) 6= ui(c

′) for all i ∈ N and all c, c′ ∈ C such that c 6= c′. The vector u = (u1, . . . , un)
is called the utility profile. Voters’ preference orders and utility functions are assumed to
be consistent, i.e., for each i ∈ N and every pair of candidates c, c′ ∈ C we have c �i c′

if and only if ui(c) > ui(c
′); when this is the case, we will also say that �i is induced

by ui. Sometimes, instead of specifying preference orders explicitly, we will specify the
utility functions only, and assume that voters’ preference orders are induced by their utility
functions; on other occasions, it will be convenient to reason in terms of preference orders.

A lottery over C is a vector p = (p1, . . . , pm) with pj ≥ 0 for all j ∈ [m] and
∑

j∈[m] pj =
1. The value pj is the probability assigned to candidate cj . The expected utility of a voter
i ∈ N from a lottery p is given by

∑
j∈[m] ui(cj)pj .

In this work, we consider Plurality elections, where each voter i ∈ N submits a vote,
or ballot, bi ∈ C ∪ {∅}; if bi = ∅, voter i is said to abstain. The list of all votes b =
(b1, . . . , bn) is also called a ballot vector. We say that a ballot vector is trivial if bi = ∅
for all i ∈ N . Given a ballot vector b and a ballot b′, we write (b−i, b

′) to denote the
ballot vector obtained from b by replacing bi with b′. The score of an alternative cj in an
election with ballot vector b is given by sc(cj ,b) = |{i ∈ N | bi = cj}|. Given a ballot
vector b, we set M(b) = maxc∈C sc(c,b) and let W (b) = {c ∈ C | sc(c,b) = M(b)},
H(b) = {c ∈ C | sc(c,b) = M(b) − 1}, H ′(b) = {c ∈ C | sc(c,b) = M(b) − 2}. These
sets are useful in our analysis in the next sections. The set W (b) is called the winning set.
Note that if b is trivial then W (b) = C. If |W (b)| > 1, the winner is selected from W (b)
according to one of the following tie-breaking rules.

(1) Under the lexicographic rule RL, the winner is the candidate cj ∈ W (b) such that
j ≤ k for all ck ∈W (b).

(2) Under the random candidate rule RC , the winner is chosen from W (b) uniformly at
random.

(3) Under the random voter rule RV , we select a voter from N uniformly at random; if she
has voted for a candidate in W (b), we output this candidate, otherwise we ask this
voter to report her most preferred candidate in W (b), and output the answer. This
additional elicitation step may appear difficult to implement in practice; fortunately,
we can show that in equilibrium it is almost never necessary.

Thus, the outcome of an election is a lottery over C; however, for RL this lottery is de-
generate, i.e., it always assigns the entire probability mass to a single candidate. For each
X ∈ {L,C, V } and each ballot vector b, let pX(b) denote the lottery that corresponds to
applying RX to the set W (b). From the definition of RC , it follows that for every cj ∈ C
it holds that if pCj (b) 6= 0 then pCj (b) ≥ 1

m . Similarly, for RV , it follows that if pVj (b) 6= 0

then pVj (b) ≥ 1
n .

In what follows, we focus on two types of secondary preferences, namely, lazy voters, who
prefer to abstain when their vote has no effect on the election outcome, and truth-biased
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voters, who never abstain, but prefer to vote truthfully when their vote has no effect on the
election outcome. Formally, pick ε < min{ 1

m2 ,
1
n2 }, and consider a utility profile u and a

tie-breaking rule RX ∈ {RC , RV , RL}. Then

• if voter i is lazy, her utility in an election with ballot vector b under tie-breaking rule
RX is given by

Ui(b) =

{∑
j∈[m] p

X
j (b)ui(cj), if bi ∈ C,∑

j∈[m] p
X
j (b)ui(cj) + ε, if bi = ∅.

• if voter i is truth-biased, her utility in an election with ballot vector b under tie-
breaking rule RX is given by

Ui(b) =


∑

j∈[m] p
X
j (b)ui(cj), if bi ∈ C \ {ai},∑

j∈[m] p
X
j (b)ui(cj) + ε, if bi = ai,

−∞, if bi = ∅.

We consider settings where all voters are of the same type, i.e., either all voters are lazy
or all voters are truth-biased; we refer to these settings as lazy or truth-biased, respectively,
and denote the former by L and the latter by T .

