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Abstract

A large part of the social choice literature studies voting paradoxes in which seemingly
mild properties are violated by common voting rules. In this paper, we investigate the
likelihood of the Condorcet Loser Paradox (CLP) and the Agenda Contraction Paradox
(ACP) using Ehrhart theory, computer simulations, and empirical data. We present the
first analytical results for the CLP on four alternatives and show that our experimental
results, which go well beyond four alternatives, are in almost perfect congruence with
the analytical results. It turns out that the CLP—which is often cited as a major flaw
of some Condorcet extensions such as Dodgson’s rule, Young’s rule, and MaxiMin—is
of no practical relevance. The ACP, on the other hand, frequently occurs under various
distributional assumptions about the voters’ preferences. The extent to which it is real
threat, however, strongly depends on the voting rule, the underlying distribution of
preferences, and, somewhat surprisingly, the parity of the number of voters.

1 Introduction

A large part of the social choice literature studies voting paradoxes in which seemingly mild
properties are violated by common voting rules. Moreover, there are a number of sweeping
impossibilities, which entail that there exists no “optimal” voting rule that avoids all paradoxes.
As a consequence, much of the research in social choice theory is concerned with whether a
paradox can appear for a given voting rule or not. However, it turns out that some paradoxes—
while possible in principle—will almost never occur in practice.

An extreme example of this phenomenon was recently revealed for the voting rule TEQ. Due
to its unwieldy recursive definition, it was unknown for more than 20 years whether TE(Q satisfies
any of a number of very basic desirable properties. In 2011, Brandt et al. (2013) have shown that
TEQ violates all of these properties. However, their proof is non-constructive and only shows
the existence of astronomically large counterexamples requiring about 10'3% alternatives. While
there are smaller computer-generated counterexamples (Brandt and Seedig, 2013), computer
experiments have shown that these counterexamples are extremely rare and that TE(Q satisfies
the desirable properties for all practical purposes (Brandt et al., 2008). These findings motivated
us to provide analytical, experimental, and empirical justifications for such statements.

In this paper, we study two voting paradoxes. The first is the well-known Condorcet loser
paradox (CLP), which occurs when a voting rule selects the Condorcet loser, an alternative that
loses against every other alternative in pairwise majority contests. Perhaps surprisingly, this
paradox affects some Condorcet extensions, i.e., voting rules that are guaranteed to select an
alternative that wins against every other alternative in pairwise majority contests. Common
affected Condorcet extensions are Dodgson’s rule, Young’s rule, and MaxiMin (Fishburn, 1977).
The second paradox, called agenda contraction paradox (ACP), occurs when removing losing
alternatives changes the set of winners. There are only few voting rules that do not suffer from
this paradox, one of them being the essential set. In fact, all common voting rules that violate
the CLP also violate the ACP.

This paper also appears in the Proceedings of the 15th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 385-393. IFAAMAS, 2016.



In principle, quantitative results on voting paradoxes can be obtained via three different
approaches. The analytical approach uses theoretical models to quantify paradoxes based on
certain assumptions about the voters’ preferences. Analytical results usually tend to be quite
hard to obtain and are limited to simple—and often unrealistic—assumptions. The experimental
approach uses computer simulations based on underlying stochastic models of how the preference
profiles are distributed. Experimental results have less general validity than analytical results,
but can be obtained for arbitrary distributions of preferences. Finally, the empirical approach
is based on evaluating real-world data to analyze how frequently paradoxes actually occur or
how frequently they would have occurred if certain voting rules had been used for the given
preferences. Unfortunately, only very limited real-world data for elections is available.

Our main results are as follows.

Using Ehrhart theory, we compute upper bounds for the CLP as well as the exact probabilities
under which the CLP occurs for MaxiMin when there are four alternatives and preferences are
distributed according to the Impartial Anonymous Culture (IAC) distribution. This approach
also yields the exact limit probabilities (for CLP and ACP) when the number of voters goes to
infinity. To the best of our knowledge, these are the first analytical results for the CLP on four
alternatives (which is the minimal number of alternatives for which the voting rules we consider
exhibit the CLP).

