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Abstract

We consider the problem of allocating applicants to courses, where each applicant
has a capacity, possibly greater than 1, and a subset of acceptable courses that she
ranks in strict order of preference. Each course has a lower and an upper quota,
indicating that if it is assigned some applicants then their number has to be between
these two bounds. We further suppose that applicants extend their preferences over
courses to preferences over bundles of courses lexicographically.

In this setting we present several algorithmic results concerned with the computation
of Pareto optimal matchings (POMs). Firstly, we extend the Serial Dictatorship
with Project Closures mechanism to the case when an applicant can be assigned
more than one course. We show that that this mechanism is strategy-proof against
reordering strategies only for some picking sequences and no mechanism is strategy-
proof against dropping manipulations. We further show the intractability of the
following problems: deciding about the Pareto optimality of a given matching, com-
putation of a POM with maximum cardinality and computation of a POM in case
of indifferences.

1 Introduction

We study two-sided matching markets with one-sided preferences. One side of the market,
the set A (of agents, students, workers, researchers) has strict ordinal preferences over
the other side, represented by the set C' (of objects, schools, courses, firms, projects etc),
but not vice versa. The aim is to match agents to objects. As preferences of agents are
often conflicting, a suitable compromise for optimality notion has to be chosen. One of
the most popular one is Pareto optimality, widely studied in the literature on matchings
[1, 2, 10, 11, 12, 13, 20, 22, 28]. A matching is Pareto optimal if it is not possible to improve
the match for at least one agent without making some other agent worse off.

The simplest matching problem arises when each agent can be matched to at most one
object and vice versa. This case is often called the House Allocation problem and the famous
Serial Dictatorship mechanism (SD for brevity) can be applied. SD means the following:
agents are ordered into a picking sequence randomly or according to some rule and taken
in this order, everybody who has her turn chooses the most preferred among objects that
are still available.

Serial Dictatorship [1, 22] is also called queue allocation in [28], Greedy-POM in [2], or
sequential mechanism in [9, 6]. Several authors proved independently that a matching in a
house allocation problem is Pareto optimal if and only if it is produced by SD (Svensson
in 1994 [28], Abdulkadiroglu and S6nmez in 1998 [1], Abraham et al. in 2004 [2], Brams
and King in 2005 [10]). However, this equivalence holds only in the one-to-one case, in
many-to-many setting some additional conditions have to be fulfilled, see e.g., Cechlarova
et al. [11].

Serial Dictatorship can easily be extended to the case when objects come in several
copies (or, equivalently, if courses, firms, projects, etc, have greater capacity): simply, in
the realization of SD the agents are allowed to choose each object several times, up to its
capacity.

The case when agents may be assigned more than one object has also been considered by
several authors [6, 10, 11, 12, 13]. The variant of Serial Dictatorship that allows one agent
to pick immediately the best bundle of objects may output a POM that is very unfair. A



generalization of SD in which an agent is allowed to pick only one object on her turn, but
she is put into the picking sequence several times, is called a Sequential Mechanism to stress
the difference. Some of the authors assumed that all objects are acceptable for each agent
and hence all objects are assigned in each matching. Aziz et al. [6], Brams and King [10],
Bouveret and Lang [9] explored several possible rules for creating the picking sequence with
respect to the question which assignments can be achieved in this case.

Agents may also consider only certain sets of objects acceptable. This may be implied
by various real-life restrictions, for example in connection with prices of objects and budgets
of agents or some kind of complementarities. The case when feasible sets of objects form
families closed with respect to inclusion was treated by Cechldrovd et al [11] and the case
when object represent university courses and certain prerequisites have to be fulfilled was
dealt with by Cechlarové, Klaus and Manlove [13].

Another interesting case arises when objects represent courses (projects, or study pro-
grammes) that have lower quotas. Lower quotas may mean that each object has to receive
at least the required number of assignees, like in [17]. When objects represent say projects or
courses (see e.g. [8, 24]), then it is more plausible to assume that if the number of students
(workers, researchers etc) assigned to a project (course) does not meet its lower quota then
the project (course) will simply stay closed (i.e., it is assigned no agents). The latter case
has been dealt with by Bir¢ et al. [8] and by Arulselvan et al. [3]. Biré et al. [8] considered
prospective students and study programmes. They assumed that study programmes also
have preferences over the students (say, derived from students’ academic performance) and
the solution concept was stability. Arulselvan et al. [3] assumed that each possible agent-
object partnership carries some weight and they considered the computational complexity
of maximum weight matchings fulfilling lower and upper quotas.

As far as the authors are aware of, Pareto optimality of matchings with lower quotas of
objects was studied in three works.

