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Abstract

In this paper we study the allocation of indivisible items among a group of agents, a problem

which has received increased attention in recent years, especially in areas such as computer

science and economics. A major fairness property in the fair division literature is proportional-

ity, which is satisfied whenever each of the n agents receives at least 1

n
of the value attached to

the whole set of items. To simplify the determination of values of (sets of) items from ordinal

rankings of the items, we use the Borda count, a concept used extensively and well-known in

voting theory. Although, in general, proportionality cannot be guaranteed, we show that, under

certain assumptions, proportional allocations of indivisible items are possible and finding such

allocations is computationally easy.

1 Introduction

In recent years, the problem of fair division has received increased attention, especially in areas

such as computer science and economics (see, e.g., the surveys by Bouveret et al. [5] and Thomson

[21]). A particularly challenging issue is the fair allocation of indivisible items, which comes up in

many real world situations such as divorce settlements, the allocation of courses to students, etc. To

evaluate allocation procedures, many intuitive fairness criteria, such as envy-freeness, equitability

or proportionality have been used. In the case of divisible items and cardinal utilities, those criteria

can be rather easily applied and well known results (e.g., Steinhaus [20]) show that an envy-free

and equitable division of a cake always exists (see also Brams and Taylor [6]). In contrast, when

we are concerned with indivisible items, even the satisfaction of the most basic fairness criteria,

proportionality, which requires each of n agents to receive at least one nth of her value of the whole

set of items, might be out of reach. The simple example of allocating one single and indivisible item

to 2 agents easily shows the problem.

Different paths of tackling the fair division problem of allocating indivisible items have been

taken. Herreiner and Puppe [15] assume the agents to rank all possible subsets of items and follow

a maximin approach, i.e., try to find an allocation of all items to the agents that maximizes the

minimum rank of the assigned sets in the preferences of the agents. This leads to two problems.

First, the elicitation of such preferences might be an impossible task for the agents, already with

a few items (10 items, e.g., lead to the task of ranking more than 1000 sets) and, second, finding

the maximin allocation is computationally difficult. To overcome the problem of ranking thousands

of sets, many papers use only value information about the single items, mostly incorporating an

additivity assumption. This means that the value of any set of items is just the sum of the values of

the items it contains and therefore no dependencies between items are considered (see, e.g., Brams

and Taylor [7], Bouveret and Lang [3], Baumeister et al. [2]). A further decrease of the informational

amount has been followed in basing the allocation purely on ordinal preference information (e.g. in

Brams et al. [10] or Aziz et al. [1]) and devising procedures satisfying certain fairness criteria in cases

where such a fair allocation can exist. Given the limited informational content of the preferences,

the fairness criteria have to be appropriately adapted requiring the restriction to situations where the

number of items is a multiple of the number of agents (and mostly those are restricted to 2 agents

only). Various other approaches have been used to make the fairness problem tractable. Probably

the most simple one are picking sequences (see Bouveret and Lang [3]) in which the agents pick

items according to some pre-defined order.1 Finally, Budish [11] translates the ”I cut you choose”

1Budish and Cantillon [12] call it the draft mechanism and analyze its strategic aspects (see also Kalinowski et al. [17]).



procedure from the cake-cutting literature to the indivisible items setting and focuses on what he

calls maximin shares, i.e., the minimal share that an agent would receive if she was to divide the

items into n piles and being the last to pick her pile. This approach was used by Procaccia and Wang

[18] who showed that there is always an allocation that guarantees an agent 2/3 of her maximin

share.

In the cake-cutting setting, the notion of maximin share is equivalent to the notion of propor-

tionality. This is not the case when we are concerned with the allocation of indivisible items, where

proportionality is the stronger property. A general analysis of the differences in various fairness

properties for the case of additive preferences has been undertaken by Bouveret and Lemaı̂tre [4],

providing a whole scale for fairness properties.

In this paper we focus on the property of proportionality when agents are assumed to have

ordinal and additive preferences about a given set of items. We show, by the use of particular

picking sequences, that proportionality will – under certain assumptions – be achieved and checking

for the existence of such an allocation is computationally easy. To be able to discuss the value of

sets of items, we assign Borda scores to the single items determined from the agents’ preferences.

Although its origins stem from voting theory, Borda utilities are also used in welfare economics

(see, e.g., Fleurbaey and Hammond [14]). The Borda rule is one of the most widely studied scoring

rules (see Saari [19]), which – in case of k items – assigns k−1 points to an agent’s top ranked item,

k − 2 points to her second ranked item, and so forth, down to 0 points for her lowest ranked item.

