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Abstract
When the members of a group have to make a decision, they can use a voting rule to
aggregate their preferences. But which rule to use is a difficult question. Different
rules have different properties, and social choice theorists have found arguments
for and against most of them. These arguments are aimed at the expert reader,
used to mathematical formalism. We propose a logic-based language to instantiate
such arguments in concrete terms in order to help people understand the strengths
and weaknesses of different rules. Our approach allows us to automatically derive
a justification for a given election outcome or to support a group in arguing over
which rule to use. We exemplify our approach withb a study of the Borda rule.a

aThis is a modified version of an article due to appear in the proceedings of AAMAS-2016
[Cailloux and Endriss, 2016]. This version features a more complete presentation of the
Borda-expl algorithm, but some proofs have been omitted.

1 Introduction
When the members of a committee need to make a decision, they can use a voting rule
to aggregate their individual preferences. There are many different voting rules: Plurality,
Veto, Borda, Copeland, Approval, and so forth [Taylor, 2005]. Each of them satisfies certain
appealing properties, but none is perfect. Multiple arguments in favour and against different
rules have been put forward in the literature, starting with the famous dispute between
Condorcet and Borda in the 18th century [McLean and Urken, 1995]. However, these
arguments are dispersed in the specialised literature and are often developed in a highly
formal and abstract manner. It therefore is difficult, if not impossible, for an untrained
individual to understand them. This means that the members of our committee can hardly
have an informed discussion about which voting rule to use. We would like to enable such
discussions, by making arguments regarding voting rules understandable to non-experts and
by providing tools for generating and applying those arguments in concrete situations.

In this paper, we make two contributions towards this long-term goal of enabling in-
formed argumentation about voting rules between non-expert users. First, we develop a
general framework for modelling arguments for and against specific outcomes of a voting
rule, given a concrete election instance. This framework allows us to represent many im-
portant arguments, either new or taken from the literature, and either highly specific or in
the general and abstract form of axioms encoding high-level properties. Because the frame-
work instantiates these arguments on concrete examples, it does not require the audience
to understand the axioms in their full generality. Nevertheless, an argument in our frame-
work can still be general in the sense of being applicable to any concrete election instance.
Importantly, our framework is not tailored to defend a specific rule: it permits the use
of arguments in favour of different voting rules. As a second contribution, we instantiate
our framework by providing an algorithm for generating arguments justifying the outcome
recommended by the Borda rule for any given election. The technique we use builds on the
axiomatisation of that rule developed by Young [1974].
Example 1. To illustrate what we ultimately aim for, consider an election with three alter-
natives, { 𝑎, 𝑏, 𝑐 }, and three voters. Voters 𝑣1 and 𝑣2 both prefer 𝑎 to 𝑏 to 𝑐, while voter 𝑣3
preferes 𝑐 to 𝑏 to 𝑎. The situation is summarised in Figure 1 in the form of preference
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𝑹 =
𝑣1 𝑣2 𝑣3
𝑎 𝑎 𝑐
𝑏 𝑏 𝑏
𝑐 𝑐 𝑎

, 𝑹1 =
𝑣1
𝑎
𝑏
𝑐

, 𝑹2 =
𝑣2 𝑣3
𝑎 𝑐
𝑏 𝑏
𝑐 𝑎

.

Figure 1: The profiles used in the introductory example.

profile 𝑹. Which alternative wins this election depends on the voting rule used. The Veto
rule, for instance, recommends electing the alternative that is ranked at the bottom least
often, i.e., it would elect alternative 𝑏. The Borda rule, on the other hand, awards 2 points
every time an alternative is ranked first, 1 point every time it is ranked second, and 0
points every time it is ranked last, i.e., under the Borda rule alternative 𝑎 would win (with
2 + 2 + 0 points against 1 + 1 + 1 for 𝑏 and 0 + 0 + 2 for 𝑐). So which alternative is the
“right” winner? What we envision is a system that would be able to automatically generate
an easy-to-understand sequence of arguments for justifying, for instance, that alternative 𝑎
is the deserving winner. Such a system might initiate the following dialogue.

System: Consider election 𝑹1, involving only voter 𝑣1 (see also Figure 1). Do you
agree that 𝑎, enjoying unanimous support, should win this election?

User: Yes, of course.
System: Now consider election 𝑹2, involving only voters 𝑣2 and 𝑣3. Do you agree that,

for symmetry reasons, the outcome should be a three-way tie?
User: Yes, that sounds reasonable.
System: Observe that when we combine 𝑹1 and 𝑹2, we obtain our election of interest,

namely 𝑹. Do you agree that in this combined election, as there was a three-
way tie in 𝑹2, 𝑹1 should be used to decide the winner?

User: Yes, I do.
System: To summarise, you agree that 𝑎 should win for 𝑹.

If the user disagrees with one of the steps, the system might try another strategy of
arguing in favour of 𝑎. Alternatively, we might also ask our system to generate a sequence
of arguments to justify that 𝑏 should win. △

In this paper, we do not address the rendering of such arguments in natural language.
Rather, we address the challenge of automatically generating the arguments themselves,
expressed in a simple logic-based language. Our framework offers a general solution to the
problem of representing such arguments to justify any given outcome for any given election.
Of course, a given user will only find some of the arguments that can be represented in
principle convincing in practice. For any “natural” voting rule, one should expect that
there will be (by virtue of its naturalness) a convincing set of arguments that can be used
to justify the outcomes recommend by that rule. The challenge then is to automatically
generate a concrete sequence of such arguments for a given outcome to be justified. We
provide a solution to this algorithmic problem for the case of the Borda rule.

The remainder of this paper is organised as follows. Section 2 introduces a logic for
specifying reasonableness criteria (i.e., axioms) for voting rules and in Section 3 we provide
an algorithm for justifying outcomes returned by the Borda rule for arbitrary elections.
While our main technical contributions concern the challenge of justifying a given election
outcome, in Section 4 we briefly explore further applications of our approach to richer forms
of argumentation about voting rules. Section 5 concludes with a discussion of related work.
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2 General Framework
In this section we introduce a formal model of voting rules for variable electorates, we show
how to describe such rules and their properties in a simple logical language, and we then
use this language to develop a framework for reasoning and arguing about voting rules.

