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Abstract

We study the societal tradeoffs problem, where a set of voters each submit their ideal
tradeoff value between each pair of activities (e.g., “using a gallon of gasoline is as
bad as creating 2 bags of landfill trash”), and these are then aggregated into the
societal tradeoff vector using a rule. We introduce the family of distance-based rules
and show that these can be justified as maximum likelihood estimators of the truth.
Within this family, we single out the logarithmic distance-based rule as especially
appealing based on a social-choice-theoretic axiomatization. We give an efficient
algorithm for executing this rule as well as an approximate hill climbing algorithm,
and evaluate these experimentally.

Introduction

There are many actions that we take in life that are generally agreed to have some negative
effects on society. For example, consider actions with environmental downsides, such as
using gasoline, creating landfill trash, and clearing forest, to name a few. Which of these is
worse? To answer this, clearly one would first need to know how much gasoline is used, etc.
This then suggests the following type of question: how many bags of trash are as bad as
using one gallon of gasoline? Knowing the answer to this question could be useful to policy
makers as well as to socially minded individuals or companies who are looking to reduce their
environmental footprint in the most efficient way. However, since the environmental effects
of these actions are different, it seems unlikely that an objective answer to this question
exists. Rather, we as a society need to collectively decide what these tradeoffs should be,
based on our own subjective opinions.

This suggests a social-choice-theoretic approach, where agents submit their preferences
or opinions about what these tradeoff values should be as a vote. This social choice problem
was suggested by Conitzer, Brill, and Freeman (2015) in an AAMAS 2015 Blue Sky paper.
It has close conceptual ties to judgment aggregation (List and Pettit, 2002; Endriss, 2015),
where the assessments of multiple judges are aggregated into a logically consistent social
judgment. One difference is that here the assessments are quantitative rather than logical in
nature. Specifically, we assume that each voter expresses for each pair of activities her ideal
tradeoff value between those two. For example, a voter may feel that a gallon of gasoline
corresponds to two bags of trash.

From a social-choice-theoretic viewpoint, when aggregating numbers, one submitted per
voter, choosing the median is particularly compelling. When preferences are single-peaked,
this results in choosing the Condorcet winner, and the corresponding voting rule is group-
strategyproof. However, Conitzer, Brill, and Freeman (2015) pointed out that simply taking
the median for each pair of activities can result in the aggregate tradeoffs being inconsistent,
in the sense that the chosen tradeoff between a and c is not equal to the product of the
tradeoff between a and b and the tradeoff between b and c. See the example in Figure 1,
where a voter’s tradeoffs are represented by a graph with its edges labeled with tradeoff
values (e.g., voter 1 believes a gallon of gasoline is as bad as 2 bags of trash). This paradox
is reminiscent of judgment aggregation paradoxes where taking majority on all individual
issues results in a logically inconsistent aggregate judgment (Kornhauser and Sager, 1993).

So what are we to do? We insist that the aggregate tradeoffs be consistent; if not, then
it is not clear how to use them to guide decisions involving three or more activities. That
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Figure 1: Example from Conitzer, Brill, and Freeman (2015) that illustrates that taking the
median on each edge can lead to inconsistent outcomes even when each individual voter is
consistent. The activities are clearing forest (F ), using gasoline (G), and creating trash (T ).
Each of the left three graphs illustrates the consistent preferences of a single voter, with
the label on each edge indicating the voters ideal tradeoff between the corresponding two
activities. The rightmost graph, which results from taking the median on each edge, is
inconsistent because 300 6= 2 · 200.

means we must judiciously deviate from the median in some cases, but presumably we want
to deviate as little as possible. The topic of this paper is how to make this precise.

We introduce a class of rules for this context that we call distance-based rules. We
prove that these rules choose the median when there are only two activities and can be
interpreted as maximum likelihood estimators of the “truth.” We also axiomatize this
class of rules. We then focus our attention on a particularly natural rule within this class,
namely the logarithmic distance-based rule, and show it satisfies further nice properties,
which allow us to also axiomatize it specifically. We give a linear programming formulation
for computing its outcomes, as well as a simple hill-climbing algorithm that can get stuck
in local optima but is surprisingly effective in experiments. Generally, our positive results
hold even when agents submit inconsistent votes and our negative results hold even when
they submit consistent votes.