We investigate all possible combinations of settings (L, T ) and tie-breaking rules (RL,
RC , RV ). A combination of a setting S ∈ {L, T }, a tie-breaking rule R ∈ {RL, RC , RV } and
a utility profile u induces a strategic game, which we will denote by (S, R,u): in this game,
the players are the voters, the action space of each player is C∪{∅}, and the players’ utilities
U1, . . . , Un for a vector of actions b are computed based on the setting and the tie-breaking
rule as described above. We say that a ballot vector b is a pure Nash equilibrium (PNE) of
the game (S, R,u) if Ui(b) ≥ Ui(b−i, b

′) for every voter i ∈ N and every b′ ∈ C ∪ {∅}.
For each setting S ∈ {L, T } and each tie-breaking rule R ∈ {RL, RC , RV }, we define

three algorithmic problems, which we call (S, R)-ExistNE, (S, R)-TieNE, and (S, R)-
SingleNE. In each of these problems, we are given a candidate set C, |C| = m, a voter
set N , |N | = n, and a utility vector u = (u1, . . . , un), where each ui is represented by m
numbers ui(c1), . . . , ui(cm); these numbers are positive integers given in binary. In (S, R)-
TieNE and (S, R)-SingleNE we are also given the name of a target candidate cp ∈ C. In
(S, R)-ExistNE we ask if (S, R,u) has a PNE. In (S, R)-TieNE we ask if (S, R,u) has a
PNE b with |W (b)| > 1 and cp ∈ W (b). In (S, R)-SingleNE we ask if (S, R,u) has a
PNE b with W (b) = {cp}. Each of these problems is obviously in NP, as we can simply
guess an appropriate ballot vector b and check that it is a PNE.

In what follows, we omit some proofs due to space constraints; the omitted proofs can
be found in the full version of the paper [9].

3 Lazy Voters

In this section, we study PNE in Plurality games with lazy voters. The case where the
tie-breaking rule is RC has been analyzed in detail by Desmedt and Elkind [6], albeit for a
slightly different model; we complement their results by considering RL and RV .

We start by extending a result of [6] to all three tie-breaking rules considered here.

Proposition 1. For every R ∈ {RL, RC , RV } and every utility profile u, if a ballot vector b
is a PNE of (L, R,u) then for every voter i ∈ N either bi = ∅ or bi ∈W (b). If |W (b)| = 1,
there is exactly one voter i ∈ N with bi 6= ∅.

Proof. Suppose that bi 6= ∅, bi 6∈ W (b) for some voter i ∈ N . Then if i changes her vote
to ∅, the set W (b) will not change, so i’s utility would improve by ε, a contradiction with
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b being a PNE of (L, R,u). Similarly, suppose that |W (b)| = 1 and there are two voters
i, i′ ∈ N with bi 6= ∅, bi′ 6= ∅. It has to be the case that bi = bi′ = cj for some cj ∈ C, since
otherwise |W (b)| > 1. But then if voter i changes her vote to ∅, cj will remain the election
winner, so i’s utility would improve by ε, a contradiction.

Lexicographic Tie-breaking. The scenario where voters are lazy and ties are broken
lexicographically turns out to be fairly easy to analyze.

Theorem 1. For any utility profile u the game G = (L, RL,u) has the following properties:

(1) If b is a PNE of G then |W (b)| ∈ {1,m}. Moreover, |W (b)| = m if and only if b is
the trivial ballot and all voters rank c1 first.

(2) If b is a PNE of G then there exists at most one voter i with bi 6= ∅.

(3) G admits a PNE if and only if all voters rank c1 first (in which case c1 is the unique
PNE winner) or there exists a candidate cj with j > 1 such that (i) sc(cj ,a) > 0 and
(ii) for every k < j it holds that all voters prefer cj to ck. If such a candidate exists,
he is unique, and wins in all PNE of G.

The following corollary is directly implied by Theorem 1.

Corollary 1. (L, RL)-ExistNE, (L, RL)-SingleNE and (L, RL)-TieNE are in P.