Goto et al. [17] considered a matching model in the context of students and schools.
In their model each school is acceptable for each student and there is a family of regions
(subsets of schools) that have lower as well as upper quotas. A matching is feasible if for
each region the set of assigned students obeys its lower as well as upper quota. The authors
showed that the problem to decide whether a feasible matching exists is NP-complete (even
in the case when there are only lower quotas or when there are only upper quotas), unless
the regions form a hierarchical family, i.e., two different regions are either disjoint or one of
them is a subset of the other. For hierarchical lower quotas Goto et al. proposed several
mechanisms and described the properties of the matchings that are produced by them.

In the model with project closures Monte and Tumennasan [24] proposed an algorithm
called Serial Dictatorship with Project Closures (SDPC for short) for the case that each
project is acceptable for each student and a student can be assigned to at most one project.
Monte and Tumennasan showed that their mechanism is strategy-proof, it always produces
a Pareto optimal matching, but there may be Pareto optimal matchings that cannot be
obtained by SDPC. Kamiyama [19] generalized SDPC to the case when students declare
some projects unacceptable and the sets of applicants assigned to a project may be required
to fulfill some additional restrictions. However, Kamiyama did not give any complexity
bound for his algorithm.

Finally, our main algorithmic tool is network flows. Let us mention that this approach has
been used to find Pareto optimal matchings by Cechdrovd et al. [12] in the many-to-many
case with indifferences and by Athanassoglu and Sethuraman [4] in the house allocation
problem with fractional endowments.



Our contribution

In this paper we use the terminology of applicants and courses and give a further general-
ization of the SDPC, namely for the case when each applicant can be assigned to several
courses (many-to-many case) and she is allowed to declare some courses unacceptable. We
call this mechanism the Generalized Serial Dictatorship with Project Closures, briefly GSDP.

We assume that applicants rank order individual courses and these preferences are ex-
tended to preferences over bundles lexicographically. Lexicographic preferences have been
intensively studied from the axiomatic perspective [7], [15], [25] but they are also a popular
approach in matching theory, see [11, 12, 13, 26, 21]. Lexicographic preferences are crucial
for the correctness of GSDPC.

In Section 2 we introduce the model and the necessary notions. Section 3 is devoted
to the description, proof of correctness and complexity analysis of GSDPC. We also prove
that given a matching, it is NP-hard to decide whether it is dominated. Strategic issues are
treated in Section 4. In Section 5 we explore some structural properties of Pareto optimal
matchings with lower quotas. Finally, in Section 6 we show that in case of indifferences the
problem of finding a POM is NP-hard. Section 7 concludes.

2 Definitions and notation

A is the set of m applicants, C' is the set of n courses. We suppose that each course ¢ € C'
has a lower quota £(c) and an upper quota u(c), with £(c) < u(c). Each applicant a € A has
a capacity ¢(a) and a strict linear order (preference) P(a) on a subset of C. This preference
will simply be represented as an ordered list of courses, from the most preferred to the least
preferred one. Sometimes we shall enclose a part of a preference list by a pair of square
brackets, to indicate that the courses within them can be listed in an arbitrary strict order.
With some abuse of notation, we shall say that a course c is acceptable for applicant a if
c € P(a). The sum of applicants’ capacities is denoted by @ =" . 4 q(a).

The preference profile P is the m-tuple of applicants’ preferences, ¢, ¢ and u are the
vectors of applicants’ capacities and quotas of courses. The quadruple I = (4,C, P, q, ¥, u)
is an instance of the Course Allocation problem with Lower Quotas (CALQ for brevity).

An assignment M is a subset of A x C. The set of applicants assigned to a course ¢ will
be denoted by M(c) = {a € A;(a,c¢) € M} and similarly, the set of courses assigned to an
applicant a is M(a) = {c € C;(a,c) € M}.

An assignment M is a matching if the following two conditions (i) and (i¢) are fulfilled:

(i) M(a) C P(a), |M(a)| < g(a) for each a € A;
(1) £(c) < |M(c)|] < u(c) or M(c) =0 for each c € C.

An assignment M is called a partial matching if it fulfils (i) and the following weaker
condition:

(#i") |M(c)| < u(c) for each ¢ € C.

This means that in a partial matching some courses may violate their lower quotas.
Given a partial matching M, a course c is

open if M(c) # 0,

closed if M(c) =0,

fully it M(c) = u(c);

demanding if it is open and | M (c)| < £(c);



e satisfied if |[M(c)| > {(c).

We denote by 0(M), €(M), F(M), 2(M) and ¥ (M) the set of open, closed, full, de-
manding and satisfied courses in a partial matching M.
Given a partial matching M, its residual demand is

RD(M)= 3 (6c) - [M(0))).

ce€ED(M)

Notice that a partial matching M is a matching if and only if RD(M) = 0.

We suppose that applicants express their preferences only over individual courses and
they compare bundles of courses lexicographically ( [7, 15]). This means that an applicant
prefers a bundle S to a bundle T if and only if her most preferred course in the symmetric
difference S & T belongs to S. Notice that the lexicographic ordering of bundles of courses
generated by a strict preference order P(a) is also strict.