2.1 Voting Rules
We begin by introducing what is essentially the standard formal model of voting familiar
from social choice theory [Gaertner, 2006, Taylor, 2005], with varying sets of voters.

Let 𝒜, with 𝑚 = |𝒜|, be the finite set of alternatives. Let 𝒫∅(𝒜) denote the powerset of
𝒜, excluding the empty set. We use the letters 𝐴 ⊆ 𝒜 and 𝛼 ⊆ 𝒫∅(𝒜) to designate subsets
of alternatives and sets of subsets of alternatives, respectively. We model preferences as
(strict) linear orders (transitive, irreflexive, and connected binary relations) over 𝒜. Let 𝒩
be the infinite universe of potential voters. A profile 𝑹 is a mapping from a finite subset of
voters 𝑁𝑹 ⊆ 𝒩 to linear orders over 𝒜. For technical reasons, we allow 𝑁𝑹 to be empty,
in which case we call 𝑹 the null profile. Let 𝓡 denote the set of all non-null profiles. A
voting rule 𝑓 maps each non-null profile 𝑹 to a non-empty subset of 𝒜, the set of (tied)
election winners for the profile in question.

Given a profile 𝑹, let 𝑹 be the profile consisting of the reverses of the linear orders
found in 𝑹. For two profiles 𝑹1 and 𝑹2 defined over disjoint sets of voters, we define their
sum 𝑹1 ⊕ 𝑹2 as the profile 𝑹1 ∪ 𝑹2. (Note that the union of two functions, considered as
sets of input-output pairs, defined over disjoint domains, is itself a well-defined function.)
In this paper, we will only use addition of profiles in contexts where the identities of the
voters do not matter. Therefore, we also define addition over profiles that are not defined
over disjoint sets of voters, the addition then being preceded by an arbitrary renaming of
the voters of the second profile. Formally, given two profiles 𝑹1, 𝑹2 with 𝑁𝑹1

∩ 𝑁𝑹2
≠ ∅,

define 𝑠 as an arbitrary injection mapping every voter 𝑖 ∈ 𝑁𝑹2
to a voter 𝑠(𝑖) ∈ 𝒩 ∖ 𝑁𝑹1

;
define 𝑡(𝑹) as the profile { (𝑠(𝑖), 𝑃 ) ∣ (𝑖, 𝑃 ) ∈ 𝑹 }; and define 𝑹1 ⊕ 𝑹2 = 𝑹1 ∪ 𝑡(𝑹2).
E.g., for 𝑹 = { (𝑖, (𝑎, 𝑏)) }, 𝑹 ⊕ 𝑹 is { (𝑖, (𝑎, 𝑏)), (𝑖′, (𝑎, 𝑏)) }, with 𝑖′ ≠ 𝑖 an arbitrary voter.
A profile 𝑹 may be multiplied by a natural number 𝑘 ∈ ℕ, defined in the natural way as
repeated addition with copies of itself and denoted by 𝑘𝑹. Multiplying a profile by zero
yields the null profile. Throughout this paper, natural numbers are taken to include zero.

2.2 Logical Language and Axioms
To formally describe voting rules we will make use of the language of propositional logic over
the set of atomic propositions { 𝑝𝑹,𝐴 ∣ 𝑹 ∈ 𝓡, ∅ ⊂ 𝐴 ⊆ 𝒜 }. This set includes one atom
for every possible non-null profile 𝑹 and every possible non-empty subset 𝐴 of alternatives.
The language ℒ is the set of all formulæ that can be formed using these atoms and the
propositional connectives ¬, ∧, ∨, and → as well as the special propositions ⊤ and ⊥, in the
usual manner [van Dalen, 2013]. A literal is an atom or its negation; a clause is a disjunction
of literals.

The semantics of ℒ is defined as follows. Given a voting rule 𝑓 , the model 𝑣𝑓 assigns
the value T (true) to the atom 𝑝𝑹,𝐴 if 𝑓(𝑹) = 𝐴 and the value F (false) otherwise. That
is, 𝑝𝑹,𝐴 is true if 𝑓 chooses 𝐴 as the set of winners whenever the voters vote as in profile
𝑹. The definition of 𝑣𝑓 extends to the whole set of formulæ using the usual semantics of
propositional logic. We say that 𝑣𝑓 satisfies a set of formulæ iff it assigns the value T to
every formula in the set.

To make the semantics of the atoms explicit in the language, we from now on write
[𝑹 ↦ 𝐴] instead of 𝑝𝑹,𝐴. We also write [𝑹 ∈⟼ 𝛼], for any non-empty 𝛼 ⊆ 𝒫∅(𝒜), as a
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shorthand for ⋁𝐴∈𝛼[𝑹 ↦ 𝐴]. We will refer to such clauses involving only one profile, i.e.,
formulæ specifying the possible sets of winners for a given profile, as uni-profile clauses.

We can express familiar as well as new axioms of social choice theory in our language.
We call any such rendering of an axiom in ℒ an ℒ-axiom. Formally, an ℒ-axiom is simply
a set of formulæ. Here are some examples for ℒ-axioms.

Dom Dominance postulates that a Pareto-dominated alternative (i.e., an alternative to
which some other alternative is preferred by every voter) should not win. The formulæ
are, for each 𝑹 ∈ 𝓡, [𝑹 ∈⟼ 𝒫∅(𝑈𝑹)], where 𝑈𝑹 is the set of alternatives that are not
Pareto-dominated in 𝑹.

Anon Anonymity asks for symmetry w.r.t. voters: for all 𝑹 ∈ 𝓡, ∅ ⊂ 𝐴 ⊆ 𝒜, 𝑁 ′ ⊆ 𝒩,
bijections 𝜎 ∶ 𝑁 ′ → 𝑁𝑹, anonymity requires [𝑹 ↦𝐴] → [(𝑹 ∘ 𝜎)↦𝐴].

Cond This axiom says that, if there is a Condorcet winner (an alternative beating all other
alternatives in one-on-one majority contests), then it should be the sole winner: thus,
for each profile 𝑹 with Condorcet winner 𝑎, it requires [𝑹 ↦{ 𝑎 }].