For both the CLP and the ACP, we throughly analyze a variety of other settings with more al-
ternatives and other stochastic preference models using computer simulations. For those settings
in which the analytical approach is also feasible, our results are in almost perfect congruence
with the analytical results. This is strong evidence for the accuracy of our simulation results.

It turns out that the CLP—which is often cited as a major flaw of some Condorcet
extensions—is of no practical relevance. The maximum probability under all preference models
we studied is 2.2% (for MaxiMin, three voters, four alternatives, and IAC). In more realistic
settings, it is much lower. For Dodgson’s rule, it never exceeds 0.01%. We did not find any
occurrence of the paradox in real-world data, neither in the PREFLIB library (Mattei and Walsh,
2013) nor in millions of elections based on data from the Netflix Prize (Bennett and Lanning,
2007).

The ACP, on the other hand, frequently occurs under various distributional assumptions
about the voters’ preferences. The extent to which it is real threat, however, strongly depends
on the voting rule, the underlying distribution of preferences, and the parity of the number of
voters. If the number of voters is much larger than the number of alternatives, less discriminating
voting rules seem to fare better than more discriminating ones. For example, when there are
1,000 voters and four alternatives, the probability for the ACP under Copeland’s rule and TAC
is 9% while it occurs with a probability of 33% for Borda’s rule. When there are fewer voters,
the parity of the number of voters plays a surprisingly strong role. For example, if there are 6
alternatives, the ACP probability for Copeland’s rule is 44% for 50 voters, but only 26% for 51
voters. These results are in line with the empirical data we analyzed.

2 Related Work

There is a huge body of research on the quantitive study of voting paradoxes. Gehrlein (2006)
focusses on the non-existence of Condorcet winners, arguably the most studied voting paradox.
Gehrlein and Lepelley (2010), on the other hand, provide an overview of many paradoxes and, in
particular, analyze the influence of group coherence. In addition, Gehrlein and Lepelley (2010)
survey different tools and techniques that have been applied over the years for the quantitive
study of voting paradoxes.



The analytical study of voting paradoxes under the assumption of TAC is most effectively
done via Ehrhart theory, which goes back to the year 1962 and the French mathematician Eugene
Ehrhart (Ehrhart, 1962). Interestingly, parts of these results have been reinvented (in the con-
text of social choice) by Huang and Chua (2000) in 2000, before Ehrhart’s original work was
independently rediscovered for social choice by Wilson and Pritchard (2007) and Lepelley et al.
(2008) more than forty years later.

Current research on the probability of voting paradoxes under TAC is based on algorithms
that build upon Ehrhart’s results, such as the algorithm developed by Barvinok (1994). For many
years, these approaches were limited to cases with three or fewer alternatives. Recent advances in
software tools and mathematical modeling enabled the study of elections with four alternatives.
Bruns and Séger (2015) and Schiirmann (2013) provide such results for Condorcet’s paradox, the
Condorcet efficiency of plurality and the similarity between plurality and plurality with runoff.
Schiirmann (2013) further shows how symmetries in the formulation of the paradoxes can be
exploited to facilitate the corresponding computations.

For the CLP (sometimes also referred to as “Borda’s paradox”) many quantitive results are
known (Gehrlein and Lepelley, 2010), which are, however, limited to simple voting rules and
scoring rules in particular. These results also include some empirical evidence for the paradox
under plurality (Gehrlein and Lepelley, 2010, p.15) and suggest that it is an unlikely yet possible
problem in practice. Interestingly, the CLP for Condorcet extensions has—to the best of our
knowledge—only been considered by Plassmann and Tideman (2014). However, they restrict
their analysis to the 3-alternative case and find that the CLP never occurs, which is unsurprising
since provably four alternatives are required for the Condorcet extensions they considered.

The ACP appears to have received less attention in the quantitative literature on voting
paradoxes. Some limit probabilities for scoring rules were obtained by Gehrlein and Fishburn
(see Gehrlein and Lepelley, 2010, p. 282-284). Fishburn (1974) experimentally studied a variant
of this paradox called “winner turns loser paradox” for Borda’s rule under Impartial Culture. For
Condorcet extensions, Plassmann and Tideman (2014) considered another variant of the ACP
under a spatial model, but again limit their experiments to three alternatives. These few results
already seem to indicate that the ACP might occur even under realistic assumptions. However,
there are no results for more than three alternatives, Condorcet extensions, and the ACP in its
full generality.