Applicant a prefers matching M’ to matching M if she prefers M'(a) to M (a). We say
that a matching M’ dominates a matching M if at least one applicant prefers M’ to M and
no applicant prefers M to M’.

A Pareto optimal matching, briefly a POM, is a matching that is not dominated by any
other matching. As the dominance relation is a partial order over the set of matchings and
the set of all matchings is finite in an instance of CALQ, a Pareto optimal matching exists
for each instance of CALQ.

The main tool in our algorithm are network flows. We refer to the monograph of Schrijver
[27] for the basic terminology and properties of flows in networks. For reader’s convenience
we recall here the basic notions and results. A network is a directed graph N = (V, E) with
two distinguished vertices s and ¢, (called the source and the sink) and a capacity function
w: E — RY. For § C E, the symbol w(S) denotes the total capacity of arcs in S. The
set of arcs entering a vertex v is denoted by §""(v), and the set of arcs leaving a vertex v
is denoted by §°“!(v); this notation is extended to a set of vertices U in place of a single
vertex v in the natural way. A flow in N is a mapping f : E — RT that obeys the arc
capacities, i.e., f(e) < w(e) for each arc e € F, and fulfils the flow conservation condition,
Le,, D ecsing) [(€) = Xeesour(yy f(€) holds for each vertex except the sink and the source.
The value of flow f is the amount of flow leaving the source, i.e., value(f) = Zeeéout(s) fle).
We shall use the Integrality Lemma (see Corollary 11.2c and Theorem 11.1 in [27]) which
ensures that if all the arc capacities in a network NN are integral and N admits a flow of size
K then N also admits an integral flow of size K. Notice also that an integer s — ¢ flow of
size K is a linear combination of K directed s — t paths.

A cut in a network is a subset U of vertices that contains source s and does not contain
sink t. The famous Maxflow-Mincut theorem states that in each network N, for each flow f
and each cut U, we have value(f) < w(6°“*(U)); moreover, a flow f is of maximum value if
and only if there exists a cut U for which this inequality is fulfilled as equality [27, Theorem
10.2].

3 Algorithm

First we show that the classical SD may fail to find a matching in an instance of CALQ, even
in the simplest case with just two courses ¢y, co, both with lower quota equal 2, and two
applicants a1, as each with capacity equal 1. (Another example with more applicants and
courses was given in [24].) Suppose applicant a; prefers course ¢; to course co and applicant
ag prefers course cy to course c¢;. Irrespectively of the picking sequence, the classical SD



produces the matching M = {(a1, 1), (az, c2)} which is not feasible, as it violates the lower
quotas of both courses.

In this section we shall generalize Serial Dictatorship with Project Closures mechanism
of Monte and Tumennasan [24] and Kamiyama [19]. Notice that these papers work only in
the one-to-many case, i.e., they assume applicants’ capacities equal 1. We want to treat the
case where an applicant can be assigned to several courses.

Our mechanism will be called the Generalized Serial Dictatorship with Project Closures
(GSDPC for short). Notice that this mechanism requires that the complete preference profile
is known at its beginning.

First, applicants are ordered into a picking sequence o, each applicant a appears g(a)
times in 0. Matching M is initialized to be the empty matching and for each applicant a,
pointer best(a) is set to the first course in a’s preference list P(a).

GSDPC works in rounds. In the beginning of round k£ we have a partial matching My _4
and the next applicant a from o is taken. The mechanism tries to add a new pair to the
current partial matching My, _; by assigning a to her most preferred course in P(a)\My_1(a)
while ensuring that no course will exceed its upper quota and all the currently open demand-
ing courses (possibly a newly open course too) can still fulfil their lower quotas. While a is
treated, pointer best(a) moves down a’s preference list until she is assigned a course, or until
all courses in her list are unsuccessfully checked. When we explore whether course ¢ can be
assigned to a, we check whether ¢ has enough free capacity, i.e., whether |Mj_1(c)| < u(c),
but also whether there are still enough applicants interested in all the demanding courses.

We keep for each applicant a the variable rq(a), denoting her residual capacity. At the
start of the algorithm, rq(a) is set to g(a) and in the beginning of each round where a is
treated, rq(a) is decreased by 1. Further, we denote by RCj_1 the sum of residual capacities
of all the applicants in Mj_1. The vertices of network N(Mjy_1) are applicants, courses,
source s and sink ¢. The arc are:

First layer: (sa) for each a € A, capacity w(sa) = rq(a).
Second layer: (ac) for each a € A and each ¢ € P(a), capacities of these arcs are 1.

Third layer: (ct) for each ¢ € C with w(ct) = ¢(c) — |[Mi—1(c)| if ¢ € 2(My_1) and
w(ct) = 0 otherwise.