Reinf Reinforcement requires that, when joining two profiles for which the winning sets
have a non-empty intersection, the resulting profile must have that intersection as the
only winners: for each 𝑹1, 𝑹2, 𝑁𝑹1

∩ 𝑁𝑹2
= ∅, 𝐴1 ∩ 𝐴2 ≠ ∅, reinforcement imposes

the formula ([𝑹1 ↦ 𝐴1] ∧ [𝑹2 ↦ 𝐴2]) → [𝑹1 ⊕ 𝑹2 ↦ 𝐴1 ∩ 𝐴2].
SymCanc Symmetric cancellation says that, when a profile consists of a linear order and

its inverse, then the only reasonable outcome is the full set of alternatives: for each
such profile 𝑹, this axiom thus requires [𝑹 ↦𝒜].

Reinforcement, also known as consistency in the literature, was introduced by Young
[1974]. Like dominance and the Condorcet principle, it is one of the classical axioms con-
sidered in social choice theory [Gaertner, 2006]. SymCanc is an ad hoc, but intuitively
appealing, axiom we will use in Example 2.

An ℒ-axiom may also be limited to capturing what an adequate behaviour is on a
few specific cases, or even just a single specific case. As an example, let us inspect the
argument put forward by Fishburn [1974, p. 544] against the Condorcet principle. Consider
the profile 𝑹𝐹 shown in Figure 2, involving 9 alternatives and 101 voters.1 Observe that 𝑤
is the Condorcet winner, as it is preferred to any other alternative by 51 out of 101 voters.
Yet, it is intuitively appealing to postulate that alternative 𝑎 is in fact a more deserving
winner of this election. This may be seen by looking at the numbers of times alternatives 𝑎
and 𝑤 obtain a given rank (also displayed in Figure 2).

FvsC The Fishburn-versus-Condorcet ℒ-axiom is defined as the formula [𝑹𝐹 ↦ { 𝑎 }].

2.3 Reasoning about Voting Rules
Now that we have a logical language for describing the outcomes of a voting rule for different
profiles in place, we want to be able to reason about statements in this language.

Definition 1. An ℒ-axiomatisation is a set of ℒ-axioms. A voting rule 𝑓 conforms to
the ℒ-axiomatisation 𝐽 iff 𝑣𝑓 satisfies all ℒ-axioms 𝑗 in 𝐽 . An ℒ-axiomatisation 𝐽 is
consistent iff some voting rule conforms to it. 𝐽 characterises 𝑓 iff 𝑓 is the only voting rule
conforming to it.
1Fishburn explains his argument without giving a fully worked out example. The profile used here is taken
from http://rangevoting.org/FishburnAntiC.html.
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number of voters
31 19 10 10 10 21 𝑤 𝑎

1 𝑎 𝑎 𝑓 𝑔 ℎ ℎ 1 0 50
2 𝑏 𝑏 𝑤 𝑤 𝑤 𝑔 2 30 0
3 𝑐 𝑐 𝑎 𝑎 𝑎 𝑓 3 0 30
4 𝑑 𝑑 ℎ ℎ 𝑓 𝑤 4 21 0
5 𝑒 𝑒 𝑔 𝑓 𝑔 𝑎 5 0 21
6 𝑤 𝑓 𝑒 𝑒 𝑒 𝑒 6 31 0
7 𝑔 𝑔 𝑑 𝑑 𝑑 𝑑 7 0 0
8 ℎ ℎ 𝑐 𝑐 𝑐 𝑐 8 0 0
9 𝑓 𝑤 𝑏 𝑏 𝑏 𝑏 9 19 0

Figure 2: The profile Fishburn uses to argue against the Condorcet property; and the
number of voters placing alternative 𝑤 or 𝑎 at a given rank.

Given a set of assumptions of what makes a good voting rule, expressed in the form of
an ℒ-axiomatisation, we want to be able to decide whether a given claim about a given set
of alternatives being the deserving winners for a given profile logically follows from those
assumptions. In other words, we want to be able to justify election outcomes in terms of a
given ℒ-axiomatisation.

Definition 2. Consider an ℒ-axiomatisation 𝐽 and a formula 𝜑 in our language. We say
that 𝜑 is a valid claim given 𝐽 iff 𝑣𝑓(𝜑) = T for all voting rules 𝑓 conforming to 𝐽 .

We use the term ‘claim’ instead of ‘formula’ when we want to emphasise that a formula
is used to make a point about specific voting rules. As our proposal is aimed at making
arguments as easy to understand as possible, we suggest to restrict claims to uni-profile
clauses, which have an easily interpretable meaning. Our results are general however. Note
that if 𝐽 is inconsistent, then all claims are vacuously valid.

We can now define a formal proof system to allow us to establish whether a given claim
is valid. Let us first define 𝜅, representing our domain knowledge. It is the set of all formulæ
of the form [𝑹 ↦ 𝐴1] ∧ [𝑹 ↦ 𝐴2] → ⊥, for all profiles 𝑹 and ∅ ⊂ 𝐴1 ≠ 𝐴2 ⊆ 𝒜 (saying
that a voting rule 𝑓 cannot select more than one set of winners), plus all formulæ of the
form [𝑹 ∈⟼ 𝒫∅(𝒜)] (saying that 𝑓 must select at least one set of winners). Thus, 𝜅 encodes
the requirement of 𝑓 being a function. We now define a proof of a claim 𝜑 grounded
in 𝐽 as a demonstration that 𝜑 can be inferred from 𝐽 and 𝜅, i.e., that (⋃ 𝐽) ∪ 𝜅 ⊢ 𝜑.
Natural deduction [van Dalen, 2013], which is widely regarded as producing proofs of good
readability, is particularly suited to this purpose, but any other system that is sound and
complete for propositional logic could be used as well.

Definition 3. A proof of claim 𝜑 grounded in ℒ-axiomatisation 𝐽 is a natural deduction
proof for (⋃ 𝐽) ∪ 𝜅 ⊢ 𝜑.