Hence, since in our setting additivity is assumed as well, the value of a set of items depends directly

on the positions in which the items are ranked by the agent (see, e.g., Brams et al. [8]).2 In addition

we assume balanced allocations in which every agent finally receives the same number of items, i.e.,

the number of items is a multiple of the number of agents as, e.g., in Brams et al. [10]. Finally, we

assume the agents to behave sincerely, i.e., we are not concerned with strategic behaviour of any

kind.

The paper is structured as follows: The next section introduces the general framework. Section

3 discusses the general case in which the number of agents is n ≥ 2. This is followed by certain

specific results on the two agents case. Section 5 concludes the paper.

2 Formal Framework

Let N = {1, . . . , n} be a set of n agents and let X denote a set of k items, where k is a multiple of

n. Each agent i ∈ N ranks the items by means of a strict order ≻i over X . The agents’ preferences

are captured by means of a preference profile (≻1,≻2, . . . ,≻n). A mapping π : N → 2X with

π(i) ∩ π(j) = ∅, |π(i)| = |π(j)| for each i, j ∈ N and
⋃

i∈N π(i) = X is called allocation.

The Borda score of item a for agent i is given by bi(a) = |{x ∈ X : x ≺i a}|. Abusing notation,

we define the Borda score of an allocation π for agent i by bi(π) :=
∑

a∈π(i) bi(a).
A picking sequence (or picking protocol) s is a sequence of agents serving as a protocol for

allocating indivisible items by asking the agents to pick items sequentially following the sequence

s. Formally, a picking sequence s is a sequence s = (s1, s2, . . . , sk) with si ∈ N for 1 ≤ i ≤ k,

where at step i agent si picks her most preferred item among those remaining. E.g., with k = 6 and

n = 3 sequence s := (1, 2, 3, 3, 2, 1) indicates that agent 1 is the first to pick an item, then agent 2
picks an item followed by agent 3 picking two items, next agent 2 picks a second item, and finally

agent 1 picks a second item.

Let V (k) denote the total Borda score for an agent by getting assigned all of the k items, i.e.,

V (k) := (k−1)k
2 . Now, the general question to which the rest of the paper is dedicated is as follows:

Given a set N = {1, . . . , n} of agents, a set X of k items and a preference profile (≻1,≻2, . . . ,≻n),

2Caragiannis and Procaccia [13] analyze the distortions induced by this scoring approach stating that these are – in general

– rather low.



is there a proportional allocation, i.e., an allocation π such that bi(π) ≥
V (k)
n

holds for each agent

i ∈ N?

3 Proportional allocations in the general case

The starting point of our study will be the case in which there are as many items as there are agents

(this corresponds to the well known house allocation problem, see for instance Hylland and Zeck-

hauser [16]). The following proposition shows that it is computationally easy to check for the

existence of proportionality in that setting.3

Proposition 1 In the case k = n, we can check in polynomial time whether a proportional alloca-

tion exists and, in case of existence, determine such an allocation.

Proof: We get
V (k)
n

= k(k−1)
2k = k−1

2 . Thus, a proportional allocation requires that each agent

i gets an item a with bi(a) ≥ k−1
2 . The problem if such an allocation exists (and if so, to find

a proportional allocation) can be solved efficiently by solving the perfect matching problem in

the bipartite graphG = (V,E) with V = N∪X and E = {{i, a}|i ∈ N, a ∈ X, bi(a) ≥
k−1
2 }. �

Although we can easily check for existence under the restriction k = n, it is quite obvious that

in many cases such a proportional allocation does not exist at all. The simplest example would be

the case of two agents N = {1, 2} and two items X = {a, b}. If both agents rank the items in

the same way, e.g., a ≻1 b and a ≻2 b, then the allocation of π(1) = {a} and π(2) = {b} would

lead to b2(π) = 0 < V (2)
2 = 1

2 . This violates proportionality. Analogously, assigning the objects

in the opposite way would violate proportionality as well. Clearly, this does not only mean that a

proportional allocation does not always exist in the case k = n; it is also not difficult to see that

in general an allocation which is “close” to a proportional allocation (in the sense that the smallest

Borda score for an agent is “close” to
V (k)
n

) does not exist, because the unanimous profile requires

an agent to receive the bottom ranked item yielding a total Borda score of zero.

Things turn out better when we assume k > n, i.e., we have k = ℓ · n for some ℓ > 1, which

is done for the rest of this paper. The following result shows that for even ℓ we can not only find a

picking sequence that provides us with a proportional allocation, but we can also find it quickly.

Proposition 2 If k = ℓ · n with even ℓ, then a proportional allocation always exists and can be

found in polynomial time.