Arcs from the second layer are deleted during the algorithm in a way that we now describe.
Round k starts with network N(Mjy_;1) and deals with applicant a who is in position k in
the picking sequence o. We take course ¢ = best(a) and delete the arc (ac) from N(My_1).
If |[My_1(c)| = u(c), we increase best(a) and move to the next course in her preference list,
otherwise pair (a,c) is provisionally added to My_; to obtain a new (provisional) partial
matching My. Depending on the properties of course ¢, capacities of arcs of the third layer
are updated as described below, to get network N(M}) and we check whether this network
admits a flow of value RD(Mj},). If such a flow exists, pair (a, c) becomes a fixed addendum
to My_1 and network N (M) together with the flow fj is made the starting point of the new
round. Otherwise we return to My_; and N(Mj_1), best(a) is moved to the next position
in a’s list (if any) and the next course in the preference list of a is explored.
For the correctness of the algorithm the following lemma is crucial.

Lemma 1. There exists a matching M such that My = My_1 U{(a,¢)} C M if and only if
N(My) admits a flow f, of value RD(Mjy).

Proof. If the network N(M},) admits a flow fi, of value RD(Mj) then due to the Integrality
Lemma it also admits an integral flow of the same value. This flow defines the augmentation
of My_1 U{(a,c)} into a matching M by adding all the pairs (¢, ¢’) corresponding to arcs
(a’¢") in N(My) with nonzero flow fj.



Conversely, let there exist a matching M that contains My_1U{(a,c)}. We take all pairs
(a/,c") € M\(My—1 U{(a,c)}), define the flow fi to be equal 1 along all the corresponding
arcs (a’c’) and complete it along the arcs from the first and the third layer to ensure the
flow conservation condition. It is easy to see that no arc capacity is exceeded. Further,
since all the courses in 2(M},) fulfil their lower quotas in M, the desired value of f}, is also
achieved. O

Theorem 2. GSDPT outputs a Pareto optimal matching.

Proof. Let us denote the output of GSDPT by M. First we show that M is a matching.
Using the Maxflow - Mincut theorem, in each round k we have

0 < RD(My) < value(fy) < w(6°“{s}) = RC},

In the last round r the residual capacity RC, = 0, hence RD(M,) = 0, so M = M, is a
matching.

Now we show that M is a POM. To get a contradiction, suppose that there exists a
matching M’ that dominates M. So there exists an applicant a who prefers M'(a) to M (a);
let ¢(a) be the most preferred course in M'(a)\M(a) and let k(a) be the round where
a and c(a) were considered. Let a be the applicant for whom k(a) is minimum. Then
M’ restricted to pairs assigned up to the round k(a) — 1 is equal to Mj,)—1. Matching
M’ proves that there exists a matching augmenting My,)—1 U {(a,c(a))}, so the network
N(Mpq)-1U{(a,c(a))}) contains the desired flow, hence the algorithm should have assigned
¢(a) to a, a contradiction. O

To perform the algorithm efficiently, we shall not compute flow f; in round k from
scratch, we rather see how to update network N(Mjy_1) to N(Mj) and to extend flow fr_;
to get a flow fj, of size RD(Mj).

At the beginning of round k where applicant a is dealt with, firstly r¢(a) is decreased by
1 and so the capacity of arc (sa) is decreased by 1. When exploring the pair (a, ¢ = best(a)),
arc (ac) is deleted from N(Mj_1) and other changes are performed, depending on the
character of ¢. We distinguish several cases and notation M}, always means the provisional
partial matching Mjy_1U{(a,c)}. Recall that value(fr_1) = RD(Mj_1) and for each course
¢ € €(My_1) the capacity of arc (ct) is 0.

(a) ¢ € €(Mp_1) and €(c¢) = 1. Then RD(My) = RD(My_1). This means that the
capacities of the arcs of the third layer do not change, but perhaps flow fr_1 used up
the whole residual capacity of applicant a. In other words, flow f;_; along arc (sa)
was equal to rq(a). If that was the case, we have to perform one search in N(Mj) to
make up for the lost one unit of flow value.

(b) ¢ € €(My_1) and £(c) > 1. Then RD(M},) = RD(My_1) + ¢(c) — 1. This means that
the capacity of arc (ct) is increased from zero to £(c) — 1. Again, possibly one unit
of flow value was lost because of fi_1(sa) = rq(a), so to get the flow of the desired
value, we need at most ¢(c) searches in N(My).

(¢c) ¢ € Z(Mp_1). Then RD(Mj) = RD(My_1) — 1, namely capacity of arc (ct) is
decreased by 1. Now, if we had fr_1(ac) = 1, nothing has to be done. If the flow
fr—1 into vertex ¢ used exclusively arcs different from (ac), we choose one of them
arbitrarily, say (a’c), and decrease the flow along this arc and along the arc (sa’) by
one.

