
Natural Interviewing Equilibria for Stable

Matching

Joanna Drummond, Allan Borodin, and Kate Larson

Abstract

Stable matching problems are ubiquitous, though much of the work on stable match-
ing assumes that both sides of the market are able to fully specify their preference
orderings. However, as the size of matching markets grow, this assumption becomes
unrealistic, and so there has been interest in understanding how agents may use
interviews to refine their preferences over subsets of alternatives. In this paper we
study a market where one side (hospital residency programs) maintains a common
preference master list, while the other side (residents) have idiosyncratic preferences
which they can refine by conducting a limited number of interviews. The question
we study is How should residents choose their interview sets, given the choices of
others? We provide a payoff function for this imperfect information game, and find
that this game always has a pure strategy equilibrium. Moreover, when residents
are restricted to two interviews and their preferences are distributed according to
a φ-Mallows model with low dispersion, there is a unique Bayesian equilibrium in
which residents interview assortatively: each resident pair r2j , r2j+1 interviews with
hospitals h2j , h2j+1. We observe that with high dispersion, assortative interviewing
is not an equilibrium.

1 Introduction

Real world matching problems are ubiquitous, and cover many domains. One of the most
widely studied matching problems in economics is the canonical stable matching problem
(SMP) [7]. Finding a stable matching is a goal of many real-world matching markets,
including college admissions, school choice, reviewer-paper matching, various labor market
matching problems [17], and, famously, the residency matching problem, where residents
are matched to hospital programs via a centralized matching program (such as the National
Residency Matching Program, NRMP, in the United States) [21].

This notion of stability, where no one in the market has both the incentive and ability
to change their partner, has been empirically shown to be a very valuable property in real-
world markets. Repeated improvement to stable matching mechanisms for the American
medical market halted unraveling in that market and in other matching markets, central-
ized mechanisms that produced a stable match tended to halt unraveling, while unstable
mechanisms tended to be abandoned [21]. Many of these markets implement the Deferred
Acceptance (DA) mechanism, first introduced in Gale and Shapley’s seminal paper [7].

However, in practice all of these mechanisms assume that participants provide their full
preferences to the mechanism. Even if it is in participants’ best interest to do so (as DA
is strategy-proof for one side of the market), it is frequently infeasible for participants to
list all alternatives they find acceptable. In the NRMP in 2015, there were 4,012 first year
hospital programs that residents could apply to [19], however residents tend to apply to an
average of only 11 programs, spending between $1,000 to $5,000 to do so [1].

This implies that, even if resident-proposing Deferred Acceptance (rp-da) is the mech-
anism used, residents must be strategic about what hospital programs they choose to inter-
view with, as they cannot be matched to a program they do not interview with. If there
is too much competition for the hospitals they choose to interview with, residents risk not
being matched at all. There is significant evidence of this happening, as an aftermarket



(SOAP) exists for the NRMP, having matched 1,666 programs to doctors in 2015, out of
roughly 30,000 initial available positions [19].

While the residency matching market is one prominent example of this, these difficulties
arise in other markets as well: university departments have limited budgets to interview fac-
ulty candidates, and candidates have limited time to interview; reviewers only have limited
time to screen papers for their ability to review; high school students have limited funds to
apply to colleges. However, little work has investigated (from a game-theoretic viewpoint)
participants’ strategic considerations in markets like these. Of the papers that have (e.g.,
[3, 2]), the markets studied have been decentralized matching markets. To the authors’
knowledge, the only previous work that has investigated the strategic considerations partic-
ipants in the market make when they know they will be matched via a centralized matching
mechanism, such as DA, has assumed all participants in the market are ex-ante indifferent
between all alternatives [11]. Our goal is to extend this work, and investigate when residents
know their preferences are drawn according to some known (non-uniform) distribution, but,
like Lee and Schwarz, do not know their idiosyncratic instantiation of that draw until after
they choose their interviewing set.

To begin investigating this problem, we focus on using the residency matching problem as
our motivating example, though we do make some simplifying assumptions when modeling
to begin investigating the equilibria of this interviewing market. We assume that residents
choose their interviewing sets (as they are the ones who have to pay to interview), that
hospitals will find anyone who interviews with them acceptable, and that hospitals list
their true preferences (i.e., there is no strategic behavior after the interviewing process is
complete1). We also assume that residents only know their idiosyncratic preferences after
having conducted their interviews. More importantly, we assume that there is a fixed
ranking a priori over all residents that all hospitals share, and residents know their ranking
(a “master list”). While a significant restriction, we note that this assumption mimics some
real-world markets. For example, university entrance in Turkey is determined solely by a
universal test score, and participants know their test score before applying to universities
[8]. Chinese university matching markets likewise use a master list, and the market runs a
centralized mechanism [22].

We first formalize a payoff function for any given resident in this game, and show that
a pure strategy equilibrium for this game always exists (with very little restrictions on the
distribution that residents’ preferences are drawn from). We then investigate equilibria
under one specific distribution, a φ-Mallows model. While we also restrict residents to two
interviews to obtain initial results and gain insight, we conjecture the same conclusions hold
for arbitrary, fixed number of interviews.2 Under this model, there is some consistent, agreed
upon reference ranking (e.g., the US News & World Report’s Best College Rankings), and
all residents’ preferences are drawn according to a dispersion parameter φ. When dispersion
is low (i.e., residents believe their preferences and others’ preferences are very similar to the
reference ranking), we show that it is an equilibrium for residents to interview assortatively
in tiers: the best residents apply to the best hospitals, and the worst residents apply to
the worst hospitals. This characterizes an equilibrium similar to that presented in Lee and
Schwarz [11], however, our equilibrium arises naturally via the incentives in the market, and
covers a very different range of ex-ante preference distributions than theirs does.

Furthermore, our results are consistent with the intuition that residents interview with
the best hospitals that they think they have a good chance of being matched with. Interest-
ingly, when preferences are not highly dispersed, we find no benefit for “reach” or “safety”
choices, unlike previous work with decentralized matching mechanisms (e.g., [3, 2]). How-

1Residents have no incentive to be strategic after they choose their interviewing set, as the matching
mechanism is rp-da.

2Additionally, some real-world markets only have one interview (e.g., [22]).



ever, we also find evidence of a strong trade-off between participants favoring more choice
over higher expected valuation of an alternative when residents’ preferences are highly vari-
able.

In Section 2, we further discuss previous literature, and define a φ-Mallows model distri-
bution. In Section 3, we formally describe the game we investigate in this paper. Section 4
provides an equilibrium analysis, showing that under an arbitrary number of interviews and
with an arbitrary preference distribution for residents, a pure equilibrium always exists. We
then explicitly characterize that equilibrium for two interviews and residents’ preferences
drawn from a Mallows model with low dispersion. Our analysis suggests many extensions
which we discuss in Section 5. We finish with a brief conclusion in Section 6.

2 Background

In this paper we investigate the stable matching problem, as standardly defined [7]. A stable
matching is a matching that is individually rational (no one would rather go unmatched than
be matched to the alternative they are matched to) and does not contain any blocking pairs.
A blocking pair is a resident/hospital pair that both prefer to be matched with each other
than their assigned match.

The Deferred Acceptance (DA) algorithm [7] is one of the most famous algorithms for
solving stable matching problems. In this algorithm, one side of the market “proposes” to
the other, which chooses to be tentatively matched to the best alternative out of all proposals
received thus far. Resident-proposing DA (rp-da) runs in polynomial time, and has several
nice properties: the resulting matching is guaranteed to be stable and resident-optimal (and
hence resident strategy-proof) [21].

While there has been great interest in finding stable matchings for various markets, little
work has investigated how residents choose who they interview with, particularly in a game
theoretic setting. Some work has investigated interviewing and partial preferences in stable
matching problems. Rastegari et al. investigate minimal interviewing policies [20]. They
show that, in general, finding such a policy is NP-hard, but under certain preference restric-
tions, an algorithm that finds a minimal interviewing policy exists. Note that their result
relies on a few assumptions: first, they assume that participants give all known preference
information (i.e., any information that is known without having to perform interviews). Im-
portantly, they also require that the resulting matching is stable and resident-optimal under
all possible completions of the currently known partial preferences. This guarantees that
there are no potential blocking pairs after all interviews have been performed, no matter
what agents’ underlying preferences are. Thus, the number of interviews required is highly
dependent on the amount of initial information agents provide; unless agents can provide a
large amount of information initially to the algorithm, they will be forced to perform a large
number of interviews. Thus, while this algorithm provides strong guarantees, participants
in the market must still provide a great deal of information. Furthermore, Rastegari et
al. do not investigate any incentive compatibility issues regarding their algorithm. Using
heuristics, Drummond and Boutilier [6] investigate a similar problem and likewise do not
investigate incentive compatibility.