Proof: Fix a sequence of length n of the n agents such that each agent appears exactly once

in the sequence, e.g., let the sequence be (1, 2, 3, . . . n). Add the reversal of the sequence to the

original sequence, i.e., consider the sequence

s := (1, 2, 3, . . . , n, n, n− 1, . . . , 2, 1)

Now, we define a picking sequence p by repeating s exactly ℓ
2 times.

We argue that the resulting assignment π is proportional. It is sufficient to consider the worst

case scenario in which each agent has the same preferences over the items. In such a situation it is

easy to verify that each agent receives the same Borda score under π. Thus, it remains to show that

3Note that Proposition 1 in fact is not restricted to Borda scores but holds for all scoring rules (that allow for a polynomial-

time computation of the score of an item for an agent).



b1(π) ≥
V (k)
n

= (ℓn−1)ℓn
2n = (ℓn−1)ℓ

2 holds. We get

b1(π) = [(ℓn− 1) + (ℓ− 2)n] + [(ℓ − 2)n− 1) + (ℓ− 4)n] + . . .+ [(2n− 1) + 0]

= ℓn− ℓ
2 + 2n

∑

ℓ−2

2

i=1 2i

= ℓn− ℓ
2 + 4n

ℓ−2

2
·
ℓ

2

2

= 2ℓn−ℓ+n(ℓ−2)ℓ
2

= ℓ(ℓn−1)
2

which completes the proof. �

Also in the case of ℓ not being even, proportional allocations do exist as long as there is an odd

number of agents.

Theorem 1 Let k = ℓ · n for some ℓ > 1. For an odd number n of agents there is always a

proportional allocation; such an allocation can be found in polynomial time.

Proof: By assumption, n is odd. If k is even, a proportional allocation exists due to Proposi-
tion 2. Let k be odd, i.e., for some even ℓ (or for ℓ = 0), we have k = (ℓ+3)n. We define a picking
sequence r by means of two sequences q, s as follows. For the first 3n picks, we define the picking
sequence q by

q := (1, . . . , n, n, n − 2, n − 4, . . . , 1, n − 1, n − 3, n − 5, . . . , 2, n − 1, n − 3, n − 5, . . . , 2, n, n − 2, n − 4, . . . , 1)

The remaining ℓn items are picked according to the proof of Proposition 2, i.e., by repeating the

picking sequence s = (1, 2, 3, . . . , n, n, n − 1, . . . , 2, 1) exactly ℓ
2 times. By the proof of Propo-

sition 2 we know that considering only these ℓn items, each agent gets a Borda score of at least
ℓ(ℓn−1)

2 .

Now, we consider the first 3n items only, allocated according to the picking sequence q. Abusing

notation, we denote by bi(q) the total Borda score of agent i of the items allocated to i by applying

q.

Let i be even. Clearly, the first item allocated to i yields a Borda score of at least k − i, since in

the worst case i receives her i-th ranked item. For the second item we need to consider the number

of picks before agent i picks for the second time, which is (n+ n+1
2 + n−i−1

2 ). Thus, in the worst

case as her second item i receives her (n+ n+1
2 + n−i−1

2 )-th ranked item, yielding a Borda score of

k− (n+ n+1
2 + n−i−1

2 )− 1. Analogously, there are exactly (2n+ n−i−1
2 ) picks before i picks her

third item. Thus,

bi(q) ≥ (k − i) + k − (n+ n+1
2 + n−i−1

2 )− 1 + k − (2n+ n−i−1
2 )− 1

= 3k − i− 3n− (n− i− 1)− n+1
2 − 2

= 3k − 9n+1
2 − 1

(1)

In total, we get

bi(π) ≥ 3k − 9n+1
2 − 1 + ℓ(ℓn−1)

2

= 6(ℓ+3)n−9n−2−1+ℓ(ℓn−1)
2

= 6ℓn+9n−3+ℓ2n−ℓ
2

= ℓ2n+3ℓn+3ℓn+9n−ℓ+3
2

= (ℓ+3)[(ℓ+3)n−1]
2

= V (k)
n

(2)

Let i be odd. Analogously to above, from the first item i receives a Borda score of at least k− i.
The number of picks before agent i picks for the second time is (n + n−i

2 ), the number of picks



before i picks for the third time is (2n+ n−1
2 + n−i

2 ). Hence,

bi(q) ≥ (k − i) + [k − (n+ n−i
2 )− 1] + [k − (2n+ n−1

2 + n−i
2 )− 1]

= 3k − i− 3n− (n− i)− 1− n−1
2 − 1

= 3k − 9n+1
2 − 1

Analogously to above, bi(π) ≥
V (k)
n

follows. �

Although we cannot guarantee proportionality in all cases, we can show that there is a limit to

how “far away” we are from such a proportional allocation. In particular, the guaranteed value of

the set of items to any agent will not be lower than the largest integer smaller than
V (k)
n

even in the

worst case, i.e, the situation in which the agents have identical preferences.