For the purposes of presenting examples, in this paper, we will take certain shortcuts
and omit the detailed derivation of simple facts about propositional logic. We will justify
such steps as being inferred ‘by propositional reasoning’ (PR), together with a reference to
the premises used. What is important in view of our ultimate goal of justifying election
outcomes to users is that any such propositional reasoning step can be decomposed into a
sequence of basic steps in a natural deduction proof, which can then be translated into an
argument in natural language that can be explained to a non-expert user [Bertot and Théry,
1998, Ranta, 2011, Wenzel, 1999].
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𝑹 =
𝑎 𝑏 𝑎 𝑐
𝑏 𝑐 𝑏 𝑏
𝑐 𝑎 𝑐 𝑎

, 𝑹𝐷 =
𝑎 𝑏
𝑏 𝑐
𝑐 𝑎

, 𝑹𝑆 =
𝑎 𝑐
𝑏 𝑏
𝑐 𝑎

.

Figure 3: The profiles used in Example 2.

Example 2. We prove below, on the basis of ℒ-axioms Dom, SymCanc, and Reinf defined
earlier, that the profile 𝑹 of Figure 3 must have as winners either { 𝑎 }, { 𝑏 }, or { 𝑎, 𝑏 }, i.e.,
that 𝑐 should not win. Each line consists of a formula we have shown to be true, followed by
the justification for that proof step. The profiles 𝑹𝐷 and 𝑹𝑆 are also defined in Figure 3.
Note that 𝑹 = 𝑹𝐷 ⊕ 𝑹𝑆.

1. [𝑹𝐷
∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }] (Dom)

2. [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }] (SymCanc)
3. ([𝑹𝐷 ↦ { 𝑎 }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ↦{ 𝑎 }] (Reinf)
4. ([𝑹𝐷 ↦ { 𝑏 }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ↦{ 𝑏 }] (Reinf)
5. ([𝑹𝐷 ↦ { 𝑎, 𝑏 }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ↦{ 𝑎, 𝑏 }] (Reinf)
6. [𝑹𝐷 ↦ { 𝑎 }] → [𝑹 ↦{ 𝑎 }] (PR from 2 & 3)
7. [𝑹𝐷 ↦ { 𝑏 }] → [𝑹 ↦{ 𝑏 }] (PR from 2 & 4)
8. [𝑹𝐷 ↦ { 𝑎, 𝑏 }] → [𝑹 ↦{ 𝑎, 𝑏 }] (PR from 2 & 5)
9. [𝑹𝐷 ↦ { 𝑎 }] ∨ [𝑹𝐷 ↦ { 𝑏 }] ∨ [𝑹𝐷 ↦ { 𝑎, 𝑏 }] (rewrite 1)

10. [𝑹 ↦{ 𝑎 }] ∨ [𝑹 ↦{ 𝑏 }] ∨ [𝑹 ↦{ 𝑎, 𝑏 }] (PR from 6–9)
11. [𝑹 ∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }] (rewrite 10) △

Each of these steps is simple enough to be rendered in natural language, so as to be
presented to a non-expert user, just as in Example 1. For instance, steps 2 and 3 directly
correspond to steps also present in Example 1, while step 6 might be explained by pointing
out that when two premises imply a conclusion, then that conclusion is implied by the first
premise alone once we have established that the second premise is in fact true.
Remark 1. It is important to understand that two ℒ-axioms may be equivalent, logically
speaking, while leading to proofs that differ in terms of how easy or difficult they are to
understand for a human. Thus, it is important to choose ℒ-axioms not only according to
what they entail (their logical power), but also according to the ease of understanding them.
This is similar to the general goal of axiomatising a function: we search for axioms that
have, as much as possible, an intuitive content. In our case, however, an ℒ-axiomatisation
is good if it strikes an appropriate balance between the lengths of proofs it produces and the
intuitiveness of the concrete instantiations of the ℒ-axioms it contains. As an illustration,
Reinf could be changed in order to shorten the proof of Example 2. A modified Reinf
would say, for example, that a profile associated with a set of possible sets of winners, when
added to a profile that has the full set 𝒜 as the winners, must still be associated with
the same set of possible sets of winners. This axiom would yield, in a single step, that
[𝑹𝐷

∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }]. △
The following result shows that the semantic notion of validity of a claim and the syn-

tactic notion of proof of a claim conincide. The simple proof is given in the full version of
this paper [Cailloux and Endriss, 2016].

Theorem 1 (Completeness). For any ℒ-axiomatisation 𝐽 and any claim 𝜑, there exists a
proof of 𝜑 grounded in 𝐽 iff 𝜑 is valid given 𝐽 .
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Thus, while our logical language permits us to speak about voting rules by making
arbitrary claims about the possible sets of winners for a given profile, we now have a proof
system in place for deriving any valid such claim from a given axiomatisation provided in
the same language. The renderings of the axioms themselves may be long and unwieldy
(e.g., Dom explicitly lists all undominated alternatives for every profile), but the concrete
proofs produced nevertheless can be expected to be relatively simple and human-readable
(as seen in Example 2). Finding the right concrete profiles (e.g., 𝑹𝐷 and 𝑹𝑆 in Example 2)
to use in a proof may be hard, but reading an existing proof is easy. In Section 3 we will
address this challenge of actually producing proofs.

3 Justifying Borda Outcomes
The Borda rule is one of the most important voting rules in the literature [Taylor, 2005].
Under this rule, an alternative 𝑎 earns as many points from a given voter as that voter ranks
other alternatives below 𝑎. The Borda score of an alternative is the sum of points it earns
in this manner; the alternatives with the highest Borda score win. For our purposes, it will
be convenient to use the following alternative definition.

Definition 4. Given a profile, the beta score of an alternative is the sum of the numbers
of alternatives it beats in each linear order, minus the sum of the numbers of alternatives it
is beaten by in each linear order. Under the Borda rule 𝑓𝐵 the alternatives with the highest
beta score win.

Remark 2. Observe that Borda and beta scores define the same rule. Let 𝑛 be the number
of voters and recall that 𝑚 is the number of alternatives. The beta score, for a given voter,
is 𝑏 − (𝑚 − 1 − 𝑏) = 2𝑏 − (𝑚 − 1), where 𝑏 is the Borda score of that same voter. Thus, the
total beta score of an alternative is twice its total Borda score minus 𝑛(𝑚 − 1). △

In this section we want to use our logic to justify a given outcome of Borda. That is,
starting from any profile 𝑹∗, we want to be able to give a proof, grounded in ℒ-axioms that
are as appealing as possible, for the claim that the only “reasonable” winners must be the
ones Borda picks (provided the reader of the argument finds these instantiations of axioms
indeed reasonable). We will thus, first, present an ℒ-axiomatisation of Borda and, second,
provide an algorithm that, given any 𝑹∗, builds a proof for [𝑹∗ ↦ 𝑓𝐵(𝑹∗)].