Chade et al [2] investigate search frictions in the college admissions problem. This prob-
lem investigates a Bayesian approach to students deciding where to interview. Under this
model, students know which college is more desirable, and colleges have noisy information
about which students are most desirable. They then investigate equilibria under this model,
finding a tractable separable solution. This work importantly differs from our model in that
the admissions process is decentralized, and thus any student’s chance of admission is mod-
eled independent of any other students’ behavior. As our matching mechanism is rp-da,



we cannot make this independence assumption.
Chade and Smith [3] investigate a similar problem, with similar motivations as those

discussed here. They assume that all residents agree perfectly on the hospital ranking,
whereas hospitals’ preferences are dependent on noisy signals of students’ caliber. However,
they investigate a decentralized market, instead of one running DA.

Coles et al. [4] discuss signaling in matching markets. Agents’ preferences are distributed
according to some (restricted) a priori known distributions, and each agent knows their own
preferences. Firms can send at most one job offer, and workers can send one signal to a firm
indicating their interest. Under this setting, firms can do better than simply offering their
top candidate a job. In some ways, this achieves more of the overlap desired by the Lee and
Schwarz perfect overlap equilibrium [11] without having any firm coordination, but requires
extra machinery not explicitly present in matching markets like the NRMP. Furthermore,
Kushnir [9] provides an example where signaling is harmful.

The work most closely related to the problem posed in this paper investigates an inter-
viewing game, where firms and workers interview with each other in order to be matched
[11]. This is a two-stage game, where firms choose to interview with workers for some fixed
cost. These interviews reveal both firms’ and workers’ preferences. Then, all participants in
the market submit the results of their interviews to the matching mechanism, firm-proposing
deferred acceptance. Their results show that unless firms coordinate when picking their in-
terviewing set, picking k workers to interview at random is the firm’s best strategy. If firms
do coordinate, it is best for them to interview with perfect overlap (i.e., the interviews form
n/k complete bipartite disconnected components).

Lee and Schwarz make the following assumptions: firms bear all cost of interviewing
workers; firms and workers must interview with each other to be matched; firms may find
some workers they interview unemployable; workers prefer all firms over being unemployed;
and, most importantly, all firms and workers are ex-ante homogeneous, with agents’ revealed
preferences idiosyncratic and independent [11].

This last assumption is an incredibly strong one; for their results to hold, either agents
have effectively no information about their preferences before they interview, or the market
must be perfectly decomposable into homogeneous sub-markets that are known before the
interviewing process starts. (That is, everyone knows and agrees on who the most desirable
firms and workers are, but preferences between those top workers are ex-ante homogeneous;
note that this is equivalent to all agents having block-correlated preferences, and those
blocks are known ex-ante). In this paper, we thus focus on investigating a very different set
of assumptions from Lee and Schwarz, but find a similar, naturally arising equilibrium.

2.1 Probabilistic Preference Models

While the payoff function as formulated in Section 3.2 is indifferent with respect to the
probability distribution, it is currently formulated as a distribution over rankings. Two
commonly studied distributions over rankings are the Plackett-Luce model [18, 13] and the
φ-Mallows model [14, 15].

When characterizing equilibria for a specific distribution, we focus on the φ-Mallows
model, as there is an intuitive relationship between the parameters of the model, and how
“similar” market participants’ preferences are. The Mallows model is characterized by a
reference ranking σ, and a dispersion parameter φ ∈ (0, 1], 3 which we denote as Dφ,σ. Let
A denote the set of alternatives that we are ranking, and let P (A) denote the set of all

3A φ-Mallows model is not well defined for φ = 0, but if all residents are guaranteed to draw the reference
ranking, the equilibrium is trivial.



permutations of A. The probability of any given ranking r is:

Pr(r|Dφ,σ) =
φd(r,σ)

Z

Here d is Kendall’s τ distance metric, and Z is a normalizing factor; Z =
∑
r′∈P (A) φ

d(r,σ) =

(1)(1 + φ)(1 + φ+ φ2)...(1 + ...+ φ|A|−1), as shown in [12].
As φ→ 0, the distribution approaches drawing the reference ranking σ with probability

1; when φ = 1, this is equivalent to drawing from the uniform distribution. The Mallows
model (and mixtures of Mallows) have plausible psychometric motivations and are commonly
used in machine learning [16, 10, 12]. Mallows models have also been used in previous
investigations of preference elicitation schemes for stable matching problems (e.g., [5, 6]).

3 Model

There are n residents and n hospital programs. The set of residents is denoted by R =
{r0, r1, ..., rn−1}; the set of hospital programs is denoted by H = {h0, h1, ..., hn−1}. We are
interested in one-to-one matchings which means that residents can only do their residency
at a single hospital, and that hospitals can accept at most one resident. A matching is a
function µ : R∪H → R∪H, such that ∀r ∈ R, µ(r) ∈ H∪{r}, and ∀h ∈ H, µ(h) ∈ R∪{h}.
If µ(r) = r or µ(h) = h then we say that r or h is unmatched. A matching µ is stable if
there does not exist some (r, h) ∈ R×H, such that h �r µ(r) and r �h µ(h).

Both hospitals and residents have (strict) preferences over each other, and we let P (H)
and P (R) denote the sets of all possible preference rankings over H and R respectively.
We assume that hospitals have identical preferences over all residents, which we call the
master list, �H . Without loss of generality, let �H= r0 � r1 � . . . � rn−1 where ri �H rj
means that ri is preferred to rj , according to �H . We further assume that the master
list is common knowledge to all members of H and R. That is, all hospitals agree on the
preference ranking over residents and each resident knows where they, and all others, rank in
the list. While each resident, r, has idiosyncratic preferences over the hospitals, we assume
that these are drawn i.i.d. from some common distribution D , and that this is common
knowledge. If resident r draws preference ranking η from D , then hi �η hj means that
hi is preferred to hj by r under η. We assume there is some common valuation function
v : H × P (H) 7→ R, applied to rankings η drawn from D such that, given any η ∈ P (H)
with hi �η hj , v(hi, η) > v(hj , η).

Critical to our model is the assumption that residents do not initially know their true
preferences, but can refine their knowledge by conducting interviews. We let I(rj) ⊂ H
denote the interview set of resident rj , and assume that |I(rj)| ≤ k for some fixed k ≤ n.
Once rj has finished interviewing, rj knows their preference ranking over I(rj). It then
submits this information to the matching algorithm, resident-preferred deferred acceptance
(rp-da). The matching proceeds in rounds, where in each round unmatched residents
propose to their next favorite hospital from their interview set to whom they have not yet
proposed. Each hospital chooses its favorite resident from amongst the set of residents who
have just proposed and its current match, and the hospital and its choice are then tentatively
matched. This process continues until everyone is matched. The resulting matching, µ, is
guaranteed to be stable, resident-optimal, and hospital-pessimal [7].

3.1 Description of the Game

We now describe the Interviewing with a Limited Budget game:



1. Each resident r ∈ R simultaneously selects an interviewing set I(r) ⊂ H, based on
their knowledge of D and the hospitals’ master list �H , where |I(r)| ≤ k.

2. Each resident, r, interviews with hospitals in I(r) and discovers their preferences over
members of I(r).

3. Each resident reports their learned preferences over I(r) and reports all other hospitals
as unacceptable, and each hospital reports the master list to a centralized clearing-
house, which runs resident proposing deferred acceptance (rp-da), resulting in the
matching µ.

3.2 Payoff function for Interviewing with a Limited Budget

Let M be the set of all matchings, and let µ denote the ex-post matching resulting from
all agents playing the Interviewing with a Limited Budget game. In order for resident rj to
choose their interview set I(rj) ⊂ H, it has to be able to evaluate the payoff it expects to
receive from that choice, where the payoff depends on both the actual preference ranking it
expects to draw from D , the interview sets of the other residents, and the expected matching
achieved when running rp-da using the hospitals’ master list. Crucially, we observe that rj
need only be concerned about the interview set of resident ri when ri �H rj . If rj �H ri
then, because we run rp-da, rj would always be matched before ri with respect to any
hospital they both had in their interview set. Thus, we can denote rj ’s expected payoff for
choosing interview set S by:

urj (S) = urj (S|D , I(r0), ..., I(rj−1)).