Theorem 2 Let k = ℓ · n for some ℓ > 1. There is an allocation π with bi(π) ≥
⌊

V (k)
n

⌋

for each

agent i that can be found in polynomial time.

Proof: By Theorem 1, for an odd number of agents a proportional allocation always exists and

can be determined quickly. Therefore, we only need to consider the case of an even number of

agents.

By Proposition 2, if k
n

is even, then a proportional allocation exists. It remains to consider the case

that k
n

is odd. Recall that by assumption k
n
> 1 holds. I.e., k = (ℓ + 3)n for some even ℓ or for

ℓ = 0. Apply the following picking sequence r′, defined in similar fashion as the sequence r in the

proof of Proposition 1.
For the first 3n picks, let r′ be defined by

q
′ := (1, 2, . . . , n, n, n − 2, n − 4, . . . , 2, n − 1, n − 3, n − 5, . . . , 1, n − 1, n − 3, n − 5, . . . , 1, n, n − 2, n − 4, . . . , 2)

For the remaining picks, repeating the picking sequence s = (1, 2, 3, . . . , n, n, n − 1, . . . , 2, 1)
exactly ℓ

2 times.

Note that n is even, i.e.,
V (k)
n

= (ℓ+3)[(ℓ+3)n−1]
2 is not an integer. In particular,

⌊

V (k)

n

⌋

=
V (k)

n
−

1

2
(3)

holds.

Let i be even. Clearly, the first item allocated to i yields a Borda score of at least k − i. For the

second item, the number of picks before agent i picks for the second time is (n+ n−i
2 ). In the worst

case, i hence receives her (n+ n+1
2 + n−i−1

2 )-th ranked item with a Borda score of k−(n+ n−i
2 )−1.

Next, there are exactly (2n+ n
2 + n−i

2 ) picks before i picks her third item. Thus,

bi(q) ≥ (k − i) + k − (n+ n−i
2 )− 1 + k − (2n+ n

2 + n−i
2 )− 1

= 3k − i− 3n− (n− i)− n
2 − 2

= 3k − 9n
2 − 2

Similarly to (2), we get

bi(π) ≥ 3k − 9n
2 − 2 + ℓ(ℓn−1)

2

= 6(ℓ+3)n−9n−4+ℓ(ℓn−1)
2

= 6ℓn+9n−3+ℓ2n−ℓ
2 − 1

2

= (ℓ+3)[(ℓ+3)n−1]
2 − 1

2

= V (k)
n

− 1
2

=
⌊

V (k)
n

⌋



where the last equality follows from (3).

Let i be odd. The first item allocated to i has a Borda score of at least k− i. For the second item,

the number of picks before i picks her second item is (n + n
2 + n−i−1

2 ). Finally, there are exactly

(2n+ n−i−1
2 ) picks before she can pick her third item. Thus,

bi(q) ≥ (k − i) + k − (n+ n
2 + n−i−1

2 )− 1 + k − (2n+ n−i−1
2 )− 1

= 3k − i− 3n− (n− i− 1)− n
2 − 2

= 3k − 9n
2 − 1

Hence, we get

bi(π) ≥ 3k − 9n
2 − 1 + ℓ(ℓn−1)

2

= 6(ℓ+3)n−9n−2+ℓ(ℓn−1)
2

= 6ℓn+9n−3+ℓ2n−ℓ
2 + 1

2

= (ℓ+3)[(ℓ+3)n−1]
2 + 1

2

= V (k)
n

+ 1
2

=
⌈

V (k)
n

⌉

�

The previous results show that there are – so far – only a couple of cases in which proportionality

cannot be guaranteed, namely those with n being even and ℓ being odd. For the case of n being even

we now show that, whenever n ≥ 4, proportionality can still be achieved as long as preferences

differ from the unanimous preference profile by a certain distance. For that purpose, distance is

measured by swaps of items.

In that respect, given a ranking ≻ over a set X = {x1, x2, . . . , xk}, let o≻(ℓ) denote the ℓ-th ranked

element in the ranking ≻, 1 ≤ ℓ ≤ k. For two rankings ≻,≻′ over a set X = {x1, x2, . . . , xk} we

say ≻′ corresponds to ≻ up to a swap in rank j if we have o≻(j) = o≻′(j+1), o≻(j+1) = o≻′(j),
and for all ℓ ∈ {1, 2, . . . , k} \ {j, j + 1} it holds that o≻(ℓ) = o≻′(ℓ). The following theorem states

that a proportional allocation exists even in the case that half of the agents have the same ranking ≻,

and, for some h, the rankings of the remaining agents are given by those that correspond to ≻ up to

a swap in position h+ g, g ∈ {0, 1, . . . , n
2 − 1}.