(d) c € S (My_1). Now RD(M}y) = RD(Mj,_1). Again, possibly one unit of flow value

was lost if fx_1(sa) = rq(a), so one search in N(Mpy) is enough to make up for the
one unit of flow value.



To be able to derive the complexity bound for the algorithm, let us first estimate how
many operations we need to check whether the pair (a, ¢) can be added to the current partial
matching. Each admissible pair (a,c) is explored at most once, hence we may need |Lp]
checks, where |Lp| is the total length of the preference list. In the worst case, when the
algorithm tries to open course ¢ that was closed so far (point (b)), as many as ¢(c) searches
in network are needed. One search in a network is linear in the number of its arcs, and all
the networks in the algorithm have at most |A| + |Lp| + |C| arcs. Therefore the complexity
bound of the algorithm is O(|Lp|?*maz.ccf(c)), which can be bounded by O(m3n?), where
m = |A| and n = |C|. The previous discussion is summarized as follows:

Theorem 3. Algorithm GSDPC correctly computes a POM in a CALQ instance in
O(|Lp|*mazccct(c)) time.

Monte and Tumennasan [24] showed that SDPC is not able to produce some Pareto
optimal matchings. We strenghten their result to show that this holds already for two
applicants and lower quotas not exceeding 2.

Example 4. Let the set of courses be C = {c1,ca,7}, all courses have lower as well as
upper quota equal 2. The set of applicants is A = {a1, a2}, each has capacity 1 and their
preferences are as follows:

P(al) : C1,T,C2

P(G/Q) L C,T,Ch.

If a; is the first applicant in the picking sequence, the resulting POM will be M; =
{(a1,¢1), (az,c1)}; otherwise the GSDPC will output My = {(a1,c), (ag, c2)}. Notice that
M; = {(a1,r), (ag,r)} is also a POM, but it cannot be obtained by GSDPC. O

Since GSDPC does not produce all POMs, an approach that takes any matching and
improves it until a POM is obtained could be considered. However, here we show that this
approach is also unlikely to lead to a polynomial algorithm, as testing Pareto optimality for
CALQ is NP-hard.

Problem CALQ-DOMINANCE.
Instance: Instance I of CALQ, a matching M.
Question: Does there exist a matching that dominates M?

Theorem 5. CALQ-DOMINANCE is NP-complete even in the case when q(a) = 1 for each
a € A and no lower quota of a course exceeds 3.

Proof. CALQ-DOMINANCE is in NP, since given a matching M’ it can be verified in polynomial
time whether it dominates M. To prove completeness, take the following NP-complete
problem:

Problem EXACT-3-COVER.

Instance: J = (X, T), where X = {21,29,...,23n} and T = {11, Ts,..., Ty}
is a collection of 3-element subsets of X.

Question: Does there exist 7' C T such that |7'| = m and T’ covers X?

To get some intuition, first we present a simpler proof that requires a course with a large
lower quota.

For an instance J of EXACT-3-COVER we construct an instance I of CALQ. The set of
applicants is A = {by,...,bsn}, i.e., there is one applicant for each element z € X. The



set of courses is C' = {cy,...,c,,d}. This means there is one regular course ¢; for each set
T; € T with ¢(¢;) = u(c;) = 3 and one super course d with £(d) = u(d) = 3m.

The preferences of applicants are as follows (recall that the courses written in square
brackets can appear in any strict order):

P(b;) : [cj;x; € Ty, d fori=1,...,3m.

Let the matching M be such that all applicants are assigned to the super course d.

If there exists a matching M’ that dominates M then any applicant that improves with
respect to M causes that course d must be closed. This means that all applicants, so as not
to become worse off, must be assigned to some regular course. Because of the preferences
of applicants and the lower and upper quotas of courses, this means that M is dominated if
and only if J admits an exact 3-cover.

Conversely, if J admits an exact cover 7’, then assigning each applicant b; to the course
corresponding to a set in 7’ that covers x; provides a matching that dominates M.

To achieve that no course will have lower quota greater than 3, we modify the previous
proof using a trick that replaces the super course by many courses with small lower and
upper quotas and defines applicants’ preferences over them in a cyclic manner.

Now we define an instance I of CALQ as follows. The set of applicants is A = BUY U Z,
where B = {b1,...,bsm}, Y = {y1,...,ysm} and Z = {z1,..., z3m}, i.e., there are three
applicants b;, y;, z; for each x; € X. The set of courses is CUDUE, where C = {c1,...,¢cn},
D = {di,...,d3n} and E = {e1,...,e3,}. Courses in C are called regular courses, c;
corresponds to T; € T and £(c;) = u(c;) = 3, for j = 1,2,...,n. Further, £(d;) = u(d;) =3
and £(e;) = u(e;) =2 for each i = 1,2,...,3m.

Preferences of applicants are as follows. Here, and in the rest of the proof, index i — 1
for ¢+ = 0 means 3m.