Preliminaries

Let A be a finite set of activities and N = {1, . . . , n} a finite set of voters. Let E be a
set of ordered pairs such that for every pair a, b ∈ A, either (a, b) ∈ E or (b, a) ∈ E, but
not both. For i ∈ N , let tabi denote voter i’s preferred tradeoff value between activities a
and b, and let tab denote a (potential) aggregate (societal) tradeoff value between a and b.
Let ti = (tabi )(a,b)∈E denote the vector of all i’s preferred tradeoff values (i’s vote) and

t = (tab)(a,b)∈E a (potential) aggregate tradeoff vector. A profile P is a collection of n votes
(one for each voter).

We assume that all tradeoff values are positive real numbers. A tradeoff vector t is
consistent if for all (a, b), (b, c), (a, c) ∈ E, tabtbc = tac, and for all (a, b), (b, c), (c, a) ∈ E,
tabtbc = 1/tca. A tradeoff rule f is a function that maps each profile P to a non-empty set
of consistent tradeoff vectors f(P ). Note that we do not assume votes to be consistent.

An example rule

In this section, we introduce an example tradeoff rule. It is arguably the simplest way to
obtain a variant of the Kemeny rule (Kemeny, 1959) for this domain. However, as we will
show, it has some very undesirable properties. This will help to motivate the rule that we
introduce later in the paper, which avoids these undesirable properties.

Definition 1 (Linear Distance Based Rule (DBRlinear). The linear distance between two
tradeoff vectors t1 and t2 is dlinear(t1, t2) =

∑
(a,b)∈E |tab1 − tab2 |. The score of a (potential)
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Figure 2: Aggregate tradeoff vector from applying DBRlinear to the example from Figure 1.
There is a disagreement of 100 with each of voters 1 and 2 on the forest-gasoline edge;
a disagreement of 100 with voter 1 and 300 with voter 3 on the forest-trash edge; and a
disagreement of 1/2 with voters 1 and 2, and 3/2 with voter 3 on the gasoline-trash edge.
The total disagreement is thus 602.5, which is minimal.

F

G T

.01

2

.02

F

G T

.03

1

.03

F

G T

.02

3

.06

F

G T

.015

2

.03

Figure 3: Example illustrating that a change of units can change the outcome on an unrelated
edge under DBRlinear. The leftmost three graphs are the votes and the rightmost one is the
outcome produced by DBRlinear.

aggregate tradeoff vector t relative to votes (ti)i∈N is
∑
i∈N d

linear(t, ti). The tradeoff rule

DBRlinear chooses the tradeoff vector(s) with minimum score.

For example, if we apply this rule to the profile from Figure 1, we obtain the aggregate
tradeoff vector in Figure 2. Intuitively, the rule chooses to agree with the median on the
edges with larger values, because it is more costly to disagree there; instead, it disagrees
with the median on the bottom edge. One nice property of DBRlinear is that when there are
only two activities, it necessarily chooses the median. (We will prove a more general result
as Proposition 2.)

Unfortunately, the rule has some undesirable properties. Suppose we change the units
on the forest clearing activity by a factor of 10,000 (say, we were using m2 before and are
now using cm2). Then naturally, the voters’ ideal tradeoffs on these edges should change
accordingly. Unfortunately, as illustrated in Figure 3, this changes the outcome of DBRlinear,
even on the unrelated edge from gasoline to trash! Intuitively, the reason is that which edges
are important has changed due to the change in units, so now it chooses to agree with the
median on the bottom edge. A similar problem occurs if instead of changing units, we
change the direction of some of the edges. For instance, if we reverse the edges incident to
the “forest” node in the example in Figure 1 a vote for an ideal tradeoff of (say) 200 on such
an edge would become 1/200 on the reversed edge. Hence, again the bottom edge would
end up with the largest numbers, and DBRlinear will again choose to agree with the median
there. These shortcomings of DBRlinear can be formalized as follows.

Definition 2 (ICU). A tradeoff rule f satisfies independence of choice of units (ICU) if
the following holds. Consider an arbitrary profile (ti)i∈N and let a be an arbitrary activity
and k a constant. Let µ be a function modifying tradeoff vectors as follows. For every edge
(a, b), µ(t)ab = k · tab; for every edge (b, a), µ(t)ba = k−1 · tba; and for every edge (b, c) with
a /∈ {b, c}, µ(t)bc = tbc. Then µ(f(t1, . . . , tn)) = f(µ(t1), . . . , µ(tn)).1

1Note that technically, f is set-valued, so µ is applied to a set of tradeoff vectors, in the natural way.
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Definition 3 (IED). A tradeoff rule f satisfies independence of edge directions (IED) if
the following holds. Consider an arbitrary profile (ti)i∈N and let (a, b) be an arbitrary edge.
Let µ be a function transforming tradeoff vectors to the modified graph where the edge (a, b)
is replaced by (b, a), in the natural way—that is, µ(t)ba = 1/tab and µ(t)cd = tcd for all
other (unmodified) edges. Then µ(f(t1, . . . , tn)) = f(µ(t1), . . . , µ(tn)).