Theorem 3 Let k = ℓ · n for some ℓ > 1. Let n ≥ 4 be even, S ⊂ N with |S| = n
2 and let ≻ be a

ranking over X .

If the preference profile (≻1,≻2, . . . ,≻n) is such that for all i ∈ S we have ≻i=≻, and for some

h ≥ 1 there are a set Ch = {h, h+ 1, . . . , h + n
2 − 1} and a bijection f : N \ S → Ch such that

≻i corresponds to ≻ up to a swap in rank f(i), then there is a proportional allocation.

Proof: Again, we can assume that k = ℓn for some odd ℓ > 1. We assume k = 3n, the

remaining cases follow analogously. In what follows, we will consider the sequence q′ defined in

the proof of Theorem 2. We call an agent odd/even if the agents’ label is odd/even.

The goal is to modify q′ such that for the profile considered each odd agent gets the same total Borda

score as in q′ for the unanimous profile, while each even agent’s Borda score increases by 1. Let j
be the agent whose ranking ≻j corresponds to ≻ up to a swap in rank h.

We assume h > n (the case h ≤ n will follow analogously), and label n
2 agents according to Ch:

for i ∈ Ch, q′i+1 is the agent with the swap in rank i (q′i denotes the i’th agent in the sequence q′).
The remaining agents (each of whose ranking coincides with ≻) are labelled in arbitrary manner

such that finally the set of agents is given by {1, . . . , n}. Relabel the items such that for the ranking

≻ we have x1 ≻ x2 ≻ . . . ≻ x3n.

• Case 1: h ∈ {n + 1, . . . , 3n
2 − 1}. I.e., q′h+1 = i for some even i ≥ 2. Consider the

picking sequence q′. Note that, for the item picked in pick round h + 1, agent i receives a



Borda score of 3n − h (instead of 3n − h − 1 in the case of unanimous profile), because –

due to the swap – she receives the item xh+1 of rank h in the ranking ≻i. Note that so far

all the items {x1, x2, . . . , xh+1} have been picked. Analogously, in the next step, the next

picking agent j receives item xh+2 of rank h+1 in ≻j , etc. I.e., each agent picking in rounds

h+1, h+2, . . . , h+ n
2 +1 ends up with an additional score of 1 when compared to q′ and the

unanimous profile case. By assumption, i is even. Considering q′ we can conclude that the

odd agents picking in the above-mentioned rounds are the agents n−1, n−3, . . . , i+1. Now,

modify the sequence q′ in the first n picks by “swapping” the pick round of each of these odd

agents with its even successor, leaving the remaining picking sequence unchanged:

q̃ = (1, 2, . . . , i− 1, i, i+ 2, i+ 1, i+ 4, i+ 3, . . . , n, n− 1)

Now, define the picking sequence q′′ by picking according to q̃ for the first n rounds and then

continuing with picking according to q′, i.e.,

q′′h =

{

q̃h h ≤ n

q′h h > n

It is not hard to see that compared with the Borda scores under q′ for the unanimous profile,

in the considered profile q′′ increases the Borda score of the even agents by 1 while the Borda

score of the odd agents remains unchanged. I.e., the resulting allocation is proportional.

• Case 2: h ∈ { 3n
2 , 3n

2 + 1, . . . , 5n
2 − 1}. Again, let us consider the picking sequence q′.

Analogously to above, all agents q′h+1, q
′

h+2, . . . , q
′

h+n

2

end up with an increase of Borda

score of 1. If all these agents are even (i.e., h = 5n
2 − 1), q′ yields a proportional allocation

and we are done.

– Case 2a. q′h+1, q
′

h+2, . . . , q
′

h+n

2

are all odd. Modify the picking sequence q′ in the first

n rounds by “swapping” the pick round of all odd agents with its even successor:

q̂ = (2, 1, 4, 3, . . . , n, n− 1)

Pick according to q̂ for the first n rounds and then continue according to q′, i.e.,

q′′′h =

{

q̂h h ≤ n

q′h h > n

When compared with the Borda scores under q′ for the unanimous profile, it again fol-

lows that q′′′ increases the Borda score of the even agents by 1 while the Borda score of

the odd agents remains unchanged. Thus, the resulting allocation is proportional.