P(bl) [cj;xiETj],di fori=1,2,...,3m
P(y;): e, d; fori=1,2,...,3m
P(Zl) : ei_l,di for i = 1,2,. ..,37’77,

Finally, let the matching M be such that M (d;) = {a;,yi,2:} for i =1,...,3m and all
the other courses are closed.

Now suppose that J admits an exact cover T'; let 7' = {Tk,, Thy, ..., Tk, }. In this
case, matching M’ defined by M'(b;) = c,; if »; € Ty, and M'(e;) = {ys, zi11} for all
i=1,...,3m (here, z3;,+1 = z1) dominates M.

Conversely, let a matching M’ dominate M. Then at least one applicant a € A prefers
M’(a) to M(a) = d, hence M'(a) ¢ D. Let M(d) = {b;,yi, z;}. Now distinguish three cases.
Case 1. a = b;. Then M'(b;) € C, M'(y;) = e; and M’(z;) = e;—1. This means that courses
e; and e;_jare open. The lower quotas of courses in E require that also M'(z;11) = e; and
M'(y;—1) = e;—1 and so also courses d;11 and d;_; must be closed in M’.

Case 2. a = y;. Then M'(y;) = e;. Now the lower quota of course e; implies that also
M'(zi11) = e; and so also course d; 1 must be closed in M’.

Case 3. a = z;. Then M'(z;) = e;_1. Again the lower quota of course e;_; implies that
M'(y;—1) = e;—1 and so also course d;_; must be closed in M.

By induction, in all the cases we get that all courses in D must be closed, so all applicants
b;,i =1,...,3m must be assigned to courses in C. Since the lower quotas of regular courses
are equal 3, the regular courses open in M’ define and exact cover of X. O



4 Strategic issues

When considering strategic issues in CALQ we assume that applicants knows the picking
sequence. We distinguish two types of manipulations:

reordering manipulations: changing the order of the entries in the preference list;

dropping manipulations: declaring some courses in the preference lists unacceptable.

Kamiyama [19] proved that SDPC is strategy-proof, however, he only considered re-
ordering manipulations. Such mechanisms are important also for practical reasons. For
example, in the Hungarian centralized university admission system, after the preliminary
results are announced, an applicant can change her prerefence list, however, she is not
allowed to withdraw a previously submitted application.

Kamiyama’s result relies on the fact that each applicant has capacity 1 and it does not
carry over to greater capacities, as is shown by the following example.

Example 6. Consider a CALQ instance I with A = {a1, a2}, C = {c1,c2}. Both applicants
prefer course c¢; to course co, but capacity of a; is 2 while capacity of as is 1. Both courses
have upper quota 2, and cy has also lower quota equal 2. There are two Pareto optimal
matchings M; and Ms in [I:

Mi(a1) = Mi(az) = {c1}; Mas(ay) = {c1, 2}, Ma(az) = {c2}.

Suppose that GSDPC is run with the picking sequence ai,as,a;. If both applicants act
truthfully, then GSDPC outputs M;. However, a; can achieve My, that is more preferred
by her, if she falsifies her preferences to cs, ¢;. O

The above example is in line with observations by Cechlarova et al. [12] and Hosseini
and Larson [18] that ‘interleaving’ mechanisms (i.e. such allow a different agent to pick
between two picks of one agent) are manipulable. Next we prove the following result that
is an analogy of Theorem 11 in [12] that deals with many-to-many matchings with ties in
preference lists. We call a policy o contiguous if for each applicant all her occurences in o
form a contiguous interval.

Theorem 7. GSDPC with a contiguous policy is strategy-proof against reordering strategies.

Proof. Without loss of generality suppose a contiguous policy o is

a1,01,...,01,02,02,...,42,...,0i-1,0;—1,--+,Aj—1,Qj,Ajy -, Qj; ...

q(a1)-times q(az)-times g(a;—1)-times q(a;)-times

and that applicant a; is the first applicant in o who benefits by falsifying her true preferences
P(a;) = c1,¢9,...,Cpy...,cs to preferences P’'(a;). Let M’ be the matching obtained by
GSDPC with a;’s preferences P’(a;) and let M be the matching obtained when a; reports her
true preferences. Obviously, a; prefers M'(a;) to M(a;); let ¢, be her most preferred course
in M'(a;)\M (a;) and let p be the first round in GSDPC when a; makes her choice. As all the
preceding applicants act truthfully, the partial matchings M,_; and Mz/>—1 are equal. Finally,
let ¢ be the round of GSDPC when the pair (a;, ¢,) is considered. When a; reported her true
preferences, she was not assigned course ¢,, since the network N(M,) = N(M,_1 U (a;,c,))
did not admit a flow of size RD(M,). In other words, the number of directed paths of the
form s — ar — ¢ — tfor k> i and ¢ € P(M,) is less than RD(M,). Let us realize that
every time a new course c in a;’ preference list is considered, one such path disappears, since
the arc (a;c) is deleted from the network. It is obvious that a; cannot benefit by reordering
courses that apper before ¢,.. Now distinguish two cases.