Proposition 1. DBRlinear violates both ICU and IED.

A more general class of rules

We now introduce a broader class of tradeoff rules.

Definition 4. A distance-based rule (DBR) is defined by a function g : R → R. The g-
distance between two tradeoff vectors t1 and t2 is dg(t1, t2) =

∑
(a,b) |g(tab1 ) − g(tab2 )|. The

score of a (potential) aggregate tradeoff vector t relative to votes t1, . . . , tn is
∑
i d
g(t, ti).

DBRg chooses the tradeoff vector(s) with minimum score.

We now show that these rules always select the median. (For simplicity, we will only
consider the case where the number of voters is odd, but the result extends naturally to
even numbers. For our axiomatic results involving the median later, we only need profiles
with odd numbers.)

Proposition 2. For any strictly monotone function g, when there are only two activities,
DBRg chooses the median uniquely.

Proof. Let A = {a, b} and consider the edge (a, b). Consider some potential aggregate
tradeoff value tab that is (without loss of generality) strictly less than the median tabmed =
med(tab1 , . . . , t

ab
n ). For every voter i with tabi ≥ tabmed, we have |g(tabmed) − g(tabi )| = |g(tab) −

g(tabi )| − |g(tabmed) − g(tab)|. For every voter i with tabi < tabmed, we have |g(tabmed) − g(tabi )| ≤
|g(tab)− g(tabi )|+ |g(tabmed)− g(tab)|. Because there is at least one more voter in the former
category than the latter, it follows that the total score for tabmed is at most the total score
for tab, minus |g(tabmed)−g(tab)|. Because g is strictly monotone, tabmed obtains a strictly lower
score than tab.

MLE interpretation of distance-based rules

In this section, we show that every distance-based rule can be interpreted as a maximum
likelihood estimator of the “correct” tradeoff vector. The interpretation of voting rules as
maximum likelihood estimators of the “truth” can be said to date back to Condorcet (1785);
Young (1988, 1995) later made this more precise. The assumption is that there is an
unobserved correct ranking of the alternatives, and every voter’s vote (also a ranking) is a
noisy observation of this correct ranking. Then, we can set ourselves the goal of choosing
as the aggregate ranking a statistical estimate of the truth, given the votes. It is natural
to choose the maximum likelihood estimate, and Young showed that for a particular noise
model the Kemeny ranking (Kemeny, 1959) coincides with the maximum likelihood estimate.
Other noise models result in MLEs that coincide with other voting rules (Drissi-Bakhkhat
and Truchon, 2004; Conitzer and Sandholm, 2005; Truchon, 2008; Conitzer, Rognlie, and
Xia, 2009).

Analogously, in our setting, we assume that there exists an unobserved “correct” tradeoff
vector, and the votes are noisy observations of this correct vector. We consider the following
specific family of noise models.
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Definition 5. Let ttrue denote the correct tradeoff vector. For a function g : R → R,
let P ttrueg denote the following distribution over votes. Each agent’s vote is drawn i.i.d.

Moreover, each agent i draws its ideal tradeoffs tabi independently across edges. Finally, the

probability of a specific value tabi is proportional to e−|g(t
ab
true)−g(t

ab
i )|.

Because tradeoffs are drawn i.i.d. across edges in this model, it will generally not produce
consistent votes. This will not matter for our purposes; we can either consider this a feature
and treat it as a remarkable accident when voters are in fact consistent, or we can remove
the probability on inconsistent votes and renormalize on the consistent votes.2 We next
show that this family produces the distance-based rules as MLEs.

Proposition 3. DBRg is the MLE for P ttrueg .

Proof. The MLE for the distribution P ttrueg selects arg max
∏
i

∏
ab e
−|g(tab

true)−g(t
ab
i )|. Taking

the logarithm results in arg max
∑
i

∑
ab−|g(tabtrue) − g(tabi )| = arg min

∑
i

∑
ab |g(tabtrue) −

g(tabi )|, which is also chosen by DBRg.

Characterization of distance-based rules

In this section, we give an axiomatic justification for the class of distance-based rules. We
first show that monotonicity of g is necessary for selecting the median in two-alternative
cases.