Remark 1. The reader may observe that, counterintuitively, while the lexicographic tie-
breaking rule appears to favor c1, it is impossible for c1 to win the election unless he is
ranked first by all voters. In contrast, c2 wins the election as long as he is ranked first by at
least one voter and no voter prefers c1 to c2. In general, the lexicographic tie-breaking rule
favors lower-numbered candidates with the exception of c1. As for c1, his presence mostly
has a destabilizing effect: if some, but not all voters rank c1 first, no PNE exists. This
phenomenon is an artifact of our treatment of the trivial ballot vector: it disappears if we
assume (as [6] does) that when b = (∅, . . . ,∅) the election is declared invalid and the utility
of each voter is −∞: under this assumption c1 is the unique possible equilibrium winner
whenever he is ranked first by at least one voter.

Randomized Tie-breaking. We now consider RC and RV . Desmedt and Elkind [6]
give a characterization of utility profiles that admit a PNE for lazy voters and RC . However,
there is a small difference between our model and theirs regarding the trivial ballot vector,
as explained in Remark 1 above. Further, their results implicitly assume that the number
of voters n exceeds the number of candidates m; if this is not the case, Theorem 2 in their
paper is incorrect (see Remark 2).

Thus, we will now provide a full characterization of utility profiles u such that (L, RC ,u)
admits a PNE, and describe the corresponding equilibrium ballot profiles. Our characteri-
zation result remains essentially unchanged if we replace RC with RV : for almost all utility
profiles u and ballot vectors b it holds that b is a PNE of (L, RC ,u) if and only if it is a
PNE of (L, RV ,u); the only exception is the case of full consensus (all voters rank the same
candidate first).

Theorem 2. Let u = (u1, . . . , un) be a utility profile over C, |C| = m, and let R ∈
{RC , RV }. The game G = (L, R,u) admits a PNE if and only if one of the following
conditions holds:

(1) all voters rank some candidate cj first;

(2) each candidate is ranked first by at most one voter, and ∀` ∈ N : 1
n

∑
i∈N u`(ai)

≥ maxi∈N\{`} u`(ai).
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(3) there exists a set of candidates X = {c`1 , . . . , c`k} with 2 ≤ k ≤ min(n/2,m) and a
partition of the voters into k groups N1, . . . , Nk of size n/k each such that for each
j ∈ [k] and each i ∈ Nj we have c`j �i c for all c ∈ X \ {c`j}, and, moreover,
1
k

∑
c∈X ui(c) ≥ maxc∈X\{c`j } ui(c).

Further, when condition (1) holds for some cj ∈ C and R = RC , then for each i ∈ N the
game G has a PNE where i votes for cj and all other voters abstain, whereas if R = RV ,
the game G has a PNE where all voters abstain; if condition (2) holds, then G has a PNE
where each voter votes for her top candidate; and if condition (3) holds for some set X,
then G has a PNE where each voter votes for her favorite candidate in X. The game G has
no other PNE.

Remark 2. Desmedt and Elkind [6] claim (Theorems 1 and 2) that for RC and lazy voters,
a PNE exists if and only if the utility profile satisfies either condition (1) or (3) with the
constraint k ≤ n/2 removed. To see why this is incorrect, consider a 2-voter election
over C = {x, y, z}, where the voters’ utility functions are consistent with preference orders
x � y � z and x � z � y, respectively. According to [6], the vector (y, z) is a PNE. This is
obviously not true: each of the voters would prefer to change her vote to x. Note, however,
that the two characterizations differ only when m ≥ n, and in practice the number of voters
usually exceeds the number of candidates.

Desmedt and Elkind [6] show that checking condition (3) of Theorem 2 is NP-hard; in
their proof n > m, and the proof does not depend on how the trivial ballot is handled.
Further, their proof shows that checking whether a given candidate belongs to some such
set X is also NP-hard. On the other hand, Theorem 2 shows that PNE with singleton
winning sets only arise if some candidate is unanimously ranked first, and this condition is
easy to check. We summarize these observations as follows.

Corollary 2. For R ∈ {RC , RV }, the problems (L, R)-ExistNE and (L, R)-TieNE are
NP-complete, whereas (L, R)-SingleNE is in P.

4 Truth-biased Voters

For truth-biased voters, our exposition follows the same pattern as for lazy voters: we present
some general observations, followed by a quick summary of the results for lexicographic tie-
breaking, and continue by analyzing randomized tie-breaking. The following result is similar
in spirit to Proposition 1.