– Case 2b. Some of q′h+1, q
′

h+2, . . . , q
′

h+n

2

are even. These even agents must be the agents

n, n − 2, . . . , j + 3. For the remaining even agents, modify the picking sequence q′ in

the first n rounds by “swapping” the pick round of each of these agents with its odd

predecessor:

q̄ = (2, 1, 4, 3, . . . , j + 1, j, j + 2, j + 3, . . . , n− 1, n)

Pick according to q̄ for the first n rounds and then continue picking according to q′, i.e.,

q′′′′h =

{

q̄h h ≤ n

q′h h > n

Again, it is not hard to see that that the Borda score of each agent has increased by 1
while the Borda score of the odd agents has remained unchanged when compared to q′

applied on the unanimous profile. Hence, the resulting allocation is proportional.



Finally, if h ≤ n, then instead of q′ consider the picking sequence p′, which can be seen as a

modification of q′ which simply delays the first n picks of q′ to the last n picks:

p′ := (n, n− 2, . . . , 2, n− 1, n− 3, . . . , 1, n− 1, n− 3, . . . , 1, n, n− 2, . . . , 2, 1, 2, . . . , n)

It is not hard to verify that also p′ satisfies bi(p
′) ≥

⌊

V (k)
n

⌋

for each agent i. Now, in the case of

h ≤ n arguing analogously as in the case h > n with p′ instead of q′ (and the modification taking

place in the last n pick rounds) yields the desired result.

Finally, it is not hard to see that the case k = ℓn for odd ℓ ≥ 5 and even n ≥ 4 follows

analogously. The idea is to allocate 3n items (determined by the rank h where the first swap

occurs) according to above and the remaining items by repeated application of the picking sequence

s = (1, 2, 3, . . . , n, n, n− 1, . . . , 2, 1). In particular, let m be the smallest non-negative integer such

that 2nm+3n ≥ (h+ n
2 − 1) holds. In the first 2nm pick rounds let the agents pick by repeating s

exactly m times. The next 3n items are picked just as in the case k = 3n described above. Finally,

the remaining items are picked by repeatedly applying s as long as there are items left. �

4 Proportional allocations in the two agents case

Many fair division problems focus on the more specific case of two agents, i.e., n = 2 (see, e.g.,

Brams and Taylor [7], Brams et al. [9], and Brams et al. [10]). Although we were able to show that a

proportional allocation always exists whenever every agent is assigned an even number of items, at

the beginning of the previous section we provided a simple example for ℓ = 1 where proportionality

was violated. This can be extended to any odd ℓ whenever the agents have identical preferences.

Consider the case of ℓ = 3, with X = {a, b, c, d, e, f} and, w.l.o.g., preferences of the following

form, where items are ranked from top to bottom:

≻1 ≻2

a a
b b
c c
d d
e e
f f

Obviously, V (6) = 15, and any division of the total value of 15 will assign a set of items to

one agent being valued below the proportionality threshold of
V (6)
2 = 7.5.4 As for ℓ being odd and

identical preferences, the total maximal Borda count will always be an odd number, it is clear that

no proportional allocation is possible in such cases. However, even the slightest difference in the

preferences of the agents is sufficient to guarantee proportionality again.

Theorem 4 Let ℓ 6= 3. For 2ℓ items and two agents 1, 2 with ≻1 6=≻2, a proportional allocation

always exists and can be found quickly.

Proof: The case ℓ = 1 is obvious, the case ℓ even follows from Proposition 2. Let ℓ be odd,

ℓ > 3. We consider the case ℓ = 5 first. We need to show that each agents’ Borda score is at least
⌈

9·10
2·2

⌉

= 23.

Let h denote the minimal rank in which the h-th ranked items in ≻1 and ≻ 2 do not coincide

(clearly, h ≤ 9 holds).

4Beware though, that we can still find an allocation π for which bi(π) ≥ 7 for i ∈ {1, 2} as shown in Theorem 2.



• Case 1: h ∈ {2, 5, 7, 9}. Consider the picking sequence r1 = (1, 2, 1, 2, 2, 1, 2, 1, 2, 1).
Clearly, in each picking round g, the picking agent in the worst case picks her g-th ranked

item. Thus, b2(r1) ≥ 8+6+5+3+1 = 23. In addition, b1(r1) ≥ (9+7+4+2+0)+1 = 23,

because in round h+1, agent 1 can pick her h-th ranked item instead of her (h+1)-th ranked

item, gaining an additional Borda score of 1.

• Case 2: h ∈ {1, 8}. Consider the picking sequence r2 = (1, 2, 2, 2, 1, 1, 1, 1, 2, 2). Then

b1(r2) ≥ 9 + 5+ 4+ 3+ 2 = 23 and b2(r2) ≥ (8 + 7+ 6+ 1+ 0)+ 1 = 23, since in round

h+ 1, agent 2 now picks her h-th ranked item instead of her (h+ 1)-th ranked item, gaining

an extra Borda score of 1.