e Suppose a; puts course ¢, later in her preference list than in position . The courses in
D (Mgy—_1) still need to be satisfied and since the number of available paths decreased,
the corresponding network still does not admit a flow of value RD(M,_1), so a; cannot
receive ¢, in M'.

e Suppose a; puts course ¢, earlier in her preference list than in position r and so
suppose that the pair (a;,c,) is considered in round ¢’ < ¢. The residual demand of
the partial matching in round ¢’ may be smaller than that in the round where ¢, was
treated with true preferences of a;. This can only happen in the case when some of
the courses c1,co,...,cq—1, say ¢, was closed before a; was treated and it was open
(i.e., assigned to a;) before a; considered ¢,.. However, this means that when falsifying
her preferences in this way, a; did not receive a more preferred course that she would
have received when acting truthfully, so she has not improved.

Hence, a; cannot benefit by reordering and the assertion is proved. O
For dropping strategies, we have the following stronger result.

Theorem 8. There is no Pareto optimal mechanism for CALQ that is strategy-proof against
dropping strategies.

Proof. Consider a CALQ instance I with A = {a1,a2}, C = {c1,c2}. Applicant a; prefers
course ¢ to course ¢, applicant as prefers course co to course ¢;. Both applicants have
capacity 1. Both courses have upper as well as lower quota equal 2. Clearly, I admits
exactly two POMs: in M; both applicants are assigned to c;, in M they are assigned to cs.

Suppose that there exists a truthful Pareto optimal mechanism . If ¢ outputs M; then
a2 has an incentive to lie, since when she declares only co acceptable, the only POM for the
new instance is Ms. On the other hand, if ¢ outputs Ms then a; will be better off if she
declares only c¢; acceptable, since in this case ¢ must output M;. O

5 Structural results

Finding a POM with minimum cardinality is NP-hard even in the simplest one-to-one-
case [2, Theorem 2]. A POM with maximum cardinality can be found efficiently if no
other restrictions than capacities of applicants and courses are imposed [2, Theorem 1], [11,
Theorem 6]. However, additional structure may make the problem intractable. Cechldrova
et al. [11] prove the NP-hardness of finding a maximum cardinality POM for the price-
budget case and Cechlarova et al. [13] in the presence of prerequisites. Our next theorem
proves a similar result for the case with lower quotas.

Theorem 9. Finding a POM with maximum cardinality in an instance of CALQ is NP-hard,
even if no lower quota exceeds 4 and the capacity of each applicant is 1.

Proof. We shall present a polynomial transformation from INDEPENDENT SET for cubic
graphs. Let (G,K), where G = (V,E) is a graph and K an integer, be an instance of

INDEPENDENT SET. Let V = {v1,...,v,}, £ = {e1,...,en}. For G we construct an
instance I of CALQ. The set of courses is C = Cy U Cg, where Cy = {c(v1),...,c(vn)},
Cg ={c(e1),...,c(en)}. Each vertex-course c¢(v;) has lower and upper quota equal 4, each

edge-course c(e;) has the lower as well as upper quota 1. The set of applicants in I is
A = Ay U Ag, with Ay = {a(v1),...,a(vy)}, Ap = {ale1),...,a(em)}. Each applicant
has capacity 1. Vertex applicant a(v;) considers only the vertex course c(v;) acceptable; for
edge applicant a(e;) corresponding to edge e; = {v;, v} the preference list is

Plale;)) : [e(vi), c(ow)], ele)-



Now we argue that I admits a POM of cardinality m+ K if and only if G has an inclusion
maximal independent set of cardinality K.
So let W C V' be a maximal independent set of G. The corresponding matching is

M = {(a(vi), c(vi)); vi € W}U{(ale;), c(vi)); e VW = {vi}} U{(a(e;), cle;));e; "W = 0}

Cardinality of M is m + K. To show that M is a POM we argue that it can be obtained by
GSDPC with any policy that starts with all the applicants a(v),v € W. On their arrival,
these applicants open the set of courses, corresponding to the vertices in W; let us denote
the set of these courses by Cy. Due to the lower quotas of courses, all the edge applicants
corresponding to edges incident upon vertices in W will be on their turns assigned to some
course in Cyy; as W is independent, no conflict occurs. No other vertex course can be open
during GSDPC, since W is a maximal independent set. Finally, each edge applicant a(e)
coresponding to an edge e not incident upon vertices in W, is assigned to c¢(e), as the courses
corresponding to its endvertices are closed, as argued above.