The preference models we consider (such as IC, IAC, and the Mallows-¢ model) have also
found widespread acceptance for the experimental analysis of voting rules within the multiagent
systems and Al community (see, e.g., Aziz et al., 2013; Brandt and Seedig, 2014; Goldsmith
et al., 2014; Oren et al., 2015).

3 Models and Definitions

Let A be a set of m alternatives and N = {1,...,n} a set of voters. Each voter is equipped with
a (strict) preference relation =;, i.e., a connex,! transitive, and asymmetric binary relation on
A. We read x >=; y as voter i (strictly) preferring alternative x to alternative y.

A (preference) profile (or an election) is an n-tuple of preference relations and will be denoted
by R:= (>1,...,>n). We will sometimes consider the restriction of >; to a subset of alternatives
B C A, called an agenda. Such a restriction will be denoted by R|p := (>1|B,-..,>n|B)-

LA binary relation =; on A is connex if x =; y Vy =; z for all x # y € A. One may alternatively define =; as
the irreflexive component of a complete, antisymmetric, and transitive relation =;.



3.1 Stochastic Preference Models

In this paper we consider five of the most common stochastic preference models. These models
vary in their degree of realism. Impartial culture (IC) and impartial anonymous culture (IAC), for
example, are usually considered as rather unrealistic. However, the simplicity of these models
enables the use of analytical tools that cannot be applied to the other models. IC and IAC
typically yield higher probabilities for paradoxes than other preference models and can therefore
be seen as worst-case estimates (see, e.g., Regenwetter et al., 2006). We only give informal
definitions here; for more extensive treatments see, e.g., Critchlow et al. (1991) and Marden
(1995).

Impartial culture The most widely-studied distribution is the so-called impartial culture
(IC), under which every possible preference relation has the same probability of # Thus, every
preference profile is equally likely to occur.

Impartial anonymous culture In contrast to IC the impartial anonymous culture (IAC) is
not based on the probabilities of individual preferences but on the probabilities of whole profiles.
Under TAC one assumes that each possible anonymous preference profile on n voters is equally
likely to occur. A more formal definition is given in Section 4.1.

Mallows-¢ model In Mallows-¢ model, the distance to a reference ranking (or ground truth)
is measured by means of the Kendall-tau distance? and a parameter ¢ is used to indicate the
dispersion. The case of ¢ = 1 means absolute dispersion and coincides with IC, the case ¢ = 0
corresponds to no dispersion and every voter always picks the “true” ranking. We chose ¢ = 0.8
to simulate voters with relatively bad estimates, which leads to situations in which paradoxes
are more likely to occur.

Polya-Eggenberger urn model In the Pdélya-Eggenberger urn model, each possible pref-
erence relation is represented by a ball in an urn from which individual preferences are drawn.
After each draw, the chosen ball is put back and « € Ny new balls of the same kind are added to
the urn. While the urn model subsumes both impartial culture (o« = 0) and impartial anonymous
culture (o = 1), we set « = 10 to obtain a reasonably realistic interdependence of individual
preferences.

Spatial model In the spatial model alternatives and agents are placed in a multi-dimensional
space uniformly at random and the agents’ preferences are then determined by the Euclidean
distances to the alternatives (closer alternatives are preferred to more distant ones). The spatial
model is considered particularly realistic in political science where the dimensions are interpreted
as different aspects of the alternatives (Tideman and Plassmann, 2012). We chose the simple
case of two dimensions for our analysis.?

3.2 Voting Rules

A woting rule is a function f that maps a preference profile to a non-empty set of winners. For a
preference profile R, let g, := [{i € N: z >; y}| —|{i € N: y =; x}| denote the majority margin
of & against y. A very influential concept in social choice is the notion of a Condorcet winner, an
alternative that wins against any other alternative in a pairwise majority contest. Alternative x
is a Condorcet winner (CW) of a profile R if g5, > 0 for all y € A\ {z}. Conversely, alternative
x is a Condorcet loser (CL) if gy > 0 for all y € A\ {z}. Neither CWs nor CLs necessarily

2The Kendall-tau distance counts the number of pairwise disagreements.
3In a related study, Brandt and Seedig (2014) have found that the number of dimensions does not seem to
have a large impact on the results as long as it is at least two.



exist, but whenever they do they are unique. A voting rule f is called a Condorcet extension if
f(R) = {z} whenever z is the CW in R.
In the following paragraphs we briefly introduce the voting rules considered in this paper.