• Case 3: h = 6. With the picking sequence r3 = (1, 2, 1, 2, 2, 2, 1, 1, 1, 2) we get b2(r3) ≥
8 + 6 + 5 + 4 + 0 = 23 and b1(r3) ≥ 9 + 7 + 4 + 2 + 1 = 23, because in round 7 agent 1
can pick her 6-th ranked item with Borda score 4.

• Case 4: h = 3. The sequence r4 = (1, 2, 2, 1, 1, 2, 2, 1, 2, 1)yields b2(r4) ≥ 8+7+4+3+1 =
23 and b1(r4) ≥ 9 + 7 + 5 + 2 + 0 = 23, since in round 4 A can pick her third ranked item

with Borda score 7.

• Case 5: h = 4. The sequence r5 = (1, 2, 2, 1, 2, 1, 1, 2, 1, 2)yields b1(r5) ≥ 9+6+4+3+1 =
23 and b2(r5)} ≥ 8 + 7+ 6+ 2+ 0 = 23 because in round 5 agent 2 picks her fourth ranked

item with Borda score 6.

Consider odd ℓ > 5. Let h∗ = 2ℓ − 9. For h ≥ h∗, we can argue analogously to above, letting

the sequence for the last 10 picks be determined according to the 5 cases above (with h = h∗ + i
instead of h = i, i ∈ {1, . . . , 9}, determining the respective case), while the first 2ℓ − 10 rounds

are picked according to (1, 2, 2, 1, 1, 2, 2, 1, . . . , 1, 2, 2, 1), i.e., repeating (1, 2, 2, 1) exactly 2ℓ−10
4

times. It is not hard to see that this results in a proportional allocation.

For h ≤ h∗, note that 2ℓ = 2 + 4j for some j ∈ N. Consider the sequence

p∗ = (1, 2, 2, 1, 1, 2, 2, 1, . . . , 1, 2, 2, 1, 1, 2). It is not hard to verify that b1(p
∗) ≥

⌈

V (2ℓ)
2

⌉

and b2(p
∗) ≥

⌊

V (2ℓ)
2

⌋

holds (see Theorem 2). Now, if h is such that in picking round h it is agent

1’s turn while in round h + 1 it is agent 2’s turn, then obviously b2(p
∗) ≥

⌊

V (2ℓ)
2

⌋

+ 1 =
⌈

V (2ℓ)
2

⌉

holds; i.e, p∗ yields a proportional allocation. If in round h it is agent 2’s turn and in h+1 it is agent

1’s turn, then consider the sequence p∗∗ = (1, 2, 2, 1, 1, 2, 2, 1, . . . , 1, 2, 2, 1, 2, 1). Analogously to

above it follows that p∗∗ yields a proportional allocation.

If in both h and h + 1 it is agent 1’s turn, modify p∗ into p̃ by letting agent 2 pick in rounds

h + 1 and 2ℓ − 2, and 1 in rounds h + 2 and 2ℓ − 3. p̃ yields a proportional allocation because

b1(p̃) ≥
⌈

V (2ℓ)
2

⌉

− 1 + 1 and b2(p̃) ≥
⌊

V (2ℓ)
2

⌋

+ 2− 1 =
⌈

V (2ℓ)
2

⌉

.

Finally, if in both rounds h and h+ 1 it is agent 2’s token, modify p∗∗ into p̂ by letting agent 1 pick

in rounds h+ 1 and 2ℓ− 4, and agent 2 in rounds h+ 2 and 2ℓ− 5. With b2(p̂) ≥
⌈

V (2ℓ)
2

⌉

− 1+ 1

and b1(p̂) ≥
⌊

V (2ℓ)
2

⌋

+ 2− 1 =
⌈

V (2ℓ)
2

⌉

it follows that p̃ yields a proportional allocation. �

Finally, this leaves us with the case ℓ = 3 where not only the identical preferences case is

problematic but there are a couple of more profiles in which proportionality cannot be guaranteed.

In particular, there are 4 such cases as shown in the following result:

Theorem 5 For 2 agents and 6 items there are exactly 4 cases in which a proportional allocation

does not exist.