Proposition 2. For every R ∈ {RL, RC , RV } and every utility profile u, if a ballot vector
b is a PNE of (T , R,u) then for every voter i ∈ N we have bi = ai or bi ∈W (b).

Lexicographic Tie-breaking. Obraztsova et al. [18] characterize the PNE of the game
(T , RL,u). Their characterization is quite complex, and we will not reproduce it here.
However, for the purposes of comparison with the lazy voters model, we will use the following
description of truthful equilibria.

Proposition 3 (Obraztsova et al. [18], Theorem 1). Consider a utility profile u, let a be
the respective truthful ballot vector, and let j = min{r | cr ∈ W (a)}. Then a is a PNE of
(T , RL,u) if and only if neither of the following conditions holds:

(1) |W (a)| > 1, and there exists a candidate ck ∈ W (a) and a voter i such that ai 6= ck
and ck �i cj.
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(2) H(a) 6= ∅, and there exists a candidate ck ∈ H(a) and a voter i such that ai 6= ck,
ck �i cj, and k < j.

We will also utilize a crucial property of non-truthful PNE. For this, we first need the
following definition.

Definition 1. Consider a ballot vector b, where candidate cj is the winner under RL. A
candidate ck 6= cj is called a threshold candidate with respect to b if either (1) k < j and
sc(ck,b) = sc(cj ,b)−1 or (2) k > j and sc(ck,b) = sc(cj ,b). We denote the set of threshold
candidates with respect to b by T (b).

That is, a threshold candidate is someone who could win the election if he had one
additional vote. A feature of all non-truthful PNE is that there must exist at least one
threshold candidate. The intuition for this is that, since voters who are not pivotal prefer
to vote truthfully, in any PNE that arises under strategic voting, the winner receives just
enough votes so as to beat the required threshold (as set by the threshold candidate) and
not more. Formally, we have the following lemma.

Lemma 1 (Obraztsova et al. [18], Lemma 2). Consider a utility profile u, let a be the
respective truthful ballot vector, and let b 6= a be a non-truthful PNE of (T , RL,u). Then
T (b) 6= ∅. Further, sc(ck,b) = sc(ck,a) for every ck ∈ T (b), i.e., all voters whose top
choice is ck vote for ck.

The existence of a threshold candidate is an important observation about the structure
of non-truthful PNE, and we will use it repeatedly in the sequel. Note that the winner in a
does not have to be a threshold candidate in a non-truthful PNE b.

Obraztsova et al. show that, given a candidate cp ∈ C and a score s, it is computationally
hard to decide whether the game (T , RL,u) has a PNE b where cp wins with a score of
s. This problem may appear to be “harder” than (T , RL)-TieNE or (T , RL)-SingleNE,
as one needs to ensure that cp obtains a specific score; on the other hand, it does not
distinguish between cp being the unique top-scorer or being tied with other candidates and
winning due to tie-breaking. We now complement this hardness result by showing that all
three problems we consider are NP-hard for T and RL.

Theorem 3. (T , RL)-SingleNE, (T , RL)-ExistNE, and (T , RL)-TieNE are NP-
complete.

The proof is by reduction from Maximum k-Subset Intersection (MSI); see [9] for
a formal definition of this problem. Surprisingly, the complexity of MSI was very recently
posed as an open problem by Clifford and Popa [5]; subsequently, MSI was shown to be hard
under Cook reductions in [22]. In our proof we first establish NP-hardness of MSI under
Karp reductions, which may be of independent interest, and then show NP-hardness of our
problems by constructing reductions from MSI.

Randomized Tie-breaking. It turns out that for truth-biased voters, the tie-breaking
rules RC and RV induce identical behavior by the voters; unlike for lazy voters, this holds
even if all voters rank the same candidate first.

For clarity, we present our characterization result for randomized tie-breaking in three
parts. We start by considering PNE with winning sets of size at least 2; the analysis for
this case turns out to be very similar to that for lazy voters.

Theorem 4. Let u = (u1, . . . , un) be a utility profile over C, |C| = m, and let R ∈
{RC , RV }. The game G = (T , R,u) admits a PNE with a winning set of size at least 2 if
and only if one of the following conditions holds:
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(1) each candidate is ranked first by at most one voter, and, moreover, 1
n

∑
i∈N u`(ai) ≥

maxi∈N\{`} u`(ai) for each ` ∈ N .