Given fixed interviewing sets I(r0), I(r1), ..., I(rj−1), and some partial match m =
µ|r0,r1,...,rj−1

, we must compute the probability that m happened via rp-da. Let m(ri)
denote who resident ri is matched to under m. For any ri, there is a set of rankings consis-
tent with ri being matched with m(ri) under rp-da (and hospitals’ master list �H). Denote
this set as T (ri,m). Formally, T (ri,m) ⊆ P (H) is defined as:

T (ri,m) = {ξ ∈ P (H)|∀h′ ∈ H s.t. h′ ∈ I(ri) ∧ h′ �ξ m(ri),∃ra �H ri,m(ra) = h′}

Given the interviewing sets of residents r0, . . . , rj−1, the probability of partial match m is

Pr(m|I(r0), ..., I(rj−1)) =
∏

ri∈{r0,...,rj−1}

∑
ξ∈T (ri,m)

Pr(ξ|D). (1)

where Pr(η|D) is the probability that some resident drew ranking η ∈ P (H) from D .
Using Eq. 1, we can now determine the probability that some hospital h is matched

to rj using rp-da, when rj has interviewed with set S, and has preference list η. We
simply sum over all possible matches in which this could happen. Because rp-da is resident
optimal, and all hospitals have a master list, any hospital that rj both interviews with
and prefers to h must already be matched. We formally define the set of such matchings,
M∗(S, η, I(r0), ..., I(rj−1)):

M∗(S, η, I(r0), ..., I(rj−1), h) =

{m ∈M |m(rj) = h;∀ri ∈ {r0, ..., rj−1}m(ri) ∈ I(ri);

and ∀x ∈ S, if x �η h,∃ri ∈ {r0, ..., rj−1} s.t. x ∈ I(ri) and m(ri) = x}



Thus, the probability that h is matched to rj using rp-da given η, S, and the interviewing
sets for all residents preferred to rj on the hospitals’ master list is

Pr(µ(h) = rj |η, S, I(r0), ..., I(rj−1)) =
∑

m∈M∗(S,η,I(r0),...,I(rj−1),h)

Pr(m|I(r0), ..., I(rj−1)). (2)

Finally, we have all of the building blocks to formally define the payoff function. Recall
that v(h, η) is the imposed utility function, which is deterministic given η. Then, our payoff
function is:

urj (S) =
∑
h∈S

∑
η∈P (H)

v(h, η)Pr(η|D)Pr(µ(h) = rj |η, S, I(r0), ..., I(rj−1)) (3)

Intuitively, what the payoff function in Eq. 3 does is weight the value for some given
alternative by how likely rj is to be matched to that item, given the interview sets of the
“more desirable” residents, r0, . . . , rj−1.

As an illustrative example, imagine there are two residents, r0 and r1, each of whom
have interviewed with hospitals h0 and h1. Resident r0 will be matched with whom ever she
most prefers, while r1 will be assigned the other. The probability that r1 will be assigned
h0 is simply the probability that r0 drew ranking h1 � h0, while the probability that r1 is
matched to h1 is the probability that r0 drew ranking h0 � h1.

4 Equilibrium Analysis

We provide an equilibria analysis for the game as presented in Section 3. We first show that a
pure equilibrium for this game always exists, but may be difficult to calculate. We then show
that under some additional distributional assumptions, for two interviews, residents’ best
response is easy: any two residents r2j , r2j+1 will both interview with hospitals h2j , h2j+1,
forming the perfect overlap interviewing structure found in the Lee and Schwarz paper [11],
but under very different modelling assumptions.

Theorem 1 A pure strategy always exists for the Interviewing with a Limited Budget game.

Proof: We wish to show that if every resident chooses their expected utility maximizing
interviewing set, this forms a pure strategy. Given any resident rj who is jth in the hospitals’
rank ordered list, rj ’s expected payoff function only depends on residents r0, ..., rj−1. As
rj knows that each other resident ri is drawing from distribution D iid, she can calculate
r0, ..., rj−1’s expected utility maximizing interview set. Her payoff function depends only
on D and I(r0), ..., I(rj−1), both of which she now has. She then calculates the expected
payoff for each

(
n
k

)
potential interviewing sets, and interviews with the one that maximizes

her expected utility. �
Our equilibrium analysis for two interviews when all residents draw preferences from

a Mallows model with low dispersion requires some additional results regarding Mallows
models, as shown in Lemma 2, Corollary 3, and Corollary 4. To the best of our knowledge,
the following results regarding Mallows models have not been stated previously, and may
be of more general interest. The proofs are provided in Appendix A.

Lemma 2 Given some Mallows model Dφ,σ with fixed dispersion parameter φ and reference
ranking σ = ai � aj, then the probability that a ranking η is drawn from Dφ,σ such that

ai �η aj is equal to drawing from some distribution Dφ,σ′ where σ is a prefix of σ′. By
symmetry, this proof also holds when σ is a suffix of σ′.



Corollary 3 Given any reference ranking σ and two alternatives ai, aj such that
rank(aj , σ) = rank(ai, σ) + 1, then Pr(ai � aj |Dφ,σ) = 1

1+φ .

Corollary 4 Given any reference ranking σ and three alternatives aw, ax, ay such that
rank(ax, σ) = rank(aw, σ) + 1 and rank(ay, σ) = rank(ax, σ) + 1 and some η ∈
P ({aw, ax, ay}), then the probability that we draw some ranking β consistent with η is:

Pr(β|Dφ,σ) = φd(η,aw�ax�ay)

(1+φ)(1+φ+φ2) .

We now begin the proofs for the main equilibrium characterization. We show that, for
two interviews (k = 2) with a sufficiently small dispersion parameter, there is a naturally
arising equilibrium for all residents to interview assortatively in tiers. As discussed in Section
5, we note that the following result does not hold for all values of φ.

Theorem 5 Given residents’ valuation function v(h, η) = n − rank(h|η) (i.e., Borda
score) for any ranking η and market size n, for a Mallows model with reference ranking
σ = h0, h1, ..., hn−1 with dispersion parameter φ such that 0 < φ ≤ 0.265074, resident r1
maximizes her expected payoff by interviewing with {h0, h1}.

Proof Sketch: We provide a proof sketch here, but leave full details to the appendix.
As resident r0 greedily chooses to interview with {h0, h1}, we note that resident r1 must

calculate a trade-off between a higher expected value for hospitals in a potential interviewing
set, and competition for those hospitals. We prove that r1 maximizes her expected payoff
in this interval by bounding the difference in expected payoff between interviewing sets:
ur1(h0, h1|Dφ∗,σ)− ur1(hi, hj |Dφ∗,σ) ≥ 0, for all i, j.

Note that r1 has
(
n
k

)
interviewing sets to choose from, but many are domi-

nated by some other set with equal availability probability, but higher expected value.
{h0, h1}, {h0, h2}, {h1, h2}, {h2, h3} are undominated. Intuitively, the difference between
these sets is a trade-off between a higher expected valuation of the hospitals, versus more
competition with resident r0. We compute lower bounds comparing the difference in ex-
pected utility between interviewing with {h0, h1} and each of the potential interview sets
independently. We provide a proof sketch for {h1, h2}, but omit all other details to the
appendix (as the arguments are analogous).

We prove that choosing {h0, h1} is better than choosing {h1, h2}, for all values of φ such
that 0 < φ ≤ 0.265074. We prove this by summing over all possible preference rankings
that induce a specific permutation of the alternatives h0, h1, h2. We then pair these summed
permutations in such a manner that makes it easy to find a lower bound for ur1({h0, h1})−
ur1({h1, h2}). This lower bound is entirely in terms of φ, meaning that for any φ such that
this bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations of h0, h1, h2 as follows:
Case 1: all rankings η consistent with h1 � h0 � h2 or η′ consistent with h1 � h2 � h0;
Case 2: all rankings η consistent with h0 � h1 � h2 or η′ consistent with h2 � h1 � h0;
Case 3: all rankings η consistent with h0 � h2 � h1 or η′ consistent with h2 � h0 � h1.

Note that as we have enumerated all possible permutations of h0, h1, h2, these three cases
generate every ranking in P (H). Furthermore, for any one of the three cases, we can iterate
over only all possible rankings η that are consistent with the first member of the pair, and
generate the ranking η′ consistent with the second member of the pair by simply swapping
two alternatives in the rank. Moreover, given some η, the number of discordant pairs in η′

is simply the number in η, plus the number of additional discordant pairs between h0, h1, h2
caused by swapping the two alternatives.

For clarity, let ur1({h0, h1})−ur1({h1, h2}) = U1 +U2 +U3, where U1, U2, U3 correspond
to our three cases. We also introduce the notation Prµ(ri)(h) to denote the probability that
ri is matched to hospital h under matching µ. That is, Prµ(ri)(h) = Pr(µ(ri) = h).



Case 1. Because we have fixed h1 � h0 � h2 or h1 � h2 � h0, we know exactly what
r1’s match will be, given r0’s match. As we know r0’s interviewing set ({h0, h1}), and the
distribution r0’s preferences are drawn from iid, we know the likelihood that either h0 or
h1 is available; by Lemma 3, Pr(µ(r0) = h0) = 1

1+φ . Using this information, the payoff

function, and the definition of η, η′, we find a lower bound for U1:

U1 ≥ Prµ(r0)(h1)(1)(1− φ)Pr(h1 � h0 � h2) (4)

=

(
φ

1 + φ

)(
φ

(1 + φ)(1 + φ+ φ2)

)
(1− φ) (5)

Case 2. We fix h0 � h1 � h2 or h2 � h1 � h0. This case is analogous to Case 1:

U2 ≥ Pr(h0 � h1 � h2)
2

1 + φ
(φ− φ3 − φ4) (6)

Case 3. We fix h0 � h2 � h1 or h2 � h0 � h1. Again, we look at pairs of rankings
η, η′, where η is consistent with h0 � h2 � h1, and η′ is identical to η, except rank(h0, η) =
rank(h2, η

′), and rank(h2, η) = rank(h0, η
′).