3.1 Borda ℒ-Axiomatisation
To present the ℒ-axiomatisation that we will use to argue in favour of Borda, we require a
few definitions. Fix an arbitrary linear order ≻ on 𝒜. (We will use the alphabetic ordering
in our illustrative examples.)

Definition 5. The elementary profile 𝑹𝐴
𝑒 , ∅ ⊂ 𝐴 ⊆ 𝒜, has two voters and is defined as

follows. Let 𝑘 = ≻|𝐴 be the restriction of ≻ on 𝐴 and let ℓ = ≻|𝒜∖𝐴. The first voter has
the linear order defined by 𝑘 then ℓ; the second has 𝑘 then ℓ.

Example 3. The elementary profile 𝑹{ 𝑎,𝑏 }
𝑒 corresponding to 𝐴 = { 𝑎, 𝑏 }, with 𝒜 equal to

{ 𝑎, 𝑏, 𝑐, 𝑑 }, is composed of the linear orders (𝑎, 𝑏, 𝑐, 𝑑) and (𝑏, 𝑎, 𝑑, 𝑐). △
Let us call a bijection 𝑆 on 𝒜 an 𝑚-cycle if (𝒜, 𝑆) is a strongly connected graph, thus, if

𝑆 represents a cycle that visits each alternative in 𝒜 exactly once. It is formally defined as a
set of pairs of alternatives, but we will denote such a cycle using a tuple of alternatives, where
the first and last alternatives are equal, and all other alternatives appear exactly once. For
example, ⟨𝑎, 𝑐, 𝑏, 𝑑, 𝑎⟩ denotes the 𝑚-cycle { (𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑑), (𝑑, 𝑎) } in { 𝑎, 𝑏, 𝑐, 𝑑 }. This
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cycle can also be represented as ⟨𝑏, 𝑑, 𝑎, 𝑐, 𝑏⟩. We say that a cycle in 𝒜 generates 𝑚 = |𝒜|
linear orders on 𝒜, in the natural way. For example, ⟨𝑎, 𝑐, 𝑏, 𝑎⟩ generates (𝑎, 𝑐, 𝑏), (𝑐, 𝑏, 𝑎),
and (𝑏, 𝑎, 𝑐). We write linear orders with regular parentheses (⋯) to distinguish them from
cycles ⟨⋯⟩. Conversely, observe that a linear order involving all alternatives in 𝒜 is generated
by exactly one 𝑚-cycle.

Definition 6. The cyclic profile 𝑹𝑆
𝑐 , with 𝑆 an 𝑚-cycle, is the profile composed of all 𝑚

linear orders generated by 𝑆.

Example 4. The cyclic profile 𝑹⟨𝑎,𝑏,𝑐,𝑑,𝑎⟩
𝑐 corresponding to 𝑆 = ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑎⟩ with 𝒜 =

{ 𝑎, 𝑏, 𝑐, 𝑑 } has the preference orders (𝑎, 𝑏, 𝑐, 𝑑), (𝑏, 𝑐, 𝑑, 𝑎), (𝑐, 𝑑, 𝑎, 𝑏) and (𝑑, 𝑎, 𝑏, 𝑐). △
A delta vector 𝛿 is a mapping from ≻ to the rationals: such a vector has (𝑚2 ) coordinates,

each mapping a pair of alternatives to a rational number. For every pair of alternatives
(𝑎, 𝑏) ∈ ≻, define 𝛿𝑏𝑎 = −𝛿𝑎𝑏 (slightly abusing notation). The set of delta vectors, denoted
by 𝛿 , together with addition and multiplication by a rational defined in the natural way,
is a vector space.

Definition 7. For any profile 𝑹, the delta vector 𝛿𝑹 maps every (𝑎, 𝑏) ∈ ≻ to the signed
number of victories of 𝑎 against 𝑏, i.e., 𝛿𝑹

𝑎𝑏 is the number of voters who prefer 𝑎 to 𝑏 minus
the number of voters who prefer 𝑏 to 𝑎. The delta vector corresponding to the null profile is
the zero vector in the space of delta vectors.

Thus, 𝛿𝑹 represents the weighted majority graph of 𝑹.
We say that two profiles 𝑹 and 𝑹′ cancel when 𝛿𝑹 = 𝛿𝑹′ , thus when 𝑹 and 𝑹′

have the same weighted majority graph, or equivalently, observing that 𝛿𝑹 = −𝛿𝑹, when
𝛿𝑹⊕𝑹′ = 𝟎, where 𝟎 is the zero vector.

Below is the ℒ-axiomatisation that we use for the Borda rule. It is very similar but
not identical to the axiomatisation given by Young [1974]. The fact that it is a correct
axiomatisation of the Borda rule will become clear in Section 3.3.

Elem For any elementary profile 𝑹𝐴
𝑒 , the only reasonable set of winners is 𝐴: for all

∅ ⊂ 𝐴 ⊆ 𝒜, [𝑹𝐴
𝑒 ↦ 𝐴].

Cycl For any cyclic profile 𝑹𝑆
𝑐 , the only reasonable set of winners is 𝒜: for all 𝑚-cycles 𝑆,

[𝑹𝑆
𝑐 ↦ 𝒜].

Canc If all pairs of alternatives (𝑎, 𝑏) are such that 𝑎 is preferred to 𝑏 as many times as 𝑏 is
to 𝑎, then the set of winners must be 𝒜: for all 𝑹 such that 𝛿𝑹

𝑎𝑏 = 0 for all (𝑎, 𝑏) ∈ ≻,
[𝑹 ↦𝒜].

Reinf Reinforcement, as defined earlier (cf. Section 2.2).

Reinf-sub Subtracting a profile with a full winner-set does not change the outcome. For
all 𝑹, 𝑹′, ∅ ⊂ 𝐴 ⊆ 𝒜: ([𝑹 ⊕ 𝑹′ ↦ 𝐴] ∧ [𝑹′ ↦ 𝒜]) → [𝑹 ↦ 𝐴].