(2) there exists a set of candidates X = {c`1 , . . . , c`k} with 2 ≤ k ≤ min(n/2,m) and
a partitioning of the voters into k groups N1, . . . , Nk of size n/k each such that for
each j ∈ [k] and each i ∈ Nj we have c`j �i c for all c ∈ X \ {c`j}, and, moreover,
1
k

∑
c∈X ui(c) ≥ maxc∈X\{c`j } ui(c).

Further, if condition (1) holds, then G has a PNE where each voter votes for her top candi-
date, and if condition (2) holds for some X, then G has a PNE where each voter votes for
her favorite candidate in X. The game G has no other PNE.

The case where the winning set is a singleton is surprisingly complicated. We will first
characterize utility profiles that admit a truthful PNE with this property.

Theorem 5. Let u = (u1, . . . , un) be a utility profile over C, let R ∈ {RC , RV }, and suppose
that W (a) = {cj} for some cj ∈ C. Then a is a PNE of the game G = (T , R,u) if and only
if for every i ∈ N and every ck ∈ H(a) \ {ai}, it holds that cj �i ck.

Finally, we consider elections that have non-truthful equilibria with singleton winning sets.

Theorem 6. Let u = (u1, . . . , un) be a utility profile over C, let R ∈ {RC , RV }, and
consider a ballot vector b with W (b) = {cj} for some cj ∈ C and br 6= ar for some r ∈ N .
Then b is a PNE of the game G = (T , R,u) if and only if all of the following conditions
hold:

(1) bi ∈ {ai, cj} for all i ∈ N ;

(2) H(b) 6= ∅;

(3) cj �i ck for all i ∈ N and all ck ∈ H(b) \ {bi};

(4) for every candidate c` ∈ H ′(b) and each voter i ∈ N with bi = cj, i prefers cj to the
lottery where a candidate is chosen from H(b) ∪ {cj , c`} according to R.

Proof. Suppose that a ballot profile b satisfies conditions (1)–(4) of the theorem, and con-
sider a voter i ∈ N . If bi = ai = cj , the current outcome is optimal for i. If bi = ai 6= cj ,
the only way that voter i can change the election outcome is by voting for a candidate
ck ∈ H(b) \ {ai}, in which case the winner will be chosen from {cj , ck} according to R. By
condition (3), voter i does not benefit from this change. By Proposition 2, the only remain-
ing possibility is that bi = cj 6= ai. Then i can change the election outcome by (a) voting for
a candidate ck ∈ H(b); (b) voting for a candidate c` ∈ H ′(b); or (c) voting for a candidate
in C \ (H(b) ∪ H ′(b) ∪ {cj}). In case (a) ck becomes the unique winner, so by condition
(3) this change is not profitable to i. In case (b) the outcome is a tie among the candidates
in H(b) ∪ {cj , c`}, so by condition (4) voter i cannot profit from this change. Finally, in
case (c) the outcome is a tie among the candidates in H(b) ∪ {cj}, and by condition (3), i
prefers the current outcome to this one. Thus, a ballot vector satisfying conditions (1)–(4)
is indeed a PNE.

Conversely, suppose that b is a PNE of (T , R,u) for some R ∈ {RC , RV } and some
utility profile u, where br 6= ar for some r ∈ N . It follows from Proposition 2 that b satisfies
condition (1). If condition (2) is violated, voter r can increase her utility by ε, by changing
her vote to ar, as cj would remain the unique election winner in this case. If condition (3)
is violated for some i ∈ N and some ck ∈ H(b), voter i can profitably deviate by changing
her vote to ck; if bi = cj , ck would then become the unique election winner, and if bi 6= cj ,
the outcome will be a tie between cj and ck, so under R each of them will win with positive
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probability. Similarly, if condition (4) is violated for some i ∈ N and some c` ∈ H ′(b),
voter i can profitably deviate by changing her vote to c`, so that the outcome becomes a tie
among H(b) ∪ {cj , c`}. This concludes the proof.

We now consider the complexity of ExistNE, TieNE, and SingleNE for truth-biased
voters and randomized tie-breaking. The reader may observe that the characterization
of PNE with ties in Theorem 4 is essentially identical to the one in Theorem 2. As a
consequence, we immediately obtain that (T , RC)-TieNE and (T , RV )-TieNE are NP-
hard. For ExistNE and SingleNE, a simple modification of the proof of Theorem 3 shows
that these problems remain hard under randomized tie-breaking. These observations are
summarized in the following corollary.