Proposition 4. If DBRg always uniquely selects the median in profiles with two activities,
then g is strictly monotone.

Proof. Suppose that g is not strictly monotone. There are several cases; all are similar
and we present only one here. Suppose there exist x < y < z with g(x) ≥ g(z) ≥ g(y).
Consider a profile with three voters, tab1 = x, tab2 = y, and tab3 = z. Setting tab = z gives
total score |g(z) − g(x)| + |g(z) − g(y)| = g(x) − g(y). Setting tab = y gives total score
|g(y)− g(x)|+ |g(y)− g(z)| = g(x) + g(z)− 2g(y) ≥ g(x)− g(y), so tab = z achieves at least
as low a score as tab = y = tabmed. Thus tabmed is not uniquely chosen.

By a similar argument, if DBRg always selects the median (but sometimes not uniquely),
then g is weakly monotone.

For the rest of this section, we will take a slightly different view of tradeoff rules, to
facilitate the introduction of certain axioms. Let h be a function that takes as input a profile
of votes and a tradeoff vector and outputs a nonnegative real number. Further, suppose
that h takes value 0 whenever the tradeoff vector exactly matches every vote. We say that h
represents tradeoff rule f if, for every profile P , f(P ) consists exactly of the aggregate
tradeoff vectors that minimize the function h(P, ·). We note that every unanimous3 tradeoff
rule is represented by at least one such h: simply define h(P, t) = 0 whenever t ∈ f(P )
and h(P, t) = 1 otherwise. MLE interpretations of rules such as the one given earlier also
naturally provide such a score function: see the proof of Proposition 3. Next we show
that, subject to two natural conditions, strictly monotone distance-based rules are the only
tradeoff rules that choose the median when there are only two activities.

Definition 6 (Agent Separability). A function h satisfies agent separability if h(P, t) =∑
i∈N h(ti, t) for all profiles P and tradeoff vectors t.

2This is entirely similar to the fact that the simplest way to specify a noise model that produces the
Kemeny rule as the MLE is to allow cyclical preferences.

3A unanimous rule is one that selects tradeoff vector t (possibly among others) when all votes agree
exactly, i.e. t1 = . . . = tn = t.
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Agent separability implies anonymity, i.e., all voters are treated equally. Under an
MLE interpretation, this axiom would correspond to the assumption that votes are drawn
independently (conditional on the truth).

Definition 7 (Edge Separability). For a profile P and a tradeoff vector t, let P ab =
{tab1 , . . . , tabn }. A function h satisfies edge separability if h(P, t) =

∑
(a,b)∈E h(P ab, tab)

for all profiles P and tradeoff vectors t.

Edge separability implies a kind of neutrality, i.e., all edges are treated equally. Under
an MLE interpretation, this axiom would correspond to the assumption that the tradeoffs
on each edge are drawn independently (conditional on the truth).

Theorem 1. Let f be a tradeoff rule that is represented by function h satisfying agent
separability and edge separability, and suppose f uniquely selects the median when there are
only two activities. Then f = DBRg for some strictly monotone function g.

Proof. To determine f , we need to specify some function h that represents f . By agent sep-
arability, h(P, t) =

∑
i∈N h(ti, t) for all P and t, so it is sufficient to specify h(ti, t) for every

possible vote ti and tradeoff vector t. By edge separability, h(ti, t) =
∑

(a,b)∈E h(tabi , t
ab),

so we need only specify the value of h when passed a single vote on a single edge (i.e., a
voter’s ideal tradeoff for that edge) and a single candidate tradeoff for that edge. For ease of
notation, we will write h(x, y) where x is a vote and y a candidate tradeoff value (note that
the value of h(tabi , t

ab) does not depend on the voter i or on the edge (a, b)), and x, y ∈ R≥0.
Note that h(x, x) = 0 by our assumption on h.

Suppose that f uniquely selects the median when there are only two alternatives. We
first show that h(x, y) = h(y, x) for all x, y. For contradiction, suppose not. Then without
loss of generality there exist x, y such that h(x, y) < h(y, x). Therefore there exists some n
such that (n + 1)h(x, y) < nh(y, x). Consider a two-alternative profile P on A = {a, b},
where n + 1 voters have tabi = x and n voters have tabi = y. We have h(P, x) = nh(y, x) >
(n+ 1)h(x, y) = h(P, y). Thus x = tabmed /∈ f(P ), a contradiction.