Simp If a profile consists of a repetition of the same sub-profile, then the sub-profile must
have the same winners (i.e., we can simplify): for all 𝑹, 2 ≤ 𝑘 ∈ ℕ, ∅ ⊂ 𝐴 ⊆ 𝒜,
[𝑘𝑹 ↦𝐴] → [𝑹 ↦𝐴].

We denote our ℒ-axiomatisation by 𝐽𝐵, the set of all six sets of formulæ just defined.
Remark 3. Observe that Simp and Reinf-sub logically follow from Reinf, i.e., they are in
fact not required for the characterisation. We introduce them nevertheless, as explained
in Remark 1, because they can shorten proofs, and because we assume they will appear
sufficiently intuitive to the reader of a proof without requiring separate justification. △
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3.2 An Example
Consider the set of alternatives 𝒜 = { 𝑎, 𝑏, 𝑐, 𝑑 } and a profile 𝑹∗ composed of the two
preference orders (𝑎, 𝑏, 𝑑, 𝑐) and (𝑐, 𝑏, 𝑎, 𝑑). Observe that Borda selects { 𝑎, 𝑏 } as winners for
this profile. We will now build a proof grounded in 𝐽𝐵 of the claim [𝑹∗ ↦ { 𝑎, 𝑏 }].

The proof consists of two parts. First (steps 1–8 in this example), we define a profile 𝑹′

that is the sum of several profiles for which the winners are uncontroversial, either because
of Elem or because of Cycl, and use this to argue that our Borda winners should win for
𝑹′. For our example, let 𝑹𝐸 = 𝑹{ 𝑎,𝑏 }

𝑒 ⊕ 2𝑹{ 𝑎,𝑏,𝑐 }
𝑒 , 𝑹𝐶 = 𝑹⟨𝑎,𝑑,𝑐,𝑏,𝑎⟩

𝑐 ⊕ 𝑹⟨𝑎,𝑏,𝑑,𝑐,𝑎⟩
𝑐 ,

and 𝑹′ = 𝑹𝐸 ⊕ 𝑹𝐶. Second (steps 9–16 in this example), we argue that 𝑹′ must have the
same winners as 𝑹∗. This works, because we also chose 𝑹′ in such a way that it has the
same weighted majority graph as some multiple of 𝑹∗. Indeed, step 12 uses the fact that
4𝑹∗ and 𝑹′ cancel (this can be verified manually by counting the number of wins for each
pair of alternatives). Step 9 is valid, as any profile cancels with its inverse.

1. [𝑹{ 𝑎,𝑏 }
𝑒 ↦ { 𝑎, 𝑏 }] (Elem)

2. [𝑹{ 𝑎,𝑏,𝑐 }
𝑒 ↦ { 𝑎, 𝑏, 𝑐 }] (Elem)

3. [𝑹⟨𝑎,𝑑,𝑐,𝑏,𝑎⟩
𝑐 ↦ 𝒜] (Cycl)

4. [𝑹⟨𝑎,𝑏,𝑑,𝑐,𝑎⟩
𝑐 ↦ 𝒜] (Cycl)

5. ((1) ∧ (2)) → [𝑹𝐸 ↦ { 𝑎, 𝑏 }] (Reinf)
6. ((3) ∧ (4)) → [𝑹𝐶 ↦ 𝒜] (Reinf)
7. ([𝑹𝐸 ↦ { 𝑎, 𝑏 }] ∧ [𝑹𝐶 ↦ 𝒜]) → [𝑹′ ↦ { 𝑎, 𝑏 }] (Reinf)
8. [𝑹′ ↦ { 𝑎, 𝑏 }] (PR from 5–7)
9. [4𝑹∗ ⊕ 4𝑹∗ ↦𝒜] (Canc)

10. ([4𝑹∗ ⊕ 4𝑹∗ ↦𝒜] ∧ [𝑹′ ↦ { 𝑎, 𝑏 }]) → [4𝑹∗ ⊕ 4𝑹∗ ⊕ 𝑹′ ↦ { 𝑎, 𝑏 }] (Reinf)
11. [4𝑹∗ ⊕ 4𝑹∗ ⊕ 𝑹′ ↦ { 𝑎, 𝑏 }] (PR from 8–10)
12. [4𝑹∗ ⊕ 𝑹′ ↦ 𝒜] (Canc)
13. ([4𝑹∗ ⊕ 4𝑹∗ ⊕ 𝑹′ ↦ { 𝑎, 𝑏 }] ∧ [4𝑹∗ ⊕ 𝑹′ ↦ 𝒜]) → [4𝑹∗ ↦ { 𝑎, 𝑏 }] (Reinf-sub)
14. [4𝑹∗ ↦ { 𝑎, 𝑏 }] (PR from 11–13)
15. [4𝑹∗ ↦ { 𝑎, 𝑏 }] → [𝑹∗ ↦ { 𝑎, 𝑏 }] (Simp)
16. [𝑹∗ ↦ { 𝑎, 𝑏 }] (PR from 14 & 15)

Simplifications are possible. For instance, step 8 could be presented to a user as following
directly from steps 1–4, together with Reinf and basic propositional reasoning.

3.3 The General Algorithm
We now define an algorithm, Borda-expl, which, given any profile 𝑹∗, builds a proof
grounded in 𝐽𝐵 of the claim [𝑹∗ ↦ 𝑓𝐵(𝑹∗)], i.e., a justification for the Borda outcome.
Our proofs all have the same structure as in the example above; only the concrete profiles
used along the way differ. Let us first define the intermediate variables we will need, namely
a natural number 𝑟, a profile 𝑹𝐸 that is the sum of several elementary profiles, and a profile
𝑹𝐶 that is the sum of several cyclic profiles. We will define those variables such that, for
𝑹′ = 𝑟𝑹𝐸 ⊕ 𝑹𝐶, (𝑖) 𝛽𝑹𝐸 = 𝛽𝑹∗ and (𝑖𝑖) 𝛿𝑟𝑚𝑹∗ = 𝛿𝑹′ . The proofs of these equivalences
are given in the full paper [Cailloux and Endriss, 2016]. The reason we want these two
properties to hold is, intuitively, that we want 𝑹𝐸 to have the same winners as 𝑹∗, and the
second property is needed for the cancellation step (step 12 of our example). We will then
show how these intermediate variables are used to produce proofs.
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We need the concept of a beta vector in order to define 𝑹𝐸. Define a beta vector as a
vector mapping alternatives from 𝒜 to rationals, with the condition that it sums to zero.
The set of beta vectors, denoted by 𝛽 , together with addition and multiplication by a
rational defined in the natural way, is a vector space. We write 𝛽𝑹 = ⟨𝛽𝑹

𝑎 , 𝑎 ∈ 𝒜⟩ for the
beta vector corresponding to a profile 𝑹, where 𝛽𝑹

𝑎 denotes the beta score of 𝑎 in 𝑹. The
beta vector corresponding to the null profile is defined as the zero vector in 𝛽 (that we
also write 𝟎, abusing notation).