Corollary 3. For R ∈ {RC , RV }, (T , R)-SingleNE, (T , R)-TieNE, and (T , R)-ExistNE
are NP-complete.

5 Comparison

We are finally in a position to compare the different models considered in this paper.

Tie-breaking rules. We have demonstrated that in equilibrium the two randomized tie-
breaking rules (RC and RV ) induce very similar behavior, and identical election outcomes,
both for lazy and for truth-biased voters. This is quite remarkable, since under truthful
voting these tie-breaking rules can result in very different lotteries. In contrast, there is a
substantial difference between the randomized rules and the lexicographic rule. For instance,
with lazy voters, ExistNE is NP-hard for RC and RV , but polynomial-time solvable for
RL. Further, RL is, by definition, not neutral, and Theorem 1 demonstrates that candidates
with smaller indices have a substantial advantage. For truth-biased voters the impact of tie-
breaking rules is less clear: while we have NP-hardness results for all three rules, it appears
that, in contrast with lazy voters, PNE induced by randomized tie-breaking are “simpler”
than those induced by RL.

Lazy vs. truth-biased voters. Under lexicographic tie-breaking, the sets of equilibria
induced by the two types of secondary preferences are incomparable: there exists a utility
profile u such that the sets of candidates who can win in PNE of (L, RL,u) and (T , RL,u)
are disjoint.

Example 1. Let C = {c1, c2, c3}, and consider a 4-voter election with one vote of the form
c2 � c3 � c1, and three votes of the form c3 � c2 � c1. The only PNE of (L, RL,u) is
(c2,∅,∅,∅), where c2 wins; the only PNE of (T , RL,u) is (c2, c3, c3, c3), where c3 wins.

For randomized tie-breaking, the situation is more interesting. For concreteness, let us
focus on RC . Note first that the utility profiles for which there exist PNE with winning sets
of size 2 or more are the same for both voter types. Further, if (L, RC ,u) has a PNE b,
with |W (b)| = 1 (which happens only if there is a unanimous winner), then b is also a PNE
of (T , RC ,u). However, (T , RC ,u) may have additional PNE, including some non-truthful
ones. In particular, for truth-biased voters, the presence of a strong candidate is sufficient for
stability: Proposition 3 implies that if there exists a c ∈ C such that sc(c,a) ≥ sc(c′,a) + 2
for all c′ ∈ C \ {c}, then for any R ∈ {RL, RC , RV } the truthful ballot vector a is a PNE of
(T , R,u) with W (a) = {c}.
Existence of PNE. For truth-biased voters, one can argue that, when the number of
voters is large relative to the number of candidates, under reasonable probabilistic models
of elections, the existence of a strong candidate (as defined in the previous paragraph) is
exceedingly likely. Thus, elections with truth-biased voters typically admit stable outcomes;
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this is corroborated by the experimental results of [21]. In contrast, for lazy voters stability is
more difficult to achieve, unless there is a candidate that is unanimously ranked first: under
randomized tie-breaking rules, there needs to be a very precise balance among candidates
that end up being in W (b), and under RL the eventual winner has to Pareto-dominate all
candidates that lexicographically precede him.

Quality of PNE. In all of our models, a candidate ranked last by all voters cannot be
elected, in contrast to the basic game-theoretic model for Plurality voting. However, not all
non-desirable outcomes are eliminated: under RV and RC both lazy voters and truth-biased
voters can still elect a Pareto-dominated candidate with non-zero probability in PNE. This
has been shown for lazy voters and RC (Example 1 in [6]), and the same example works for
truth-biased voters and RV . For completeness, we describe this example below.

Example 2. Let C = {c1, c2, c3}, n = 4. Suppose that all voters rank c1 first, the first two
voters prefer c2 to c3, and the remaining two voters prefer c3 to c2. Then for every utility
vector u consistent with these preferences, every S ∈ {L, T } and every R ∈ {RV , RC} it
holds that b = (c2, c2, c3, c3) is a Nash equilibrium of (S, R,u).

A similar construction shows that a Pareto-dominated candidate may win under RL

when voters are truth-biased.