Borda’s Rule Under Borda’s rule each alternative receives from 0 to |A| — 1 points from each
voter (depending on the position the alternative is ranked in). The alternatives with highest
accumulated score win.

MaxiMin The MaxiMin rule is only concerned with the highest defeat of each alternative in
a pairwise majority contest. It yields all alternatives as winners which have the maximal value

of minge 4 Guy-

Young’s Rule Young’s rule yields all alternatives that can be made a CW by removing a
minimal number of voters.

Dodgson’s Rule Dodgson’s rule selects all alternatives that can be made a CW by a minimal
number of pairwise swaps of adjacent alternatives in the individual preference relations.

Essential Set  Consider the symmetric two-player zero-sum game G given by the skew-
symmetric matrix with entries g,, for all pairs of alternatives z,y. The essential set is the
set of all alternatives that are played with positive probability in some mixed Nash equilibrium
of G4

Except for Borda’s rule, all presented voting rules are in fact Condorcet extensions. While
Borda’s rule, MaxiMin, and the essential set can be computed efficiently, Young’s rule and
Dodgson’s rule have been shown to be complete for parallel access to NP. The essential set is one
of the few voting rules that do suffer from neither the CLP nor the ACP, and is merely included
as a reference. For more formal definitions and computational properties of these rules, we refer
to Brandt et al. (2016).

3.3 Voting Paradoxes

In this paper we focus on two voting paradoxes whose occurrence can be determined given a
voting rule f and a preference profile R.

Let f be a voting rule. Formally, a (voting) paradox is a characteristic function that maps
a preference profile to 0 or 1. In the latter case, we say the paradox occurs for voting rule f at
profile R.

The Condorcet Loser Paradox (CLP) occurs when a voting rule selects the CL as a winner.

Definition 1. Given a voting rule f the Condorcet loser paradox CLPj is defined as

1 if f(R) contains a CL
0 otherwise.

CLP;(R) = {
The agenda contraction paradox (ACP) occurs when reducing the set of alternatives, by
eliminating unchosen alternatives, influences the outcome of an election.

Definition 2. Given a voting rule f the agenda contraction paradoxr ACP; is a paradox defined
as

1 if f(R|g) # f(R) for some B D f(R)

0 otherwise.

ACP(R) = {

4These mixed equilibria are also known as mazimal lotteries in probabilistic social choice.




4 Quantifying Voting Paradoxes

In this section we present the three general approaches for quantifying voting paradoxes: the
analytical approach via Ehrhart theory, the experimental approach via computer simulations,
and the empirical approach via real-world data.

4.1 Exact Analysis via Ehrhart Theory

Anonymous preference profiles only count the number of voters for each of the m! possible
rankings on m alternatives. An anonymous preference profile can hence be viewed as an integer
point in a space of d := m! dimensions. Formally, the set S,, ,, of anonymous preference profiles on
m alternatives with n voters can be identified with the set of all integer points z = (21,...,2m!) €
Z™ which satisfy

m!
zi > 0forallie{1,...,m!}, and ZZZ =n.
i=1

Under TAC each anonymous preference profile is assumed to be equally likely to occur. Hence, in
order to determine the probability of a paradox under IAC' it is enough to compute the number
of points belonging to preference profiles in which the paradox occurs and compare them to the
total number of points in S, ,,, which is known to be [Sy, .| = (m::!le).g’

In this framework, many paradoxes X can be described with the help of linear constraints, i.e.,
the set of points belonging to the event can be described with the help of (in)equalities, a polytope.
For variable n, this approach then describes a dilated polytope P, = nP := {nZ: ¥ € P}. Hence,

we know that the probability of a paradox X, under IAC is given by:

nPNZI

and we can determine the probability of (many) voting paradoxes under IAC by evaluating the
function L(P,n) := |nP N Z%|, which describes the number of integer points inside the dilation
nP. This can be done with the help of Ehrhart theory. Ehrhart (1962) was the first to show that
L(P,n) can be described by special functions, called quasi- or Ehrhart-polynomials. A function
f:7Z — Q is a quasi-polynomial of degree d and period ¢ if there exists a list of ¢ polynomials
fi: Z — Q (0 << q) of degree d such that f(n) = fi(n) if n =17 mod gq.