Conversely, let M be a POM of size m + K. As there are only m edge applicants, it
follows that at least K vertex applicants are assigned to their associated vertex courses
and hence at least K vertex courses are open. Let us denote by W the set of vertices in G
corresponding to the vertex courses open in M. As the lower quota of each vertex course is 4
(i.e., the vertex degree plus 1), all the edge applicants corresponding to edges incident upon
vertices in W are assigned to the corresponding vertex courses. Finally, as the capacity of
each applicant is 1, no two courses corresponding to adjacent vertices can be open. Hence,
W is an independent set in G of size at least K. O

6 Indifferences

Preference list of an applicant ¢ who has indifferences can be represented by a list
(Cy,C4,...,CF) of disjoint subsets (tiers) of the set of courses with the following inter-
pretation: applicant a is indifferent between all the courses in one tier and she prefers
course ¢ € Cf! to a course ¢z € Cf if and only if i < j. (Notice that if a’s preferences are
strict then each tier is a singleton.) Such preferences can be extended to lexicographic pref-
erence over bundles of courses by means of the generalized characteristic vector of a bundle
[12]. The generalized characteristic vector p,(D) of a bundle D according to applicant a is
equal to the vector (|[DNCY|,|DNCY|,...,|DNCE|) and applicant a prefers bundle D,
to bundle Dy if p,(D1) is lexicographically greater than p,(D2). In the special case when
all the acceptable courses of an applicant a form a single tier, applicant a simply prefers a
bundle containing more courses.

We show that the problem to find a POM in CALQ in the presence of indifferences is
hard, even in a very restricted case.

Theorem 10. Finding a POM in an instance of CALQ with indifferences is NP-hard, even if
no lower quota exceeds 4 and each applicant is indifferent between all her acceptable courses.

Proof. We shall present a polynomial transformation from INDEPENDENT SET for cubic
graphs. Let (G, K), where G = (V,E) is a graph and K an integer be an instance of
INDEPENDENT SET. Let V = {v,...,v,}, E = {e1,...,em}. For G we construct an
instance I of cALQ. The set of courses is C' = Cy U Cg. Each vertex-course c¢(v), v € V has
lower and upper quota equal 4, each edge-course c(e), e € E has the lower as well as upper
quota 1. The set of applicants in I is A = AgU{ag}; each applicant a(e), e € E has capacity
1. Applicant ap has capacity n and she considers all the vertex courses ¢(v) acceptable. For
the edge applicant a(e) corresponding to edge e = {v,u} the only acceptable courses are
¢(v),c(u) and c(e). All applicants are indifferent between all their acceptable courses.



First we show that any independent set W C V of G defines a matching in I. Namely,
create a matching M (W) in the following way. Applicant ag is assigned to all courses ¢(v)
for v € W. Edge applicants corresponding to edges incident upon vertices in W are assigned
to these vertex courses, other edge applicants (if any) are assigned to their associated edge
courses. It is easy to see that no capacity or quota is violated, since W is independent.
Further, all edge applicants are assigned in M (W).

Conversely, let M be a matching in I and let W = {v € V;¢(v) € O(M)}. Because of
the lower quotas of vertex courses, an open course ¢(v) must be assigned all edge applicants
associated with edges incident upon vertex v. Since each applicant has capacity 1, no two
courses associated with adjacent vertices can be open. Hence, W is an independent set in
G.

Now we know that matchings in I and independent sets in G are in a one-to-one cor-
respondence. Finally we show that a matching M (W) is a POM if and only if W is an
independent set with maximum cardinality. Namely, suppose that there exists an indepen-
dent set Z in G with |Z| > |W|. No edge applicant can improve, as she is full in M (W)
and ag prefers M(Z) to M (W) if and only if she is assigned more courses in M (Z), which
in turn happens if |Z| > |W|. The converse implication is obvious. O

7 Conclusion and open problems

In this paper we extended the algorithms for finding a Pareto optimal matching with lower
quotas of courses of Monte and Tumennasan [24] and Kamiyama [19] to the case when
applicants may be assigned to more than one course. In addition, we explored the strategic
issues in this algorithm and proved several intractability results, namely that the problems
of finding a POM with maximum cardinality, deciding Pareto optimality of a given matching
and finding any POM in case with indifferences are NP-hard.

For further research we propose the following open problems.

1. Notice that to achieve the intractability results, we needed that lower quotas of some
courses are 3 or more. If the lower quotas of courses do not exceed 2, will polynomial
algorithms for these problems be possible?

2. Although we have shown that no Pareto optimal mechanism is strategy-proof against
dropping strategies, we do not know whether successful manipulations could be effi-
ciently computed. Which information would applicants need for a successful manipu-
lation?

3. In an interesting related model, called the Group activity Selection problem, the lower
and upper quotas of activities (in place of courses) are not imposed by some exoge-
neous authority (for example a law), rather they are in a sense part of participants’
preferences. Darman et al. [14] studied various stability concepts like individual ratio-
nality, Nash stability, core and strong core. What could be said about Pareto optimal
allocations in this case?
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