Example 3. Let C = {c1, c2, c3, c4}, n = 4. Suppose that voter 1’s preference order is
c1 � c3 � c4 � c2, voter 2’s preference order is c2 � c3 � c4 � c1, and the last two voters’
preference orders are c3 � c4 � c1 � c2. Then for every utility vector u consistent with
these preferences it holds that b = (c1, c2, c4, c4) is a Nash equilibrium of (T , RL,u).

In contrast, lazy voters cannot elect a Pareto-dominated candidate under RL: Theorem 1
shows that the winner has to be ranked first by some voter.

However, even in this setting the winner can be almost Pareto-dominated, i.e., ranked
below another candidate (in fact, ranked last) by all but one voter.

Example 4. Consider an election with |C| ≥ 3, where voter 1 ranks c2 first and all other
voters rank c3 first and c2 last. Then for every utility vector u consistent with these pref-
erences it holds that b = (c2,∅, . . . ,∅) is a Nash equilibrium of (L, RL,u).

We can also measure the quality of PNE by analyzing the Price of Anarchy (PoA) in
both models. The study of PoA in the context of voting has been recently initiated by
Branzei et al. [4]. The additive version of PoA, which was considered in [4], is defined as the
worst-case difference between the score of the winner under truthful voting and the truthful
score of a PNE winner. It turns out that PoA can be quite high, both for lazy and for
truth-biased voters.

We will now show that when ties are broken according to RL for truth-biased voters we
have PoA = 2n/3, whereas for lazy voters we have PoA = n− 2.

Proposition 4. For lexicographic tie-breaking and lazy voters, PoA = n− 2.

Proof. We prove first that PoA ≤ n− 2. To see this, note that by Theorem 1, the winner in
any PNE must have a positive score in the truthful profile. Thus, in the worst-case scenario
for the Price of Anarchy, the truthful winner of a has score n− 1, and there is a PNE where
the winner is the candidate supported by the remaining voter. Thus PoA ≤ n− 2.

The lower bound is provided by Example 5 below.

Example 5. Consider an n-voter profile over {c1, . . . , cn}, where the first voter ranks c2
first, and the remaining voters rank c3 first, c2 second and c1 first. Suppose that the
voters are lazy. The truthful winner is c3 with a score of n − 1. Under the ballot vector
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b = (c2,∅,∅, . . . ,∅) the winner is c2, and no voter can unilaterally change the outcome in
her favor. Indeed, if anyone votes for c1, then c1 is the new winner, but all voters prefer c2
to c1. On the other hand, voting for any other candidate cannot change the outcome due
to tie-breaking. Since the score of c2 in a is 1, we have PoA ≥ n− 2.

Proposition 5. For lexicographic tie-breaking and truth-biased voters, PoA = 2n/3.

Proof. As in Proposition 4, we first prove the upper bound. Let ci be the winner in the
truthful profile with a score of s∗. Let b 6= a be a non-truthful PNE and let cj be the winner
in b. Clearly, we have PoA ≤ s∗, since in the worst case cj has no supporters in a. Hence,
it is enough to bound s∗.

By Lemma 1, we know that there exists at least one threshold candidate with respect to
b. We consider two cases:
Case 1: ci 6∈ T (b). Then there is some ck 6= ci such that ck ∈ T (b) Let s = sc(ck,a). By
Lemma 1 we know that ck receives s points in b as well. Hence cj has a score of at most
s + 1 in b. By Proposition 2 this means that there are at most s + 1 non-truthful votes in
b. Hence the score of ci in b has to be at least s∗ − (s + 1). Since ci is not a winner in b,
we have s∗ − (s + 1) ≤ sc(ci,b) ≤ s + 1, and hence s∗ ≤ 2s + 2. Since the total score of
ci and ck in a does not exceed n, we have s + s∗ ≤ n. But then, if s∗ > 2n/3, this would
imply that s > n/3− 1, i.e., s ≥ n/3, and hence s + s∗ > n, a contradiction. Thus we have
PoA ≤ s∗ ≤ 2n/3.
Case 2: ci ∈ T (b). In this case the Price of Anarchy is somewhat better. Let s = sc(cj ,b).
Candidate ci must have the same set of votes in b as in a by Lemma 1. Hence we have
s + s∗ ≤ n. But we must also have s∗ ≤ s, otherwise cj is not the winner. But then
if s∗ > n/2, we would also have s > n/2, a contradiction. Thus, in this case we have
PoA ≤ s∗ ≤ n/2.