Quasi-polynomials can be determined with the help of computer programs such as LATTE
(De Loera et al. (2004)) or NOorRMALIZ (Bruns et al.). Unfortunately, the computation of our
quasi-polynomials is computationally very demanding, especially because the dimension of the
polytopes grows super-exponentially in the number of alternatives. This limits analytical results
under TAC to rather small numbers of alternatives. To the best of our knowledge, NORMALIZ is
the only program which is able to compute polytopes corresponding to elections with up to four
alternatives. And even NORMALIZ is not always able to compute the whole quasi-polynomial,
but sometimes we had to resort to computing the leading coeflicients only of the polynomial,
which fortunately suffices for determining the limit probability of a paradox when the number
of voters goes to infinity.

An overview of our analytical findings obtained in this way is provided in Table 1.

5For most preference models other than IAC this approach does not work. While for specific combinations
of (simple) distributions and voting rules there are some highly tailor-made computations in the literature (cf.
Section 2), these have to be redesigned for each individual setting.



Paradox Voting rule(s) Result

Condorcet extensions upper bound (Vn € N)

CLP MaxiMin probability (Vn € N)
Tideman’s rule limit prob. (n — 00)
ACP MaxiMin limit prob. (n — oc0)

Table 1: Theoretical results obtained via Ehrhart theory (for four alternatives and under IAC)

Finding a Quasi-polynomial for MaxiMin

As an example for the method just described, we consider the CLPyaximin in 4-alternative
elections under IAC, the probabilities of which can be computed from a quasi-polynomial with
degree 23 and a period of 5,040.°

In order to determine the polynomial, we first need to describe the corresponding polytope
with equalities and inequalities. Recall the definition of MaxiMin from Section 3.2:

Min (R) := arg max min .
fMax1M1n( ) g TEA yeA gmy

For CLPpaximin(R) = 1 the CL of R has to have the lowest highest defeat. Formally, there is
x € A such that for all y € A\{z},

gyz > 0, and (1)

max @., < mMax (y. 2
seanisy 7 = e 7 @

Now let A = {a,b,c,d} and assume x = d. We then have that gqq, gsd, gea > 0, which implies
max.eA\{d} J=d > 0. Furthermore,

max ¢,, > 0 for all y € {a,b,c},
zEA\{y}gy y€e{ }

from which it follows that either gup, gbe, Gea > 0 OF Gpa, Geb> Gae > 0. In both cases there is a
majority cycle between a, b, and c¢. Due to symmetry we can choose one direction of the cycle
arbitrarily and assume gup, goc, gea > 0. Then,

= a) = s d — ..
Zgﬂ?‘?&} 9za YGeca 261?4%?17} 9zb Jab, a1l zerga\‘){{c} 9zc YGac

Condition (1) is already represented in the form of linear inequalities. In order to model con-
dition (2) we determine max.e 4\ {4} g-a and distinguish cases for the seven possible outcomes.
The inequalities for the case max.ca\{d} 9zd = {gaa} are

Jad — gbad > 0 and Gad — Ged > 0.
Condition (2) furthermore yields

9ca — Yad Z 07 Jab — Gad Z 07 and 9be — Yad 2 0.

6In theory, the analysis can be adapted to also cover more complex rules (e.g., Dodgson’s and Young’s rule,
which involve solving an ILP). It is unclear, however, how one would translate their definitions to linear inequal-
ities.



Each case belongs to a different polytope and the polytopes are pairwise distinct, so we can
compute each quasi-polynomial separately and later combine them to one. To get the final
polynomial we have to multiply by eight for the four different possible choices of a CL and the
two possible directions of the majority cycle. This then enables us to efficiently evaluate the
exact probabilities for any number of voters. The results are depicted in Figure 2. The leading
coefficient of the quasi-polynomial can also be used to determine the limit probability which is
given by

]P)(CLPMaxiMin =1 | m = 4, n — OO)
485052253637930099

=8 6443662124777472000000 ~ 0.06%.