Name alternatives 𝑎1, 𝑎2, … , 𝑎𝑚 by decreasing beta score in 𝑹∗, thus 𝛽𝑹∗
𝑎1

≥ 𝛽𝑹∗
𝑎2

≥ … ≥
𝛽𝑹∗

𝑎𝑚
. Define 𝑹𝐸 = ⨁𝑚−1

𝑖=1
𝛽𝑹∗

𝑎𝑖 −𝛽𝑹∗
𝑎𝑖+1

2 𝑹{ 𝑎1,…,𝑎𝑖 }
𝑒 .

Remark 4. This definition of 𝑹𝐸 is legal as the coefficients are natural numbers: (𝛽𝑹∗
𝑎𝑖

−
𝛽𝑹∗

𝑎𝑖+1
) is even because, depending on 𝑚, either all beta scores are even, or all are odd (as

may be seen by revisiting Remark 2). △
We now have to define 𝑹𝐶. For this we need a specific set 𝒮 of 𝑚-cycles, whose (some-

what cumbersome) definition is as follows.
Let 𝑧 denote the least alternative in ≻. For (𝑡, 𝑢) ∈ ≻|𝒜∖{ 𝑧 }, define 𝑆𝑡𝑢 as the 𝑚-

cycle constituted by all alternatives that are in between 𝑡 and 𝑢 in ≻ (in the order they
come in ≻), followed by 𝑡, followed by 𝑢, followed by all alternatives that come after 𝑢 in
≻ except 𝑧 (in the order they come in ≻), followed by all alternatives that come before
𝑡 (in the reverse order of the order they come in ≻), followed by 𝑧. Let 𝒮 be the set of
𝑚-cycles {𝑆𝑡𝑢, (𝑡, 𝑢) ∈ ≻|𝒜∖{ 𝑧 }}. As an illustration, with 𝒜 = {𝑎, 𝑏, 𝑐, 𝑑}, we would obtain
𝒮 = {𝑆𝑎𝑏, 𝑆𝑎𝑐, 𝑆𝑏𝑐}, with 𝑆𝑎𝑏 = ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑎⟩, 𝑆𝑎𝑐 = ⟨𝑏, 𝑎, 𝑐, 𝑑, 𝑏⟩, and 𝑆𝑏𝑐 = ⟨𝑏, 𝑐, 𝑎, 𝑑, 𝑏⟩.

Because of the way 𝒮 is defined, it appears that it is always possible to find rationals
⟨𝑞𝑆, 𝑆 ∈ 𝒮⟩ that solve the linear system of equations 𝛿𝑚𝑹∗ = 𝛿𝑹𝐸 + ∑𝑆∈𝒮 𝑞𝑆𝛿𝑹𝑆

𝑐 . (This
is proved in the full paper [Cailloux and Endriss, 2016].) Because 𝛿𝑹𝑆

𝑐 = −𝛿𝑹−𝑆
𝑐 , where

−𝑆 denotes the inverse cycle of 𝑆, we can then choose coefficients 𝑞𝑆 that are all non-
negative. Then, it remains only to define 𝑟 as the smallest strictly positive integer such
that { 𝑟𝑞𝑆, 𝑆 ∈ 𝒮 } are all natural numbers, and to define 𝑹𝐶 = ⨁𝑆 𝑟𝑞𝑆𝑹𝑆

𝑐 . Finally, define
𝑹′ = 𝑟𝑹𝐸 ⊕ 𝑹𝐶.

The Borda-expl algorithm produces the following proof, given a profile 𝑹∗ and the
intermediate variables 𝑟, 𝑹𝐸, 𝑹𝐶, 𝑹′ as defined above. We define the proof informally by
referring to the corresponding steps appearing in our example. The order of the steps will
always be the same as in the example, though the step numbers might be shifted compared
to our example. We refer to the step numbers of the example with numbers between quotes,
e.g., “1, 2” indicates that the equivalent steps are numbered 1 and 2 in our example.

Assume first that 𝑹𝐸 is non-null (thus, 𝑹′ is non-null as well). Let 𝑊 designate the
set of winners that must be associated to 𝑹𝐸 in order to satisfy Elem and Reinf. Observe
that 𝑊 = 𝑓𝐵(𝑹∗), because 𝛽𝑹𝐸 = 𝛽𝑚𝑹∗ . Assume further that 𝑹𝐶 is non-null. The proof
is as follows.

“1, 2” It starts with the steps about the elementary profiles 𝑹{ … }
𝑒 that appear (with

non-zero coefficients) in 𝑹𝐸. There are at most 𝑚 − 1 such steps.

“3, 4” Then come the steps about the cyclic profiles 𝑹⟨…⟩
𝑐 that appear (with non-zero

coefficients) in 𝑹𝐶. There are at most (𝑚−12 ) such steps, the number of cycles in 𝒮.

“5” Then one step concludes that 𝑹𝐸 must have 𝑊 as winners

“6” One step concludes that 𝑹𝐶 has winners 𝒜.

“7, 8” Two steps conclude that 𝑹′ must have 𝑊 as winners.

10



“9, 10, 11” The following three steps use the fact that 𝑟𝑚𝑹∗ and its inverse cancel (recall
that any profile cancels with its inverse), and conclude that 𝑟𝑚𝑹∗ ⊕ 𝑟𝑚𝑹∗ ⊕ 𝑹′ must
have 𝑊 as winners.

“12” The main point of the proof comes then, which says that 𝑟𝑚𝑹∗ and 𝑹′ cancel.

“13, 14” The next steps obtain that 𝑟𝑚𝑹∗ must be associated to 𝑊 , using Reinf-sub.