Hence in worst case, PoA ≤ 2n/3. Example 6 shows that this bound can be attained.

Example 6. In Figure 2, we show a preference profile for n voters, where n is divisible by
3. Block 1 consists of n/3 voters, Block 2 consists of n/3+1 voters, and Block 3 has n/3−1
voters.

Suppose the tie-breaking rule is c1 > c2 > c3. Under truthful voting, c3 is the winner
with a score of 2n/3. We claim now that the profile b, in which all voters of Block 2 vote
for c2 is a PNE. To see this, note that c2 is indeed the winner in b with a score of n/3 + 1.
Candidate c1 would only need one additional vote to become the winner, but there is no
incentive for any voter from Block 2 or 3 to vote for c1, since all of them prefer c2 to c1.
Also, no voter from Block 2 can change the outcome in favor of c3 by a unilateral deviation,
due to the tie-breaking rule. If a voter from Block 2 switches to her truthful vote, then the
new winner is c1, since there is a tie with all candidates. Hence b is a PNE, and the score
of c2 in the truthful profile is 0. This means that in this example we have PoA ≥ 2n/3.

Block 1 Block 2 Block 3

c1 c1 ... c1 c3 c3 ... c3 c3 c3 ... c3
...

... ...
...

...
... ...

...
...

... ...
...

arbitrary arbitrary arbitrary
...

... ...
...

...
... ...

...
...

... ...
...

c2 c2 ... c2 c2 c2 ... c2 c2 c2 ... c2
c3 c3 ... c3 c1 c1 ... c1 c1 c1 ... c1

Figure 1: PoA example for truth-biased voters
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Similar results can be established for randomized tie-breaking as well. Even though
these results are not encouraging, PoA is only a worst-case analysis and we expect a better
performance on average. Indeed, for the truth-biased model, this is supported by the exper-
imental evaluation in [21], who showed that in the truth-biased model most PNE identified
in their simulations had good social welfare properties. Formalizing their observations, i.e.,
providing an average-case analysis of the quality of PNE in voting games, is a promising
topic for future work.

6 Conclusions

We have characterized PNE of Plurality voting for several combinations of secondary pref-
erences and tie-breaking rules. Our complexity results are summarized in Table 1.

Our results extend to the setting where some of the voters are principled, i.e., always vote
truthfully (and never abstain). Due to space constraints, we are unable to fully describe
these extensions (see [9]). Briefly, the presence of principled voters has the strongest effect on
lazy voters and lexicographic tie-breaking, as illustrated by the following example, whereas
for other settings the effect is less pronounced.

Example 7. Consider an election over a candidate set C = {c1, . . . , cm}, m > 1, where
there are two principled voters who both vote for cm, and two lazy voters who both rank
cm last. Then the ballot vector where both lazy voters abstain is a PNE (with winner cm).
Moreover, for every j ∈ [m− 1] the ballot vector where both lazy voters vote for cj is a PNE
as well (with winner cj).

In the absence of principled voters, PNE for lazy voters require very precise coordination
among the voters and seem to be very different from what we observe in real life. In contrast,
for truth-biased voters the presence of a strong candidate implies the existence of a truthful
equilibrium, which requires little coordination among the players. It is therefore tempting
to conclude that truth bias has a greater explanatory power than laziness. However, we
demonstrated that the presence of principled voters changes this equation. Extending our
analysis to a mixture of all three voter types is perhaps the most prominent open problem
suggested by our work.

SingleNE TieNE ExistNE

(L, RL) P (Cor. 1) P (Cor. 1) P (Cor. 1)

(L, RC) P (Cor. 2) NPc (Cor. 2) NPc (Cor. 2)

(L, RV ) P (Cor. 2) NPc (Cor. 2) NPc (Cor. 2)

(T , RL) NPc (Thm. 3) NPc (Thm. 3) NPc (Thm. 3)

(T , RC) NPc (Cor. 3) NPc (Cor. 3) NPc (Cor. 3)

(T , RV ) NPc (Cor. 3) NPc (Cor. 3) NPc (Cor. 3)

Table 1: Complexity results: P stands for “polynomial-time solvable”, NPc stands for “NP-
complete”.
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