4.2 Experimental Analysis

As we will see, simulating elections with the help of computers is a viable way of achieving very
good approximations for the probabilities we are looking for. It even turns out that the results
of our simulations are almost indistinguishable from the theoretical result obtained via Ehrhart
theory (with the exception of the limit case, which cannot be realized via simulations).

More specifically, the experimental approach works as follows: a profile source creates random
preference profiles according to a specific preference model. The profiles are then used to compute
the winner(s) according to a given voting rule and to determine if the paradox occurs. Any such
experiment is carried out for each pair of n and m and repeated frequently. In many cases in
which we covered a wide range of voters, we did not consider every possible value of n but, more
economically, only simulated the values: 1-30, 49-51, 99-101, 199-201, 499-501, 999-1,001.

In contrast to many other studies, we are concerned about the statistical significance of our
experimental results. Thus, we also computed 99%-confidence intervals for each data point we
generated. To this end, we used the binofit function in MATLAB which is based on the standard
approach by Clopper and Pearson (1934). It shows that, based on our sampling rate of 10° and
106, respectively, the 99%-confidence intervals are pleasantly small. Hence, even though they are
depicted in all of the figures throughout this paper, sometimes it can be difficult to recognize
them.

4.3 Empirical Analysis

The most valuable quantification of voting paradoxes would be their actual frequency in real-
world elections. As mentioned before, real-world election data is generally relatively sparse,
incomplete, and inaccurate. This makes empirical research on this topic rather difficult. Other-
wise, the empirical approach strongly resembles the experimental approach.

For this paper we used two sources of empirical data. First, we used the 314 profiles with
strict order preferences from the PREFLIB library (Mattei and Walsh, 2013). Second, we had
access to the 54,650 preference profiles over four alternatives without a CW which belong to
the roughly 11 million 4-alternative elections which Mattei et al. (2012) derived from the Netflix
Prize data (Bennett and Lanning, 2007). Non-existence of Condorcet winners is a prerequisite
for the paradoxes we study.

5 Condorcet Loser Paradox

In this section we present our findings on the CLP. We conclude that—even though the CLP is
possible in principle—it is so unlikely that it cannot be used as a serious argument against any
of the Condorcet extensions we considered.



5.1 An Upper Bound

Before analyzing the CLP for concrete voting rules, we discuss an upper bound valid for all
Condorcet extensions. For a Condorcet extension to choose the CL a profile obviously has to
satisfy two conditions. First, there has to exist a CL in the profile. Second, no CW may exist
in the profile. In the case of 4-alternative elections—which is the first interesting case—we can
compute the quasi-polynomial via Ehrhart theory and hence know the exact probabilities for any
number of voters. The derivation and presentation of the quasi-polynomial, which has degree
23 and contains 24 polynomials, is omitted due to space constraints. The resulting probabilities
for up to 1000 voters—and a comparison with the results of an experimental analysis—can be
obtained from Figure 1. The value of the limit probability is approximately 8%.

4 alternatives, IAC

T T TTTT] T T T TTTTT T T T T :Experimental (even)
20% |- e | Experimental (odd)
K‘X&x e Analytical
% ~ || > Analytical (limit)
10% | |
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100 10! 102 103

Number of voters

Figure 1: Probability of the event that a Condorcet extension could choose a CL in 4-alternative
elections under TAC

Especially for small even numbers of voters, where the probability is around 20%, the up-
per bound is too high to discard the CLP for Condorcet extensions altogether, and even the
limit probability of 8% is relatively large. Also, for an increasing number of alternatives this
problem does not vanish (for elections with 50 and 51 one voters and up to 100 alternatives the
probabilities range between 5% and 25%).”

Note that differences between odd and even number of voters were to be expected since even
numbers allow for majority ties, which have significant consequences for the paradoxes; this
effect decreases for larger electorates. In the specific case under consideration, the upper bound
is generally higher for an even number of voters because the much higher likelihood of not having
a CW more than counterbalances the lower likelihood of having a CL.