Next we show that for all x ≤ y ≤ z, h(x, y) + h(y, z) = h(x, z). Suppose that h(x, y) +
h(y, z) > h(x, z) for some x ≤ y ≤ z. Then there exists n such that nh(x, y) + nh(y, z) >
nh(x, z)+h(y, z). Consider a profile P with n voters with tabi = x, n voters with tabi = z, and
one voter with tabi = y. Then tabmed = y but h(P, z) = nh(x, z)+h(y, z) < nh(x, y)+nh(y, z) =
h(P, y), so y /∈ f(P ). Suppose next that h(x, y)+h(y, z) < h(x, z). Then there exists n such
that (n+ 1)h(x, y) + nh(y, z) < nh(x, z). Consider profile P with n+ 1 voters with tabi = x
and n voters with tabi = z. We have h(P, y) = (n+ 1)h(x, y) +nh(y, z) < nh(x, z) = h(P, x).
Thus x = tabmed /∈ f(P ), a contradiction.

We can now express f as a distance based rule. Define

g(x) =

{
h(1, x) if x ≥ 1

−h(1, x) if x < 1

Using the “triangle equality” derived above, we now show that h(x, y) = |g(x) − g(y)|
for all x, y. There are several cases.
Case 1: 1 < x < y. Then |g(x) − g(y)| = |g(y) − g(x)| = |h(1, y) − h(1, x)| = h(x, y) =
h(y, x).
Case 2: x < 1 < y. Then |g(x) − g(y)| = |g(y) − g(x)| = |h(1, y) + h(1, x)| = h(1, y) +
h(x, 1) = h(x, y) = h(y, x).
Case 3: x < y < 1. Then |g(x) − g(y)| = |g(y) − g(x)| = | − h(1, y) + h(1, x)| = h(x, 1) −
h(y, 1) = h(x, y) = h(y, x).

By the definition of h, tradeoff rule f minimizes h(P, t) =
∑
i∈N h(ti, t) =∑

i∈N
∑

(a,b)∈E h(tabi , t
ab) =

∑
i∈N

∑
(a,b)∈E |g(tabi ) − g(tab)|, therefore f = DBRg. By
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Proposition 4, g must be strictly monotone as f uniquely chooses the median on two activ-
ities.

The logarithmic distance based rule

We will be particularly interested in the logarithmic distance based rule, where g = log.

Proposition 5. DBRlog is the same regardless of the base of the logarithm.

Proof. Consider two different bases α and β; we have that logα(x) = logβ(x) · logα(β).
Because logα(β) is a constant, the score of any aggregate tradeoff will only be changed by
a constant when we change the base of the logarithm.

Proposition 6. DBRlog satisfies ICU and IED.

Proof. We have | log(k · tab)− log(k · tabi )| = | log k+ log(tab)− log k− log(tabi )| = | log(tab)−
log(tabi )|. Therefore, if we perform a change of units (both on the votes and the aggregate
tradeoff vectors), no scores change, and hence outcomes remain the same. Similarly, we
have | log(1/tab)− log(1/tabi )| = | − log(tab) + log(tabi )| = | log(tab)− log(tabi )|. Therefore, if
we change the direction of an edge (both in the votes and the aggregate tradeoff vectors),
no scores change, and hence outcomes remain the same.

We now consider a slightly stronger version of ICU that makes sense for the class of
distance-based rules. It states that the score on any single edge should be independent of
the units chosen for that edge.

Definition 8 (Strong ICU). A distance-based rule DBRg satisfies strong ICU if, for all
k, x, y ∈ R+, |g(kx)− g(ky)| = |g(x)− g(y)|.

It is clear that strong ICU implies ICU, since under strong ICU any change of units
can not change the score on even a single edge. It remains an open problem whether the
converse holds, in general. However, we show that under the condition that the derivative g′

is bounded below and above on any closed interval, strong ICU is equivalent to ICU.

Lemma 1. Let g : R+ → R be a strictly monotone, differentiable function. Suppose that
for any closed interval [p, q] ⊆ R+, there exist c, C with 0 < c < C such that c < g′(x) < C
for all x ∈ [p, q]. If DBRg satisfies ICU then DBRg satisfies strong ICU.

Proof. Let g satisfy the conditions of the lemma statement. We will suppose without loss
of generality that g is (strictly) increasing. Suppose that DBRg fails Strong ICU; that is
|g(kx)− g(ky)| 6= |g(x)− g(y)| for some k, x, y, and (without loss of generality) that x > y,
and therefore g(x) > g(y) and g(kx) > g(ky). Let c, C be the lower and upper bounds on g′

for the interval [1, kx]. Let n be sufficiently large such that 2nc− (C x
y + Cx) > 0.