“15, 16” It only remains to use Simp to obtain the result.

Still assuming that 𝑹𝐸 is non-null, if 𝑹𝐶 is null, the proof is identical with only the steps
about 𝑹𝐶 skipped (“3, 4, 6”). If 𝑹𝐸 is null and 𝑹𝐶 is non-null, then 𝑓𝐵(𝑹∗) must equal
𝒜, because 𝛽𝑹𝐸 = 𝟎 = 𝛽𝑹∗ . Then, the steps about 𝑹𝐸 (“1, 2, 5”) may be skipped, as well
as the steps about the winners of 𝑹′ (“7, 8”), because 𝑹′ = 𝑹𝐶 in that case and thus those
steps would be redundant with “6”. Finally, if both 𝑹𝐸 and 𝑹𝐶 are null, then the proof
has just one step: from 𝛿𝑹′ = 𝟎 = 𝛿𝑟𝑚𝑹∗ we see that we can apply Canc directly on 𝑹∗.

4 Beyond Outcome Justification
In this section we briefly explore additional opportunities for putting our general framework
to use and sketch how it may be applied to argue about voting rules in other ways than
simply justifying a given outcome.

4.1 Types of Arguments
Proofs of claims may be used in various ways to argue in favour of one voting rule or to
attack another rule. There are clear links with argumentation theory [Besnard and Hunter,
2008], which could be further developed to arrive at a fully fledged framework for arguing
about voting rules. Here we only define a few categories of arguments we can create in our
framework. In the context of a voting rule 𝑓 , a proof for a claim [𝑹 ∈⟼ 𝛼], saying that
in profile 𝑹 the set of winners should be selected from 𝛼, can constitute different types of
arguments:

• a partial justification for 𝑓 when 𝑓(𝑹) ∈ 𝛼;
• a full justification for 𝑓 on 𝑹 when 𝛼 = { 𝑓(𝑹) };
• an attack against 𝑓 when 𝑓(𝑹) ∉ 𝛼.

An argument may belong to more than one of these categories, e.g., it may simultaneously
be a justification for some rule and an attack against some other rules.

An argument can also attack an ℒ-axiomatisation instead of a specific voting rule. A
system using an ℒ-axiomatisation 𝐽 could establish that 𝐽 ′ is incompatible with 𝐽 (mean-
ing that voting rules conforming to 𝐽 necessarily give different results in some cases from
rules conforming to 𝐽 ′) and, assuming that the user will favour 𝐽 over 𝐽 ′ when realising
that they are incompatible, could thus argue by simply giving an example illustrating the
incompatibility. It is then up to that system to choose its example as wisely as possible.
Formally, an attack against 𝐽 ′ by 𝐽 consists of two proofs, one of [𝑹 ∈⟼ 𝛼] grounded in
𝐽 and one of [𝑹 ∈⟼ 𝛼′] grounded in 𝐽 ′, for some profile 𝑹 and some sets 𝛼 and 𝛼′ with
𝛼 ∩ 𝛼′ = ∅. An attack against 𝐽 ′ is also an attack against any rule 𝑓′ conforming to 𝐽 ′.

4.2 Attacking and Defending Borda
As an illustration, we present here, first, an argument that could be given against Borda,
namely, that it does not satisfy the Condorcet property. We then also show how to defend
Borda against this argument by producing a counter-argument to the Condorcet argument.
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Consider 𝐽𝐶 = { Cond }, including only the ℒ-axiom saying that, if there is a Condorcet
winner, it must be returned as the sole winner. Now take any profile with a Condorcet winner
where Borda does not select that Condorcet winner. For example, take 𝒜 = { 𝑎, 𝑏, 𝑐 } and
𝑹 defined as follows:

𝑹 =
𝑏 𝑏 𝑎 𝑎 𝑎
𝑐 𝑐 𝑏 𝑏 𝑏
𝑎 𝑎 𝑐 𝑐 𝑐

.

Although 𝑎 is the Condorcet winner, Borda shamelessly selects { 𝑏 }. Thus, an attack
against Borda can be built by putting forward the claim [𝑹 ↦ { 𝑎 }] and its (trivial) proof
grounded in 𝐽𝐶, whilst observing that this contradicts Borda’s choice.

As a defence, a system arguing for Borda may give a justification for choosing { 𝑏 }
using its own ℒ-axiomatisation, by giving an argument for [𝑹 ↦ { 𝑏 }] grounded in 𝐽𝐵 as
computed by Borda-expl. But this is unlikely to be convincing: such an attack rather calls
for a more specific response. The system could also counter-attack by saying that we do not
want to follow Condorcet in general, by using Fishburn’s argument. Define 𝐽 ′

𝐵 as the set
of ℒ-axioms for Borda described above, together with FvsC, the Fishburn-versus-Condorcet
ℒ-axiom (see Section 2.2). An attack against 𝐽𝐶 can now be produced by giving a proof
grounded in 𝐽 ′

𝐵 for [𝑹𝐹 ↦ { 𝑎 }], together with a proof grounded in 𝐽𝐶 for [𝑹𝐹 ↦ { 𝑤 }].
This shows the incompatibility between these two ℒ-axiomatisations.

5 Conclusion and Related Work
We have developed a general logic-based framework for representing arguments in favour of
or against specific election outcomes. While these arguments can be based on general axioms
familiar from social choice theory, when actually used, they apply to concrete instances of
elections, thereby making them understandable to non-experts. We have also devised a
practical algorithm for generating the arguments required to justify the election outcome
selected by the Borda rule, for any given profile of preferences.

Related work has aimed at explaining or justifying recommendations [Bouyssou and
Pirlot, 2005, Keeney and Raiffa, 1993, Labreuche, 2011, Labreuche et al., 2012] or outcomes
of elections [Saari, 1999, 2001]. However, these approaches are all based on specific ways of
justifying decisions and propose no general framework capable of integrating different kinds
of arguments, including in particular counter-arguments against their own claims.

Our work is also related to existing work on logic and automated reasoning for social
choice theory [Brandt and Geist, 2014, Endriss, 2011, Tang and Lin, 2009], aimed at auto-
matically deriving theorems in social choice theory. However, to date work in that literature
has not attempted to tackle the problem of justifying election outcomes.
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