5.2 Results under IAC

Despite the high upper bounds from the previous section, the picture is quite clear for concrete
Condorcet extensions: even under IAC, the risk of the considered Condorcet extensions selecting
the CL is very low, as shown in Figure 2 for 4-alternative elections. The highest probability
was found for CLPyaxivin with 2.2% for three voters (CLPyoung with about 0.9%). The limit

"These upper bounds turn out to be relatively independent from the underlying preference distribution (among
the models we considered, cf. Section 5.3).



probability of CLPpaxiMin, With 0.06% is so low that for sufficiently large electorates it would
occur in only one out of 10,000 elections. The same seems to hold for the limit probability for
CLPvoung- The probability of CLPpgdgson is even significantly lower, with a maximum of about
0.01% in elections with 9,999 voters. We could determine the limit probability of 0.01% only
for an approximation of Dodgson’s rule by Tideman (1987), which seems to be close to that for
Dodgson’s rule, based on our experimental data.

When increasing the number of alternatives the probabilities drop even further. For elections
with more than ten alternatives they reach a negligibly small level of less than 0.005% for
all considered rules and in no simulations with twelve or more alternatives we could find any
occurrence of the paradox.

4 alternatives, IAC
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Figure 2: Comparison between CLP probabilities for MaxiMin, Young’s rule (left) and Dodgson’s
rule (right) under IAC in 4-alternative elections

5.3 Results under Other Preference Models

Figure 3, as one would expect, shows that under more realistic assumptions the probability of the
CLP decreases further in 4-alternative elections with 50/51 voters, with the highest probability
occurring under the unrealistic assumption of IC and the lowest probability under what may be
the most realistic model in many settings, the spatial model. In our experiments, Dodgson’s rule
never selected a CL in the spatial model.

Similarly, we could not find any occurrence of the CLP in real-world data, which may be
considered the strongest evidence that the CLP virtually never materializes in practice.?

8We tested 314 preference profiles with strict orders from the PREFLIB library as well as the roughly 11 million
4-alternative elections which Mattei et al. (2012) derived from the Netflix Prize data. While about 54,000 of those
elections were susceptible to the CLP, it never occurred under the rules we considered in this paper. In contrast,
under plurality it already occurred in twelve out of the 314 PREFLIB-instances.
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Figure 3: CLP probabilities in 4-alternative elections for varying preference models and MaxiMin

6 Agenda Contraction Paradox

Recall that the agenda contraction paradox (ACP) occurs when a reduced set of alternatives
(created by the unavailability of losing alternatives) influences the outcome of an election. For
many cases, it may be considered a generalization of the CLP as the following argument shows.
Suppose the CL z is uniquely selected by a voting rule which implements majority rule on 2-
alternative choice sets. Then restricting A to {z,y} for some alternative y # x yields the new
winner y (since ggy, > 0).

As we will see, the ACP is much more of a practical problem than the CLP. The picture,
however, is not black and white. Whether or not it is a serious threat depends on the voting
rule, the underlying preference distribution, and on the parity of the number of voters.

6.1 Varying Voting Rules

The ACP probability strongly varies for different voting rules (see Figure 4). Borda’s rule
generally exhibits the worst behavior of the rules studied, with probabilities of up to 56%, and
with 34% for large electorates with 1,000 voters. In contrast, Copeland’s rule is quite robust to
the ACP for large electorates (with only about 8% occurrence probability for 1,000 voters).?

The reason for this gap between Borda’s and Copeland’s rule appears to be two-fold: First,
Condorcet extensions are safe from this paradox as long as a CW exists; Borda’s rule, by contrast,
is not. Second, the discriminatory power of voting rules (i.e., their ability to select small winning
sets) strongly supports the paradox. As soon as a single majority-dominated alternative is
selected, the ACP has to occur. For large numbers of voters, this is in line with Copeland’s
rule being least discriminating among those evaluated. The essential set is among the most
discriminating known voting rules immune to the ACP, but presumably less discriminating than
Copeland’s rule.

The behavior of MaxiMin is almost identical to that of Young’s and Dodgson’s rule. Con-
firming our approximate “limit” results of 1,000 voters, we were able to analytically compute the
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limit probability for MaxiMin as 557c &~ 16%. This is in perfect congruence with the (rounded)

values for MaxiMin, Young’s rule, and Dodgson’s rule.