Then, as before, we sum over all possible rankings consistent with h0 � h2 � h1, but we
break this into two subcases, so that U3 = U3a + U3b:

U3a =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h0)[(v(h1, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h1, η
′)− v(h2, η

′))Pr(η′|Dφ,σ)]

U3b =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)[(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η
′)− v(h2, η

′))Pr(η′|Dφ,σ)]

Case U3b is similar to Cases 1 and 2:

U3b ≥
φ

φ+ 1
(1− φ)Pr(h0 � h2 � h1) (7)

Case U3a, however, is different from all other cases, in that all terms are negative. We
note that U3a as above is a monotonically decreasing function in terms of n. Thus, if U3a

converges as n→∞, we have found a lower bound for all n. Using this technique, we show
that the following bound holds:

U3a ≥ Prµ(r0)(h0)
−φ

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ) (8)

We have considered all cases, and can now combine them together. We add the bounds
for U1 (Eq. 5), U2 (Eq. 6), U3a (Eq. 8), and U3b (Eq. 7). We simplify and substitute using
Corollaries 3 and 4, giving us:

ur1({h0, h1})− ur1({h1, h2}) ≥
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ)

+
2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(φ− φ3 − φ4)

− φ

(1 + φ)(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

+
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ) (9)



Thus, Eq. 9 gives us a lower bound for the difference in expected utility between {h0, h1}
and {h1, h2} for resident r1, for all n. Using numerical methods to approximate the roots
of Eq. 9, we get that there is a root at 0, and a root at φ ≈ 0.265074.

In the appendix, we provide bounds such that ur1({h1, h2}) − ur1({h2, h3}) ≥ 0 if 0 <
φ < 0.3550107, and that ur1({h0, h1}) − ur1({h0, h2}) ≥ 0 if 0 < φ < 0.413633 (the proofs
are analogous to the one presented here). Thus, for the interval 0 < φ ≤ 0.265074, we have
shown that r1’s best move in this interval is to interview with {h0, h1}. �

Theorem 6 Given residents’ valuation function v(h, η) = n − rank(h|η) for any ranking
η and market size n, for a Mallows model with dispersion parameter φ such that 0 < φ <
0.1707951, if all residents r2f , r2f+1 have interviewed with hospitals h2f , h2f+1 for f < j,
then residents r2j , r2j+1 will interview with hospitals {h2j , h2j+1}.

Proof Sketch: We again omit a full proof to Appendix D. We first note that for any hospital
ha such that ha �σ h2j , interviewing with any other hospital dominates interviewing with ha,
because the probability r2j or r2j+1 will be matched with ha is 0, as ha is already matched to
a more desirable doctor. Likewise, interviewing with any alternative hb such that h2j+3 �σ
hb is dominated by interviewing with h2j+3. Resident r2j does best by greedily choosing the
top two hospitals left, h2j and h2j+1. Resident r2j+1 must again investigate the following un-
dominated interviewing sets: {h2j , h2j+1}, {h2j+1, h2j+2}, {h2j+2, h2j+3}, {h2j , h2j+2}. We
provide a sketch of the comparison between {h2j , h2j+1} and {h2j+1, h2j+2}, leaving the
remainder to Appendix E as the argument is similar. For clarity, let h2j = a0; h2j+1 =
a1; h2j+2 = a2. We adapt the proof used in Theorem 5.

As in the proof for Theorem 5, we look at three cases, pairing all possible permutations
of a0, a1, a2 in the analogous manner. Cases 1 and 2 are completely analogous to the proof in
Theorem 5; the argument in these cases only requires that rank(h0), σ) = rank(h1, σ)− 1 =
rank(h2), σ)− 2. As this holds for a0, a1, a2, the argument holds.

The argument for Case 3, however, does require that h0, h1, h2 are the first three elements
in σ for Case 3a. As the payoff function for 3a is still monotonically decreasing, we provide
a similar proof, but give a weaker lower bound (by a multiplicative factor of 2) to ensure we
count at least the required discordant pairs appropriately.

Using these bounds, we again are able to derive a function entirely in terms of φ, find-
ing a zero at roughly 0.1707951. Thus r2j+1 chooses to interview with {h2j , h2j+1} over
{h2j+1, h2j+2} whenever 0 ≤ φ ≤ 0.1707961. As in Theorem 5, the interviewing set that
imposes the tightest bound on φ is {h2j , h2j+1}. Therefore, h2j+1 chooses to interview with
{h2j , h2j+1} whenever 0 ≤ φ ≤ 0.1707961, as required �

Corollary 7 Given residents’ valuation function v(h, η) = n − rank(h|η), and a set of n
Mallows models, each with reference ranking σ = h0 � h1 � ... � hn−1, but each with
different dispersion parameter φj such that 0 < φj < 0.1707951, every pair of residents
r2j , r2j+1 interviewing with {h2j , h2j+1} forms an equilibrium.

Proof: This is a direct result of combining Theorems 5 and 6. First, resident r0 must greedily
pick interviewing with the two hospitals with the best expected valuation, h0 and h1. As
there is no competition for r0, the payoff function becomes:

ur0(S) =
∑

η∈P (H)

Pr(η|D) max
a∈S

v(a, η)

Then, by Theorem 5, resident r1 interviews with hospitals h0, h1 at φr1 . By Theorem 6, r2, r3
also maximize their expected utility by interviewing with h2, h3. This process iteratively
continues, and by Theorem 6, every pair r2j , r2j+1 maximizes their expected utility by
interviewing with h2j , h2j+1 �.
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5 Observations and Conjectures

While Section 4 provides theoretical guarantees for equilibria under specific distributions
and valuation functions, we hypothesize that this natural equilibrium—residents r2j , r2j+1

interview with h2j , h2j+1 for all j— is present in a much larger range of distributions and
valuation functions.

We note that Figures 1 and 2 provide evidence that the bounds from Theorems 5 and 6
are loose. The markets in Figures 1 and 2 are small (n ≤ 10), so we can exactly calculate
the payoff function. We find that the φ such that r1 is indifferent between interviewing
with {h0, h1} and {h1, h2} appears to converge quickly to approximately 0.46, as shown in
Figure 1. We also find that, contrary to the bound provided in Theorem 6, the value of φ
such that r2j+1 is indifferent between {h2j , h2j+1}, {h2j+1, h2j+2} actually increases as j
increases. This is shown in Figure 2. This leads us to the following conjecture:

Conjecture 8 Given residents’ valuation function v(h, η) = n− rank(h|η), and a Mallows
model with some reference ranking σ = h0 � h1 � ... � hn−1 and dispersion parameter φ∗

such that 0 < φ∗ ≤ 0.46, every pair of residents r2j , r2j+1 interviewing with h2j , h2j+1 forms
an equilibrium.

We find evidence that the perfect interviewing overlap equilibrium noted in the Lee and
Schwarz paper extends to models that are close to uniform. We provide evidence of this
when n = 4, as shown in Figure 3. The expected payoff of the three best interviewing sets are
shown as φ increases from almost identical preferences to fully uniform preferences. Here, we
explicitly see the trade-off between more choice (interviewing with h2, h3 for distributions
close to uniform) and expected value. Interestingly, when φ ∈ [0.5, 0.6], r1’s best option is
to split the difference, and interview with one hospital he is guaranteed to get (h2) and one
hospital that will be available with sufficiently high probability, but has a higher expected
value (h1). This choice from r1 also causes some of the “reach” behavior we see in college
admissions markets; r2’s best response now is to interview with h0, h3 (a “reach” choice, and
a “safe” bet). We hypothesize that there may be many interesting results for preferences
located in this parameter range.

We note that the desired n/k complete bipartite interviewing subgraphs equilibrium as
described by Lee and Schwarz appears to hold for two large regions of the distribution space:
when φ is sufficiently close to 0, and when φ is sufficiently close to 1. When φ is close to
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1, residents choose the set that has the least competition; when φ is close to 0, they choose
the set that has the best hospitals. We thus conjecture:

Conjecture 9 Given residents’ valuation function v(h, η) = n − rank(h|η), and residents’
preferences distributed according to some φ-Mallows model with reference ranking σ, for φ
sufficiently close to 0 or φ sufficiently close to 1, the interview graph forms n/k complete
bipartite components.

We also hypothesize that Theorem 5, Theorem 6, and Corollary 7 can be generalized to
an arbitrary number of interviews. While k = 2 greatly simplifies the payoff function calcu-
lation, the intuition stays the same as the number of interviews increases: when residents
are fairly certain their preferences are all very similar, residents choose to apply to the best
set of hospitals they have non-zero probability of getting matched to.

Conjecture 10 Given residents’ valuation function v(h, η) = n−rank(h|η) for any ranking
η and market size n, for a fixed interviewing budget of k interviews, there exists some φ(k)

(which may be dependent on k) such that for all φ with 0 < φ ≤ φ(k), every block of residents
r2j , ..., r2j+k−1 interviewing with the set of hospitals {h2j , ..., h2j+k−1} forms an equilibrium.

6 Conclusion

We investigate equilibria for interviewing with a limited budget when master lists are present
in the market. We provide a generic payoff function, that is indifferent to both the number
of interviews provided and the distribution used, and use this payoff function to show that
a pure strategy equilibrium always exists for this game.