Proof: It is a tedious but not difficult task to show that in the following four cases (we fix the

ranking of agent 1 to a ≻ b ≻ c ≻ d ≻ e ≻ f (in short: abcdef ) and give the ranking of agent 2



only) a proportional allocation does not exist:

abcdef , abdedf , acbdef , acbedf
For the remaining cases, we need to show the existence of a proportional allocation, i.e., an

allocation yielding a score of at least
V (6)
2 = 30

4 = 7.5, i.e., of 8 for each agent. Again, let h denote

the minimal rank in which the h-th ranked items in ≻1 and ≻ 2 do not coincide. If h ∈ {1, 5}, then

p = (1, 2, 2, 1, 1, 2) yields b1(p) ≥ 5 + 2 + 1 = 8 and b2(p) ≥ (4 + 3 + 0) + 1 = 8, where the

additional score of 1 of agent 2 comes from picking the item ranked h in round h+1. If h = 3, then

the sequence p′ = (1, 2, 2, 1, 2, 1) yields b1(p) ≥ 5 + 3 + 0 = 8 and b2(p) ≥ 4 + 3 + 1 = 8.

Let h = 2. Let y denote the item ranked second by agent 2. Clearly, y /∈ {a, b} holds due to

h = 2.

Case 1: y ∈ {d, e, f}. Choose x ∈ {d, e} \ {y} and let z ∈ {d, e, f} \ {x, y}. π assigns the items

a, y, z to agent 2, and the remaining items b, c, x to agent 1. Then, b1(π) ≥ 4 + 3 + 1 = 8 and

b2(π) ≥ 5 + 4 + 0 = 9.

Case 2: y = c.

Case 2a: The third-ranked item of agent 2 is not item b. Consider the picking sequence p =
(1, 1, 2, 2, 2, 1). Note that in round 3 agent 2 can pick her 2nd-ranked item (due to h = 2), and in

round 4 agent 2 can pick her third-ranked item (since this item does not coincide with item a or b).
Thus, b2(p) ≥ 4 + 3 + 1 = 8 while b1(p) ≥ 5 + 4 = 9 holds.

Case 2b: The third-ranked item of agent 2 is item b. For the rankings acbdef , acbedf we already

know that a proportional allocation does not exist. Hence, it remains to consider the cases acbdfe,

acbefd, acbfde and acbfed. For each of these cases π assigns b, c, f to agent 2 and a, d, e to agent

1. It is easy to verify that π is proportional in each of these cases.

Let h = 4. For agent 2’s ranking being abcedf we already know that a proportional allocation

does not exist. Therewith, it remains to consider the cases that agent 2’s ranking corresponds to one

of the following: abcefd, abcfde, abcfed. Again, the assignment π which assigns b, c, f to agent 2
and a, d, e to agent 1 is proportional in each of these cases. �

5 Conclusion

This paper has discussed the fairness property of proportionality in the allocation of indivisible

items. To use the concept of proportionality we assumed the Borda count as a scoring method to

determine values of items and sets. In general, the decision problem whether there is an allocation

such that the Borda score of each agent exceeds a given lower bound is known to be computationally

difficult (Baumeister et al. [2]). For the case of identical preferences and the use of Borda scores,

Bouveret and Lang [3] propose dynamic programming to solve that problem (which hence can be

applied for checking for proportionality), which allows a polynomial running time only under unary

encoding. However, using additional restrictions on the general setting, such as the number of

items being a multiple of the number of agents, not only the determination of the existence of a

proportional allocation becomes easy but also the existence of such an allocation can be assured in

almost all preference profiles. In addition, to show this, rather simple picking sequences are used. As

stated by Bouveret and Lang [3], identical preferences determine the worst case in any maximization

of an underlying social welfare, hence the realistic case in which there is at least some difference in

the agents’ preferences makes it almost certain to guarantee proportionality based on Borda count

valuation.

One could of course argue that the assumption of balanced allocations is too restrictive. Ob-

viously, even for identical preferences an unbalanced allocation can lead to proportional shares.



However, while proportionality, if satisfied for the usual Borda scores, is preserved under any ad-

ditive (or multiplicative) transformation of that scores in the case of balanced allocations, this is in

general not the case for unbalanced allocations.5

Of course there is sufficient scope for additional work. First, it is unclear how picking sequences

could be used in the case of a number of items not being a multiple of the number of agents. Most

likely certain domain restrictions could still guarantee proportionality, but those are yet to be found.

Second, the results cannot easily be extended to the class of all scoring functions. The Borda count

has been shown to be special among this class when used in voting theory (see Saari [19]), but it

also seems particularly useful when considered in the allocation of indivisible items. Again, domain

restrictions might do the trick to also find positive results for other scoring functions. Third, other

fairness properties could be considered. Using Borda counts as numerical values for sets of items,

envy-freeness could also be analyzed. However, as envy-freeness is a stronger property for n ≥ 3, no

such clear-cut results are to be expected. Finally, as we were only concerned with sincere behaviour,

the influence of strategic behaviour on achieving proportionality might be of interest.
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