9For small even numbers of voters, Copeland’s rule also frequently fails agenda contraction, which is also
visible in Figure 5 and explains the seemingly high values in Table 2.



It should also be noted that with fewer than 100 voters, the parity of the number of voters
plays a major role. For even numbers, significantly higher probabilities arise (which is particu-
larly true for Copeland’s rule, see above). At least part of this can be explained by a reduced
probability for CWs in these cases.

For more alternatives (see the right-hand side of Figure 4), the relative behavior remains
vastly unchanged with probabilities further increasing to values larger than 40% to 80% (mostly
since the likelihood of a CW decreases roughly at the same rate).

6.2 Varying Preference Models

Figure 5 extends the analysis of the previous section by additionally considering preference
models beyond IAC. The overall picture regarding the different rules remains the same. For
large electorates Copeland’s rule outperforms the other rules, whereas Borda’s rule performs
worst. Regarding the different preference models, three classes emerge from Figure 5.

First, for Mallows-¢ we observe probabilities that are vanishing with increased numbers of
voters. Under the spatial model this is true as well, with the surprising exception of Borda’s
rule, for which the picture looks completely different and the probability does not go below 20%
in the spatial model. Presumably, this can be explained by Borda’s inability to select the CW in
this setting, a hypothesis that deserves further study, however. On the contrary, the other rules
appear to be benefitting from the fact that the existence of a CW becomes very likely under
models with high voter interdependence.

Second, as expected, the assumption of IC serves as an upper bound for all other preference
models. The results for TAC are not much lower, fostering the impression that IAC could also
be an unrealistic upper bound.

Third, the urn model yields much lower values compared to IAC and IC. The absolute
numbers, however, are still beyond acceptable levels (between 4% and 23% for 1,000 voters).

The findings in the empirical data corroborate our experimental findings. In PREFLIB the
ACP occurs 17 times for Borda, three times for Copeland and exactly once for MaxiMin as well
as Young’s and Dodgson’s rule. In the Netflix data set, where the number of voters is at least
350, Copeland performs much better than the other Condorcet extensions (4,400 compared to
18,470 occurrences for the other Condorcet extensions). Borda’s rule virtually always suffers
from the ACP on this data set: there are 54,620 instances of ACPs already when considering
profiles that do not have a CW (there are 54,650 of such).

7 Conclusion

We investigated the likelihood of the CLP and the ACP using Ehrhart theory, computer simula-
tions, and empirical data. The CLP is often cited as a major flaw of some Condorcet extensions
such as Dodgson’s rule, Young’s rule, and MaxiMin. For example, Fishburn regards Condorcet
extensions that suffer from the CLP (specifically referring to the three rules mentioned above)
as “ ‘dubious’ extensions of the basic Condorcet criterion” (Fishburn, 1977, p. 480).1° While
this is intelligible from a theoretical point of view, our results have shown that the CLP is of
virtually no practical concern. The ACP, on the other hand, frequently occurs under various
distributional assumptions about the voters’ preferences. The extent to which it is real threat,
however, strongly depends on the voting rule, the underlying distribution of preferences, and,
surprisingly, the parity of the number of voters. Our main quantitative results for the worst case
are summarized in Table 2.

L0Fishburn (1977) actually analyzes violations of “Smith’s Condorcet principle”, which is weaker than the CLP.
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Figure 4: Comparison between ACP probabilities for different voting rules under IAC
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Figure 5: Comparison between ACPgorda; ACPuMaxivin and ACPcopeland for varying preference models in 4-
alternative elections; the values of ACPvyoung and ACPpodgson are omitted since they strongly resemble the ones
of ACPMaxiMin~

Paradox Condorcet loser paradox (CLP) Agenda contraction paradox (ACP)
Model IAC IC IAC 1C
n {1,...,1000}  {50,51}  {50,51} {1,...,1000}  {50,51}  {1,...,1000}
m 4 {1,...,10} 4 4 {1,...,10} 4
Essential set 0% 0% 0% 0% 0% 0%
Borda 0% 0% 0%
Copeland 0% 0% 0%
Dodgson 0.01% 0.005% 0.005%
Young 1% 0.15% 0.25%
MaxiMin 2.2% 0.15% 0.25%

Table 2: Rounded maximal CLP and ACP probabilities which occurred during our simulations
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