We exhibit an instance of the societal tradeoff problem on which DBRg fails ICU. Con-
sider three activities a, b, c and 2n+ 1 voters who cast the following votes:

n × tabi = 1, tbci = x, taci = x

n × tabi = 1, tbci = y, taci = y

1 × tabi =
x

y
, tbci = y, taci = x

We first determine the aggregate tradeoff(s) output by DBRg on this instance. Observe
that such a tradeoff t satisfies tab ∈ [1, xy ], for the following reason. If tab > x

y then either

tbc < y or tac > x. We can decrease the score of t by adjusting tab towards tabmed = 1
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and simultaneously increasing tbc towards tbcmed = y (in the former case), or decreasing tac

towards tacmed = x (in the latter case). If tac < 1 then tbc > tac and we can decrease the score
by increasing tab towards tabmed = 1 while simultaneously either decreasing tbc (if tbc > y)
or increasing tac (if tac < x). It can be verified that at least one of these conditions is
guaranteed to be true by the relations x > y and tbc > tac. Given that tab ∈ [1, xy ], it is also

easy to check that tbc, tac ∈ [y, x].
We now show that in fact tab = 1. For contradiction, suppose instead that tab > 1 and

consider scaling it by some factor ε with 1
tab < ε < 1 (that is, we shift tab towards 1 by some

absolute amount that is between ε and εxy , depending on the value of tab). For the 2n voters

with tabi = 1, the distance dg(tabi , t
ab) decreases by at least cε, by the lower bound on g′.

For the single voter with tabi = x
y , the distance dg(tabi , t

ab) increases by at most Cεxy , by the

upper bound on g′. Thus the change in the score on edge (a, b) is at most −2ncε+ Cεxy .

By the consistency constraint, scaling tab by ε requires scaling tbc and/or tac so that
tabtbc = tac. We will scale tac by ε and obtain an upper bound on the change in score as a
result (there are other possiblities here, but we only need to exhibit a single tradeoff vector
with lower score than t, so we are free to consider only one case). The scaling results in
an absolute change in tac of at most εx. Note that the change in score on this edge for the
first n voters is exactly canceled by the change in score for the second set of n voters. So
we need only consider the last voter, for whom the distance dg(taci , t

ac) increases by at most
Cεx. Therefore, the total change is at most −2ncε+Cεxy +Cεx, which is less than zero by

the choice of n. Thus no value tab > 1 is optimal.
By consistency, tab = 1 implies that tbc = tac. We note that as long as tbc ∈ [x, y],

the resulting tradeoff vector is optimal. The sum of scores on the two edges is exactly
equal to (2n + 1)|g(x) − g(y)|. Therefore DBRg outputs a tie between the tradeoff vectors
(tab = 1, tbc = x, tac = x) and (tab = 1, tbc = y, tac = y) (among others).

We can now prove that DBRg fails ICU by showing that the output changes when we
consider a change of units applied to activity a with constant k. In particular, one of the
two tradeoff vectors specified in the previous paragraph (adjusted for change of units) will
no longer be chosen. The score of tradeoff (tab = k, tbc = x, tac = kx) is now∣∣∣∣g(kxy

)
− g(k)

∣∣∣∣+ (n+ 1) |g(x)− g(y)|+ n |g(kx)− g(ky)|,

and the score of tradeoff (tab = k, tbc = y, tac = ky) is∣∣∣∣g(kxy
)
− g(k)

∣∣∣∣+ n |g(y)− g(x)|+ (n+ 1) |g(ky)− g(kx)|.

The difference in the two scores is |g(ky)− g(kx)| − |g(x)− g(y)| 6= 0, so there is no longer
a tie between the two outcomes, and at least one of them is no longer chosen by DBRg.

We are now able to uniquely characterize DBRlog.

Theorem 2. DBRlog is the only distance-based rule that satisfies strong ICU and uniquely
selects the median when there are only two activities.

Proof. By Proposition 4, it is sufficient to show that the logarithm is the only strictly
monotone function satisfying |g(kx)− g(ky)| = |g(x)− g(y)| for all k, x, y ∈ R+. Let g be a
function with this property and assume (without loss of generality) that x > y. Rearranging,
g(kx)− g(x) = g(ky)− g(y) = ck for all x, y ∈ R+ and some constant ck that depends on k.
So

g(kx) = g(x) + ck⇒ g(k) = g(1) + ck ⇒ ck = g(k)− g(1).
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Figure 4: Example illustrating the additive variant with activities watching basketball (B),
watching football (F ), and watching hockey (H). The leftmost three graphs are the votes
and the rightmost one is an outcome produced by the linear distance-based rule with an
objective value of 70.