We then focus on this game when residents’ preferences are drawn from the same dis-
tribution and residents are allowed to interview with two hospitals. We show that there is
a naturally arising equilibrium where the maximum number of residents are matched: resi-
dents assortatively interview in tiers, forming an n/k bipartite interviewing graph structure
seen in work by Lee and Schwarz. However, this structure naturally arises in our model, and
we characterize a very different preference space than the Lee and Schwarz paper, which
investigates the impartial culture model.

This work raises a number of interesting questions. First, we believe that the bounds on
the Mallows model parameters used to characterize the equilibria can be improved, and con-
jecture that the assortive equilibrium exists for φ < 0.46. We also hypothesize that similar
results also hold for different valuation functions (e.g. harmonic) and preference distribu-
tions (e.g. Plackett-Luce). Perhaps the most important direction for future work is relaxing
the master lists assumption; we hypothesize that similar equilibria arise if preferences on
both sides of the market are distributed according to a Mallows model with low dispersion.
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A Proofs of Mallows Lemmas

Lemma 11 Given some Mallows model Dφ,σ with fixed dispersion parameter φ and refer-
ence ranking σ given two alternatives ai and aj such that ai �σ aj, then the probability
that a ranking η is drawn from Dφ,σ such that ai �η aj is equal to drawing from some

distribution Dφ,σ′ where σ is a prefix of σ′. By symmetry, this proof also holds when σ is a
suffix of σ′.

Proof: First, let σ be some ranking with p elements, including elements ai and aj . Let
σ′ be a ranking of p + 1 elements with σ as its prefix, and an additional element ap added

at the end. We prove this by starting from the definition of Pr(ai � aj |Dφ,σ′), and using
algebraic manipulations to show this is equivalent to the definition of Pr(ai � aj |Dφ,σ).

Pr(ai � aj |Dφ,σ′) =

∑
η′∈P ({a0,...,ap−1,ap})ai�aj φ

d(η′,σ′)

1(1 + φ)...(1 + ...+ φp−1 + φp)
(10)

However, because ai, aj are in ranking σ, the only difference between summing over the set
of all rankings in P ({a0, ..., ap})ai�aj and P ({a0, ..., ap−1})ai�aj is that there are p times as
many rankings, one for each permutation generated by P ({a0, ..., ap−1}), each one with ap in
a different place (and thus a different Kendall-τ distance). Fixing some η ∈ P ({a0, ..., ap−1}),
if ap is in the last rank position (as it is in σ′), the distance is simply d(η, σ). If ap is in the
second-to-last position, we have now added in an additional discordant pair, so the distance



is d(η, σ) + 1. Using this, we generate the following:

Pr(ai � aj |Dφ,σ′) =

∑
η∈P ({a0,...,ap−1})ai�aj

∑p
l=0 φ

d(η,σ)+l

1(1 + φ)...(1 + ...+ φp)
(11)

=

[∑
η∈P ({a0,...,ap−1})ai�aj φ

d(η,σ)
][∑p

l=0 φ
l
]

1(1 + φ)...(1 + ...+ φp)
(12)

=

[∑
η∈P ({a0,...,ap−1})ai�aj φ

d(η,σ)
]
(1 + ...+ φp)

1(1 + φ)...(1 + ...+ φp−1)(1 + ...+ φp)
(13)

=

∑
η∈P ({a0,...,ap−1})ai�aj φ

d(η,σ)

1(1 + φ)...(1 + ...+ φp−1)
(14)

= Pr(ai � aj |Dφ,σ) (15)

�

Corollary 12 Given any reference ranking σ and two alternatives ai, aj such that
rank(aj , σ) = rank(ai, σ) + 1, then Pr(ai � aj |Dφ,σ) = 1

1+φ .

Proof: Consider σ = ai � aj , a reference ranking with two elements in it. Then, the set
of all potential rankings such that ai � aj under Dφ,σ is solely the ranking a0 � a1. By the
definition of the Mallows model, this ranking has probability 1

1+φ . We add some arbitrary

prefix σ′ to σ and some arbitrary suffix σ′′ to σ to create a new reference ranking γ. By
Lemma 2, the probability that some η is drawn from Dφ,γ such that ai �η aj is 1

1+φ as
required. �

Corollary 13 Given any reference ranking σ and three alternatives aw, ax, ay such that
rank(ax, σ) = rank(aw, σ) + 1 and rank(ay, σ) = rank(ax, σ) + 1 and some η ∈
P ({aw, ax, ay}), then the probability that we draw some ranking β consistent with η is:

Pr(β|Dφ,σ) = φd(η,aw�ax�ay)

(1+φ)(1+φ+φ2) .

Proof: Consider σ∗ = aw � ax � ay, a reference ranking with three elements in it. The
set of all potential rankings under Dφ,σ∗ such that aw � ax � ay is solely that ranking.
Using the same argument as in Lemma 2, we note that creating some new reference ranking
γ = σ′ � σ∗ � σ′′ and drawing from Dφ,γ does not change the likelihood that we draw a
ranking consistent with aw � ax � ay.

Therefore, the probability that we draw a ranking β consistent with some permutation
η of aw, ax, ay under the distribution Dφ,γ is simply the probability that we drew η under

the distribution Dφ,σ∗ , which is φd(η,σ
∗)

(1+φ)(1+φ+φ2) . �

B Convergence Proof

Lemma 14 Given 0 < φ < 1:

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 1

3(1− φ)3
+

2

3
(16)

As noted in the paper, as n → ∞,
∑∞
w=0

∑∞
a=0

∑∞
b=0 φ

w+a+b → 1
(1−φ)3 . However, by

dropping a and b all the way down to 0, we are counting many items multiple times. We
want to show that:

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 2

3
+

1

3

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (17)



We investigate 3 cases based on the indices of w, a, b: when all three are different, when
exactly two are equal, and when all are the same.
Case 1: w 6= a 6= b. Let w = r, a = s, b = t. The only valid permutation is r < s <
t, as in

∑∞
w=0

∑∞
a=w

∑∞
b=a φ

w+a+b. However, as
∑∞
w=0

∑∞
a=0

∑∞
b=0 φ

w+a+b allows for all
permutations of r, s, t, we end up adding φr+s+t 6 times.
Case 2: Exactly 2 of w, a, b are equal. Then, there are two integers r, s such that r < s
and the two valid permutations for

∑∞
w=0

∑∞
a=w

∑∞
b=a φ

w+a+b are: w = r, a = r, b = s
and w = r, a = s, b = s. One of these permutations adds up to 2r + s, and the other
adds up to r + 2s. However, when summing over all possible permutations, there are three
permutations that add up to 2r+s, and three that add up to r+2s, so we are adding φ2r+s

three extra times, and φr+2s three extra times.
Case 3: w = a = b. Note that in this case there are exactly as many permutations in both.
However, note that we have added 6 times as many φr+s+t in Case 1. Then, for all w > 0
such that w = a = b, there exists some r, s, t such that r + s+ t = 3w. Looking at all 6 of
those permutations such that r+ s+ t = 3w and adding in 3w, we now have 7 permutations
for
∑∞
w=0

∑∞
a=0

∑∞
b=0 φ

w+a+b when we should have 2. As 7/2 > 3, and Case 2 also has 3
times as many permutations, we have added 3φw+a+b more than we should have for any
w, a, b except for w = a = b = 0.

This gives us:

3
( ∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b
)
− 2φ0+0+0 ≤

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (18)

3
( ∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b
)
− 2 ≤

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (19)

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 2

3
+

1

3

∞∑
w=0

∞∑
a=0

∞∑
b=0

φw+a+b (20)

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 2

3
+

1

3(1− φ)3
(21)

C Full proof of Theorem 5

Theorem 15 Given residents’ valuation function v(h, η) = n − rank(h|η) (i.e., Borda
score) for any ranking η and market size n, for a Mallows model with reference ranking
σ = h0, h1, ..., hn−1 with dispersion parameter φ such that 0 < φ ≤ 0.265074, resident r1
maximizes her expected payoff by interviewing with {h0, h1}.

Proof: As resident r0 greedily chooses to interview with {h0, h1}, we note that resident r1
must calculate a trade-off between a higher expected value for hospitals in a potential inter-
viewing set, and competition for those hospitals. We prove that r1 maximizes her expected
payoff in this interval by bounding the difference in expected payoff between interviewing
sets: ur1(h0, h1|Dφ∗,σ)− ur1(hi, hj |Dφ∗,σ) ≥ 0, for all i, j.

Note that for any pair of alternatives hi, hj such that hi and hj have the same prob-
ability of being available, if hi �σ hj , interviewing with hi dominates interviewing with
hj . When applied to elements of an interviewing set, these swaps create a chain of dom-
inated sets. Instead of comparing all

(
n
k

)
sets to find the best interviewing set, we can

just compare the undominated ones. Thus, for r1, the set of undominated interviewing
sets is: {h0, h1}, {h0, h2}, {h1, h2}, {h2, h3}. Intuitively, the difference between these sets is
a trade-off between a higher expected valuation of the hospitals, versus more competition



with resident r0. We compute lower bounds comparing the difference in expected utility
between interviewing with {h0, h1} and each of the potential interview sets independently.
We present the case for {h1, h2} (as we find it imposes the tightest bound), but leave the
remainder of the set to Section E for clarity, as the arguments are analogous.

We prove that choosing {h0, h1} is better than choosing {h1, h2}, for all values of φ such
that 0 < φ ≤ 0.265074. We prove this by summing over all possible preference rankings
that induce a specific permutation of the alternatives h0, h1, h2. We then pair these summed
permutations in such a manner that makes it easy to find a lower bound for ur1({h0, h1})−
ur1({h1, h2}). This lower bound is entirely in terms of φ, meaning that for any φ such that
this bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations of h0, h1, h2 as follows:
Case 1: all rankings η consistent with h1 � h0 � h2 or η′ consistent with h1 � h2 � h0;
Case 2: all rankings η consistent with h0 � h1 � h2 or η′ consistent with h2 � h1 � h0;
Case 3: all rankings η consistent with h0 � h2 � h1 or η′ consistent with h2 � h0 � h1.

Note that as we have enumerated all possible permutations of h0, h1, h2, these three cases
generate every ranking in P (H). Furthermore, for any one of the three cases, we can iterate
over only all possible rankings η that are consistent with the first member of the pair, and
generate the ranking η′ consistent with the second member of the pair by simply swapping
two alternatives in the rank. Moreover, given some η, the number of discordant pairs in η′

is simply the number in η, plus the number of additional discordant pairs between h0, h1, h2
caused by swapping the two alternatives.

For clarity, let ur1({h0, h1})−ur1({h1, h2}) = U1 +U2 +U3, where U1, U2, U3 correspond
to our three cases. We also introduce the notation Prµ(ri)(h) to denote the probability that
ri is matched to hospital h under matching µ. That is, Prµ(ri)(h) = Pr(µ(ri) = h).

Case 1. Because we have fixed h1 � h0 � h2 or h1 � h2 � h0, we know exactly what r1’s
match will be, given h0’s match. Additionally, given any η consistent with h1 � h0 � h2,
we generate η′ consistent with h1 � h2 � h0 by letting rank(h0, η) = rank(h2, η

′) and
rank(h2, η) = rank(h0, η

′). This adds one additional discordant pair, so d(η′, σ) = d(η, σ)+1.
We first note that if r0 is assigned h0, r1 gets h1 in either interviewing set, and thus

the difference in expected utility is 0. Focusing on when r0 is assigned h1, we calculate the
difference in r1’s expected utility between the two interviewing sets:

U1 =
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)
[
(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η

′)− v(h2, η
′))Pr(η′|Dφ,σ)

]
By construction, we can rewrite all η′ in terms of η, switching the rank as constructed, and
adding 1 to all distances (as d(h1 � h0 � h2, h1 � h2 � h0) = 1):

U1 =
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)
[
(v(h0, η)− v(h2, η))

φd(η,σ)

Z
+ (v(h2, η)− v(h0, η))

φd(η,σ)+1

Z

]
(22)

=
∑
η∈P (H)h1�h0�h2

Prµ(r0)(h1)(v(h0, η)− v(h2, η))
φd(η,σ)

Z
(1− φ) (23)

Note that by Corollaries 3 and 4,
∑
η∈P (H)h1�h0�h2

φd(η,σ)

Z = Pr(h1 � h0 � h2), and

Prµ(r0)(h1) = φ
1+φ . Also note that by construction, everything in Eq. 23 is positive.

Therefore, v(h0, η)− v(h2, η) ≥ 1, which implies that:

U1 ≥ Prµ(r0)(h1)(1)(1− φ)Pr(h1 � h0 � h2) (24)

=

(
φ

1 + φ

)(
φ

(1 + φ)(1 + φ+ φ2)

)
(1− φ) (25)



Case 2. For this case we fix h0 � h1 � h2 or h2 � h1 � h0. Again, we list all η
such that h0 � h1 � h2, and transform that into an η′ that is identical to η, except except
rank(h0, η

′) = rank(h2, η) and rank(h2, η
′) = rank(h0, η). Note that d(η′, σ) = d(η, σ) + 3.

U2 =
∑
η∈P (H)h0�h1�h2

Prµ(r0)(h0)
[
(0)Pr(η|Dφ,σ) + (v(h1, η

′)− v(h2, η
′))Pr(η′|Dφ,σ)

]
+ Prµ(r0)(h1)

[
(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η

′)− v(h2, η
′))Pr(η′|Dφ,σ)

]
=
∑
η∈P (H)h0�h1�h2

Prµ(r0)(h0)(v(h1, η)− v(h0, η))

(
φd(η,σ)+3

Z

)

+ Prµ(r0)(h1)

[
(v(h0, η)− v(h2, η))

(
φd(η,σ)

Z

)
+ (v(h2, η)− v(h0, η))

(
φd(η,σ)+3

Z

)]
By the definition of the valuation function v, v(h1, η) − v(h0, η) ≥ v(h2, η) − v(h0, η).

Then:

U2 ≥
∑

η∈P (H)h0�h1�h2

Prµ(r0)(h0)(v(h2, η)− v(h0, η))
φd(η,σ)+3

Z

+ Prµ(r0)(h1) (v(h0, η)− v(h2, η))

(
φd(η,σ) − φd(η,σ)+3

Z

)
(26)

=
∑

η∈P (H)h0�h1�h2

φd(η,σ)

Z

[ 1

1 + φ
(−φ3) +

φ

1 + φ
(1− φ3)

]
(v(h0, η)− v(h2, η)) (27)

=
∑

η∈P (H)h0�h1�h2

φd(η,σ)

Z(1 + φ)
(v(h0, η)− v(h2, η))(φ− φ3 − φ4) (28)

Note that if 0 < φ ≤ 0.7548, φ− φ3 − φ4 ≥ 0, all terms in Eq 28 are positive, as v(h0, η)−
v(h2, η) ≥ 2. We thus impose our first restriction on φ; we now only look at the range where
0 ≤ φ ≤ 0.7548. Making the substitution that v(h0, η) − v(h2, η) ≥ 2 by construction, we
get the following:

U2 ≥ Pr(h0 � h1 � h2)
2

1 + φ
(φ− φ3 − φ4) (29)

Case 3. We fix h0 � h2 � h1 or h2 � h0 � h1. Again, we look at pairs of rankings
η, η′, where η is consistent with h0 � h2 � h1, and η′ is identical to η, except rank(h0, η) =
rank(h2, η

′), and rank(h2, η) = rank(h0, η
′).

Then, as before, we sum over all possible rankings consistent with h0 � h2 � h1:

U3 =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h0)[(v(h1, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h1, η
′)− v(h2, η

′))Pr(η′|Dφ,σ)]

+ Prµ(r0)(h1)[(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η
′)− v(h2, η

′)Pr(η′|Dφ,σ)]

We break this equation into two subcases, so that U3 = U3a + U3b:

U3a =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h0)[(v(h1, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h1, η
′)− v(h2, η

′))Pr(η′|Dφ,σ)]

U3b =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)[(v(h0, η)− v(h2, η))Pr(η|Dφ,σ) + (v(h0, η
′)− v(h2, η

′))Pr(η′|Dφ,σ)]



Case U3b is similar to Cases 1 and 2:

U3b =
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)[(v(h0, η)− v(h2, η))
φd(η,σ)

Z
+ (v(h2, η)− v(h0, η))

φd(η,σ)+1

Z
(30)

=
∑
η∈P (H)h0�h2�h1

Prµ(r0)(h1)(v(h0, η)− v(h2, η))[
φd(η,σ)

Z
− φd(η,σ)+1

Z
] (31)

≥ φ

φ+ 1
(1− φ)Pr(h0 � h2 � h1) (32)

Case U3a is different from all other cases, in that all terms are negative. Furthermore,
we note that as a function of n (keeping φ constant), the equation in U3a is monotonically
decreasing. Thus, if this function converges as n → ∞, we have found a lower bound for
U3a for all n.

We analyze v(h1, η) − v(h2, η) independently of v(h1, η
′) − v(h2, η

′), though the analy-
sis is symmetrical. Take v(h1, η) − v(h2, η). Intuitively, we sum over all permutations of
h3, ..., hn−1, and place h0, h1, h2 in all possible indices consistent with the ranking h0 � h2 �
h1. This generates all rankings in the set P (H)h0�h1�h2 . Let σ∗ = h3 � h4 � ... � hn−1 (σ
with elements h0, h1, h2 removed).