We may assume that g(1) = 0, since any distance-based rule is unchanged by the addition
of a constant to g. So the condition reduces to

g(kx) = g(x) + g(k)

for all x, k ∈ R+. The only strictly monotone functions satisfying this condition have the
form g(x) = c log(x) for c ∈ R (see, e.g., Smı́tal, 1988, for a proof of this well known fact).
The result follows by observing that DBRg = DBRcg, which leaves us with only the rule
DBRlog.

The following corollary follows directly from Lemma 1 and Theorem 2.

Corollary 1. Let g be a strictly monotone, differentiable function. Suppose that for any
closed interval [p, q] ⊆ (0,∞), there exist c, C with 0 < c < C such that c < g′(x) < C for
all x ∈ [p, q]. Suppose moreover that DBRg satisfies ICU. Then DBRg = DBRlog.

Can we efficiently compute outcomes under DBRlog? It turns out that we can. In fact,
it turns out that the logarithmic transformation is actually helpful. Intuitively, the reason
is that once we apply logarithms to all tradeoff values, the consistency constraint becomes
additive. That is, tab · tbc = tac is equivalent to log(tab) + log(tbc) = log(tac). To see more
precisely how this is helpful, we first discuss an additive variant of our problem, which
may be of independent interest but whose primary purpose is to help us efficiently compute
outcomes under DBRlog.

An additive variant

Consider an additive variant of our problem, where we compare activities by saying that a
is x units “better” than b. Then, the consistency constraint becomes tac = tab+tbc. Consider
the example in Figure 4, in which, for instance, agent 1 feels that watching basketball is 5
units more enjoyable than watching football.

In this case, we can again define the linear distance based rule, based on the distance

dlinear(t1, t2) =
∑
(a,b)

|tab1 − tab2 |.

Unlike in the original (multiplicative) context, in this additive context using the linear
distance seems to make sense – changing units does not seem relevant, and changing the
direction of an edge only changes the sign of values on it, rather than their magnitude, so the
outcome remains unaffected. The rightmost graph in Figure 4 gives an outcome produced
by this rule.
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As it turns out, in this variant we can solve for optimal solutions (i.e., the outcomes
produced by the rule) in polynomial time, using a linear program. This linear program
contains a variable qa for each activity, representing the aggregate quality of that activity.
We will only be interested in differences in qualities—e.g., qa − qb = tab—so we can
normalize an arbitrary one of the activities to have quality 0. The linear program also con-
tains variables dabi , denoting the distance |tabi −qa+qb|. The linear program is then as follows:

minimize
∑
i∈N

∑
(a,b)∈E

dabi

subject to dabi ≥ qa − qb − tabi (∀i, a, b)
dabi ≥ tabi − qa + qb (∀i, a, b)

Instead of solving the LP directly, there is also a natural hill-climbing approach. This
involves initializing the qa variables arbitrarily and then checking them individually to see
whether it can be changed to a value that increases the objective. This check has a nice
social-choice-theoretic interpretation, as follows. Consider some activity a. Then, for any
b 6= a and voter i, define the implied vote by (i, b) on a to be tabi + qb (or qb − tbai ), where qb
is the current setting for b. The reason is that if qa is set to this value, then there will be no
disagreement with tabi ; more generally, the disagreement with tabi resulting from setting qa
to a value will be the distance of that value to the implied vote. Hence, the overall objective
value will be maximally improved by setting qa to the median of these implied votes. (Note
that the number of implied votes may be even even if the number of agents is odd, in which
case any value between the left and right medians will be optimal.)

Executing DBRlog via the additive model

As it turns out, an algorithm for the additive model (with linear distance) will allow us to
directly solve the orginal (multiplicative) model (with logarithmic distance) using a simple
transformation. We simply take the logarithm of each tabi to obtain t̂abi = ln(tabi ), run an
algorithm for the additive model to obtain optimal values t̂ab, and exponentiate back to

obtain tab = et̂
ab

.

Proposition 7. When using an exact solver for the additive model, the procedure described
above results in an optimal solution for DBRlog.

Proof. We first observe that when tab = et̂
ab

, t is consistent in the multiplicative model if
and only if t̂ is consistent in the additive model. This follows simply from the fact that

tac = tabtbc ⇔ et̂
ac

= et̂
ab

et̂
bc

= et̂
ab+t̂bc ⇔ t̂ac = t̂ab + t̂bc.