We note that we can calculate the number of discordant pairs via the indices of h0, h1, h2.
Given some permutation γ ∈ P (H \ {h0, h1, h2}), suppose we insert h0, h1, h2 into γ such
that rank(h0) = w; rank(h2) = x; rank(h1) = y. Then, there are w alternatives from γ
before h0, x− 1 alternatives from γ before h2, and y − 2 alternatives from γ before h1. As
every item in γ before h0, h1, or h2 causes a discordant pair, we get w + x − 1 + y − 2
discordant pairs due to our indices, and 1 discordant pair from h2 � h1, giving us a total of
w + x+ y − 2 discordant pairs. Counting the discordant pairs in this manner we get:

∑
η∈P (H)h0�h2�h1

(v(h1, η)− v(h2, η))
φd(η,σ)

Z
=

∑
γ

n−2∑
w=0

n−1∑
x=w+1

n∑
y=x+1

1

Z
(x− y)φd(γ,σ∗)+w+x+y−2 (33)

To simplify the exponent, we make a substitution. Let x = a + 1, and let y = b + 2.
Then, for x ∈ {1, ..., n − 1}, a ∈ {0, ..., n − 2}, and for y ∈ {2, ..., n}, b ∈ {0, ..., n − 2}. We
use this substitution, and then consider the worst-case of (a− b− 1) by setting a = 0:

1

Z

n−2∑
w=0

n−1∑
x=w+1

n∑
y=x+1

(x− y)φd(γ,σ∗)+w+x+y−2 =
1

Z

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

(a− b− 1)φd(γ,σ∗)+w+a+b+1

(34)

≥ 1

Z

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

(−1− b)φd(γ,σ∗)+w+a+b+1

(35)

Note that
∑
γ∈P (H\{h0,h1,h2}) φ

d(γ,σ∗) = (1 + φ)(1 + φ + φ2)...(1 + φ + ... + φn−4), and

Z = (1+φ)...(1+...+φn−4)(1+...+φn−3)(1+....+φn−2)(1+...+φn−1). Then, since (1+φ)(1+

φ+φ2) ≤ (1+ ...+φn−3)(1+ ...+φn−2)(1+ ...+φn−1), for n ≥ 3,
∑
γ∈P (H\{h0,h1,h2})

φd(γ,σ∗)

Z ≤
1

(1+φ)(1+φ+φ2) , allowing us to further simplify the bound.

We also note that −1− b is always negative for all values of w, a, b > 0. Thus summing
from a = 0 (resp. b = 0) to n − 2 is a lower bound for summing from a = w (resp. b = a)



to n− 2. We then simplify Eq 33 by using the substitution for
∑
γ∈P (H\{h0,h1,h2})

φd(γ,σ
∗)

Z ,
and summing from 0:

1

(1 + φ)(1 + φ+ φ2)

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

(−b− 1)φw+a+b+1

≥ −φ
(1 + φ)(1 + φ+ φ2)

[( n−2∑
w=0

n−2∑
a=0

n−2∑
b=0

bφw+a+b
)

+
( n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

φw+a+b
)]

(36)

Further note that:

n−2∑
w=0

n−2∑
a=0

n−2∑
b=0

bφw+a+b = (

n−2∑
w=0

φw)(

n−2∑
a=0

φa)(

n−2∑
b=0

bφb) (37)

As n→∞, we know that
∑n−2
a=0 φ

a converges to 1
1−φ , as it is simply a geometric series.

It is also well known that
∑n−2
b=0 bφ

b converges to φ
(1−φ)2 .

To get a tighter bound on
∑n−2
w=0

∑n−2
a=w

∑n−2
b=a φ

w+a+b, we do a bit more analysis. First,
we note the following:

n−2∑
w=0

n−2∑
a=w

n−2∑
b=a

φw+a+b ≤
n−2∑
w=0

n−2∑
a=0

n−2∑
b=0

→ 1

(1− φ)3
(38)

When summing from a = 0 (resp. b = 0) instead of a = w (resp. b = a), we count any
given φw+a+b thrice (except for w = a = b = 0). Intuitively, this is because we look at all
permutations of the values w, b, a could take, instead of only those such that w ≤ a ≤ b as
required. The full proof is in Appendix B, where we show:

∞∑
w=0

∞∑
a=w

∞∑
b=a

φw+a+b ≤ 1

3(1− φ)3
+

2

3
(39)

Thus, as n→∞, the RHS of Eq 36 converges, giving us:∑
η∈P (H)h0�h2�h1

1

Z
(v(h1, η)− v(h2, η))φd(η,σ) ≥ −φ

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
A lower bound on v(h1, η)− v(h0, η) can be found identically, though switching from η

to η′ incurs an additional discordant pair, giving us:∑
η∈P (H)h0�h2�h1

1

Z
(v(h1, η)− v(h0, η))φd(η,σ) ≥ −φ2

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
This then gives us the final bound for U3a:

U3a ≥ Prµ(r0)(h0)
−φ

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ) (40)

We have considered all cases, and can now combine them together. We add the bounds



for U1 (Eq. 25), U2 (Eq. 29), U3a (Eq. 40), and U3b (Eq. 32) giving us:

U1 + U2 + U3 ≥ Prµ(r0)(h1)(1− φ)Pr(h1 � h0 � h2)

+ Pr(h0 � h1 � h2)
2

1 + φ
(φ− φ3 − φ4)

− Prµ(r0)(h0)Pr(h0 � h2 � h1)
( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

+ Prµ(r0)(h1)(1− φ)Pr(h0 � h2 � h1) (41)

From Corollary 3, we know that Prµ(r0)(h0) = 1
1+φ and Prµ(r0)(h1) = φ

1+φ . From Corollary

4, we know that Pr(h1 � h0 � h2) = Pr(h0 � h2 � h1) = φ
(1+φ)(1+φ+φ2) and Pr(h0 �

h1 � h2) = 1
(1+φ)(1+φ+φ2) . Substituting this into Eq. 41, we get the final, full bound for

ur1({h0, h1})− ur1({h1, h2}):

ur1({h0, h1})− ur1({h1, h2}) ≥
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ)

+
2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(φ− φ3 − φ4)

− φ

(1 + φ)(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

+
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ) (42)

Thus, Eq. 42 gives us a lower bound for the difference in expected utility between {h0, h1}
and {h1, h2} for resident r1, for all n. Using numerical methods to approximate the roots
of Eq. 42, we get that there is a root at 0, and a root at φ ≈ 0.265074.

We have now proven the bound showing that when 0 < φ ≤ 0.265074, r1 choosing
the interview set {h0, h1} dominates choosing the interview set {h1, h2}. In Section E, we
provide bounds such that ur1({h1, h2})− ur1({h2, h3}) ≥ 0 if 0 < φ < 0.3550107, and that
ur1({h0, h1}) − ur1({h0, h2}) ≥ 0 if 0 < φ < 0.413633 (the proofs are analogous to the one
presented here). Thus, for the interval 0 < φ ≤ 0.265074, we have successfully shown that
r1’s best move in this interval is to interview with {h0, h1} as required. �

D Full Proof of Theorem 6

Theorem 16 Given residents’ valuation function v(h, η) = n − rank(h|η) for any ranking
η and market size n, for a Mallows model with dispersion parameter φ such that 0 < φ <
0.1707951, if all residents r2f , r2f+1 have interviewed with hospitals h2f , h2f+1 for f < j,
then residents r2j , r2j+1 will interview with hospitals {h2j , h2j+1}.

Proof: We first note that for any hospital ha such that ha �σ h2j , interviewing with
any other hospital dominates interviewing with ha, because the probability r2j or r2j+1 will
be matched with ha is 0, as ha is already matched to a more desirable doctor. Likewise,
interviewing with any alternative hb such that h2j+3 �σ hb is dominated by interviewing
with h2j+3.

Resident r2j does best by greedily choosing the top two hospitals left, h2j
and h2j+1. Resident r2j+1 must again investigate the following interviewing sets:
{h2j , h2j+1}, {h2j+1, h2j+2}, {h2j+2, h2j+3}, {h2j , h2j+2}. We provide a proof of the com-
parison between {h2j , h2j+1} and {h2j+1, h2j+2}, leaving the remainder to Appendix E for
clarity.



We adapt the proof used in Theorem 5. We again break the expected payoff function into
three subcases; unr2j+1

({h2j , h2j+1}) − unr2j+1
({h2j+1, h2j+2}) = U∗1 + U∗2 + U∗3 . For clarity,

let h2j = a0; h2j+1 = a1; h2j+2 = a2. As in the proof for Theorem 5, we look at three
cases, pairing all possible permutations of a0, a1, a2 in the following manner:
Case 1: all rankings consistent with a1 � a0 � a2 or a1 � a2 � a0;
Case 2: all rankings consistent with a0 � a1 � a2 or a2 � a1 � a0;
Case 3: all rankings consistent with a0 � a2 � a1 or a2 � a0 � a1.
We again, for some fixed ranking η derive a ranking η′ by substituting ai for aj in the
ranking, to switch between the paired rankings.

Case 1. This case is completely analogous to Case 1 presented in Theorem 5. The
keystone of the argument is that h0, h1, h2 are all adjacent in the reference ranking σ, which
is again the case with a0, a1, a2. The minimum distance is again the same, and swapping
a0 and a2 again gives us only one additional discordant pair (as a0, a1, a2 are all adjacent).

Therefore, U∗1 ≥
(

φ
1+φ

)(
φ

(1+φ)(1+φ+φ2)

)
(1− φ)

Case 2. This case is likewise completely analogous to Case 2 presented in Theorem 5,
for the same reason as above. Thus, U∗2 ≥ Pr(a0 � a1 � a2) 2

1+φ (φ− φ3 − φ4).
Case 3. We again break this case up in to U∗3a and U∗3b. Again, for the same reasons as

in Cases 1 and 2 in this proof, case U∗3b is identical to the one provided in U3b in Theorem 5.
However, the bound calculated in U3a requires that h0, h1, h2 are in the first three indices
in the reference ranking to accurately calculate the number of discordant pairs. We modify
the bound shown in U3a to be for a0, a1, a2, but in doing so significantly loosen it. Given
empirical findings (described in the next section), we believe it is likely that U∗ ≥ U , and
thus our final bound could be tightened significantly.

To begin, we note that U∗3a is quite similar to U3a:

U∗3a =
∑
η∈P (H)a0�a2�a1

Prµ(r2j)(a0)[(v(a1, η)− v(a2, η))Pr(η|Dφ,σ) + (v(a1, η
′)− v(a2, η

′))Pr(η′|Dφ,σ)]

Again, U∗3a is a monotonically decreasing function in n. To get a lower bound we again
analyze convergence as n → ∞. We likewise analyze v(a1, η) − v(a2, η) independently of
v(a1, η)−v(a0, η), though the analysis is again symmetrical. We start with v(a1, η)−v(a2, η).
Note that by construction, we have 2j alternatives that are more desirable than a0, a1, a2
in reference ranking σ. Fix some ranking γ ∈ P (H \ {a0, a1, a2}).

In the proof for U3a, we noted that h0, h1, h2 were better than all other alternatives,
and so we knew exactly how many additional discordant pairs we were adding. We do a
similar argument here, but must be more careful, as there are 2j elements that are better
than alternatives a0, a1, a2. We again start by summing over all potential rankings γ ∈
P (H \ {a0, a1, a2}). Again, let σ∗ = σ \ {a0, a1, a2}. We note that the order of γ is
important for two reasons: first, calculating the number of discordant pairs within γ, and
secondly, counting the number of discordant pairs between γ and a2.

Let γ′ be the set of all alternatives γi ∈ γ such that under the reference ranking σ,
γi �σ a0. Let γ′′ be the set of all alternatives γq ∈ γ such that under the reference ranking
σ, a2 �σ γq. By construction, |γ′| = 2j. While the number of discordant pairs between
γ′ � γ′′ and γ have changed, this does not affect the analysis for counting the discordant
pairs when placing a0, a1, a2 in different indices of γ. We now sum over all indices that we
can place a0, a1, a2 in under this new ranking γ′ � a0 � a2 � a1 � γ′′:



∑
η∈P (H)a0�a2�a1

(v(a1, η)− v(a2, η)Pr(η|Dφ,σ) ≥ (43)

n−2j−2∑
w=−2j

n−2j−1∑
x=w+1

n−2j∑
y=x+1

[(2j + x)− (2j + y)]φd(γ,σ∗)+|w|+|y|+|x|−2 (44)

=

n−2j−2∑
w=−2j

n−2j−1∑
x=w+1

n−2j∑
y=x+1

(x− y)φd(γ,σ∗)+|w|+|y|+|x|−2 (45)

Breaking this into two parts, one consisting of when w, x, y are positive, and one con-
sisting of when w, x, y are negative, we get that:∑

η∈P (H)a0�a2�a1

(v(a1, η)− v(a2, η))Pr(η|Dφ,σ) ≥ −2φ

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

φ

3(1− φ)3
+

2

3

)
(46)

Likewise:∑
η∈P (H)a0�a2�a1

(v(a1, η)− v(a0, η))Pr(η|Dφ,σ) ≥ −2φ2

(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

φ

3(1− φ)3
+

2

3

)
(47)

Combining this all together, we find that this has a zero at roughly 0.1707951. Thus r2j+1

chooses to interview with {h2j , h2j+1} over {h2j+1, h2j+2} whenever 0 ≤ φ ≤ 0.1707961. As
in Theorem 5, the interviewing set that imposes the tightest bound on φ is {h2j , h2j+1}; we
leave the remainder of the calculations to the appendix, as they are symmetrical to those
in Theorem 5 with the additional factor of 2 as added here. Therefore, h2j+1 chooses to
interview with {h2j , h2j+1} whenever 0 ≤ φ ≤ 0.1707961, as required �

E Symmetric Interview Sets Proofs

Lemma 17 For resident r1, interviewing with {h1, h2} dominates interviewing with
{h2, h3} when 0 < φ < 0.3550107.

We again show this by breaking the utility function into three cases:
Case 1: all rankings consistent with h2 � h1 � h3 or h2 � h3 � h1;
Case 2: all rankings consistent with h1 � h2 � h3 or h3 � h2 � h1;
Case 3: all rankings consistent with h1 � h3 � h2 or h3 � h1 � h2.

Note, for Case 1, there is no difference between choosing h1, h2, or h2, h3, because h2
will always be chosen no matter what resident r0 does.

For Case 2, if η = h1 � h2 � h3 and η′ = h3 � h2 � h1, when µ(r0) = h0, under
η, we are looking at the difference between v(h1, η) − v(h2, η), and under η′, we look at
the difference between v(h3, η) − v(h2, η). Adding η and η′ together gives us a total of:
Prµ(r0)(h0)[v(h1, η) − v(h2, η)](1 − φ). When µ(r0) = h0, there is no difference under η,
but η′ contributes v(h2, η)− v(h1, η). Thus, η′ contributes −Prµ(r0)(h1)[v(h1, η)− v(h2, η)].
Combining this with when µ(r0) = h0, we get the following contribution from Case 2:

Pr(h1 � h2 � h3)
1

1 + φ
(1− φ3 − φ4) (48)



For Case 3, again when µ(r0) = h0, with η we get v(h1, η) − v(h3, η) and with η′ we
get v(h3, η) − v(h1, η), giving us Prµ(r0)(h0)[v(h1, η) − v(h3, η)](1 − φ). When µ(r0) = h1,
however, all terms are negative again. Under η, we get v(h3, η)− v(h2, η) and under η′ we
get v(h1, η)− v(h2, η). As in Case 3 in the main body of the paper, we simply let n→∞,
and bound using the bound proved there. This means Case 3 contributes:

Pr(h1 � h2 � h3)
(
Prµ(r0)(h0)(1− φ)− Prµ(r0)(h1)

[ φ

(1− φ)4
+

1

3(1− φ)3
+

2

3
(1 + φ)

]
(49)

This means that our bound is:

ur1({h1, h2})− ur1({h2, h3}) ≥
1

(1 + φ)2(1 + φ+ φ2)

[
(2− φ− φ3 − φ4)− (φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(50)

as required �.

Lemma 18 For resident r1, interviewing with {h0, h1} dominates interviewing with
{h0, h2} when 0 < φ < 0.413633.

We break the utility function into three cases:
Case 1: all rankings consistent with h0 � h1 � h2 or h0 � h2 � h1;
Case 2: all rankings consistent with h1 � h0 � h2 or h2 � h0 � h1;
Case 3: all rankings consistent with h1 � h2 � h0 or h2 � h1 � h0.

For Case 1, when µ(r1) = h1, r1 is indifferent between the two interviewing sets, so the
difference is:

Pr(h0 � h1 � h2)Prµ(r0)(h0)(1− φ) (51)

For Case 2, when µ(r0) = h0, we again compare h1 and h2 standardly. When µ(r0) = h1,
r1 is indifferent for η, and η′ contributes φ[v(h0, η)− v(h1, η)] > φ[v(h2, η)− v(h1, η)]:

Pr(h1 � h0 � h2)[2(1− φ)− 2φ2] (52)

For Case 3, when µ(r0) = h0, we have the standard case again. When µ(r0) = h1, we
again need to bound as n→∞. Also note, d(η, σ) = d(η′, σ) in this case.

Pr(h1 � h2 � h0)
[
− 2Prµ(r0)(h1)

( φ

(1− φ)4
+

1

3(1− φ)2
+

2

3

)]
(53)

We combine this all to get:

1

(1 + φ)(1 + φ+ φ2)

[
1 + φ− 2φ2 − 2φ3 − 2φ3

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(54)

As required �

Lemma 19 When r2f , r2f+1 all interview with h2f , h2f+1, both the interview sets a0, a2
and a2, a3 are dominated by a0, a1.



This proof is identical to the one presented in Theorem 6. Using the two functions
presented in Lemmas 17 and 18, we modify them in the same way as we did in Theorem 6:
we keep all positive terms identical, and double any terms that we let go to infinity.

For a2, a3, this means that the difference between a1, a2 and a2, a3 is:

ur2j+1 ({a1, a2})− ur2j+1 ({a2, a3}) ≥
1

(1 + φ)(1 + φ)(1 + φ+ φ2)

[
(1− φ3 − φ4) + (1− φ)− 2φ

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

]
(55)

This difference is greater than 0 whenever 0 < φ < 0.296649.
Likewise, for a0, a2, the difference between a0, a1 and a0, a2 is:

ur2j+1 ({a0, a1})− ur2j+1 ({a0, a2}) ≥
1

(1 + φ)(1 + φ)(1 + φ+ φ2)

[
2 + φ− 2φ2

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(56)

This difference is greater than 0 whenever 0 < φ < 0.439098.