Furthermore, the objective value of t in the multiplicative model is the same as that of t̂ in

the additive model. This is because | ln(tab)− ln(tabi )| = | ln(et̂
ab

)− ln(et̂
ab
i )| = |t̂ab− t̂abi |, so

each term in the summation of the objective value is the same.

Because linear programs can be solved in polynomial time (Khachiyan, 1979), we imme-
diately obtain:

Corollary 2. We can solve for an outcome under DBRlog in polynomial time.

Of course, we can also use the hill-climbing algorithm described in the previous section
to the transformed instance and then transform it back to the multiplicative model to obtain
a (possibly suboptimal) solution.
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Figure 5: Runtime comparison for different algorithms and distributions over vote profiles.
The prefixes “uniform,” “spanning,” and “noise” specify how votes are generated. The
suffixes “GLPK,” “greedy,” and “median” specify the algorithms: GLPK is the optimal LP
solver (using the GNU linear programming kit), greedy is the hill-climbing algorithm, and
median simply picks a random spanning tree of activities and uses the median rule for each
spanning tree edge.

Experiments

We generated three classes of voting profiles and compare the different algorithms’ perfor-
mances in terms of running time, penalty (LP’s objective), and the distance between the
aggregated result and the ground truth (if there is one).

For the first class of voting profile (uniform), each vote is generated as follows. For every
pair of activities, we draw a number x ∈ [−1, 1] uniformly at random and let the voter’s
tradeoff between two activities be ex. Note that this generally generates inconsistent votes.

For the second class (spanning), which generates consistent votes, each vote is generated
by first generating a random spanning tree among activities. Then, for each pair of activities
that forms a spanning tree edge, we draw a number x ∈ [−1, 1] uniformly at random and let
the voter’s tradeoff between those two activities be ex. Finally, we use those spanning tree
edges and the consistency constraint to infer the relationships between pairs of activities
that do not form a spanning tree edge.

For the third class (noise), we first sample a ground truth quality qa, uniformly at
random between −10 and 10 for each activity a. Then for each voter i, we draw noise δai
from a normal distribution with mean 0 and standard deviation 1 for each activity. We then

let the tradeoff between two activities a and b be eqa+δ
a
i /eqb+δ

b
i for that voter.

Results are shown in Figures 5 and 6. Particularly notable is the performance of the
hill-climbing algorithm, whose solution quality in the experiments is indistinguishable from
that of the LP, while being significantly faster. This is in spite of it being näıvely initialized
to 0 and not using random restarts. We have manually constructed an example where hill
climbing gets stuck at a local optimum (and verified this with our code), but it appears such
instances do not get generated in the experiments.
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Figure 6: Performance comparison for different algorithms and distributions over vote pro-
files. “Penalty” is the sum of disagreement between the aggregated tradeoff and all votes
(our LP objective):

∑
i∈N

∑
(a,b)∈E | log(tab)− log(tabi )|. For the noise case, we use distance

to the ground truth instead of penalty. “Distance” is n · |(qa − qb) − log(tabi )| where q is
the ground truth (after the log adjustment). We multiply the difference by the number of
voters n so that it has the same scale as penalty.

Conclusion

We believe we have made a very strong case for the logarithmic distance-based rule. We
have shown that it uniquely satisfies some very desirable properties and can be executed
efficiently. Some practical issues would likely need to be addressed before real deployment.
For example, one concern may be that agents would have a hard time providing exact
ideal tradeoff values; they may, for example, be more comfortable reporting an interval for
each edge. Farfel and Conitzer (2011) propose aggregating intervals by taking the median
of the lower bounds and the median of the upper bounds; similarly, we could aggregate
lower bounds and upper bounds separately. Various other practical issues are discussed
by Conitzer, Brill, and Freeman (2015). Still, we believe that the identification of this rule
and algorithms for computing it represent a major step forward in this agenda.

We believe this work also generates appealing theoretical questions. Can we say some-
thing about the structure of the solutions generated? (We have an example where the
optimal solution does not coincide with the median on any edge.) Can we explain the re-
markable performance of the hill-climbing algorithm? What about incentives for voters to
strategically misrepresent their ideal tradeoffs? Finally, is the societal tradeoffs problem
really just one of a larger class of social-choice-theoretic problems? The additive variant
suggests so, and one can imagine other variants. For example, the voters may report what
they perceive to be the distances (i.e., dissimilarities) between the nodes, in which case the
consistency constraint may be a triangle inequality on the distance.
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