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Abstract

Two important requirements when aggregating the preferences of multiple agents
are that the outcome should be economically efficient and the aggregation mecha-
nism should not be manipulable. In this paper, we provide a computer-aided proof
of a sweeping impossibility using these two conditions for randomized aggregation
mechanisms. More precisely, we show that every efficient aggregation mechanism
can be manipulated for all expected utility representations of the agents’ prefer-
ences. This settles a conjecture by Aziz et al. [2013b] and strengthens a number of
existing theorems, including statements that were shown within the special domain
of assignment. Our proof is obtained by formulating the claim as a satisfiability
problem over predicates from real-valued arithmetic, which is then checked using an
SMT (satisfiability modulo theories) solver. To the best of our knowledge, this is
the first application of SMT solvers in computational social choice.

1 Introduction

Models and results from microeconomic theory, in particular from game theory and social
choice, have proven to be very valuable when reasoning about computational multiagent sys-
tems. Two fundamental notions in this context are efficiency—no agent can be made better
off without making another one worse off—and strategyproofness—no agent can obtain a
more preferred outcome by manipulating his preferences. Gibbard [1973] and Satterthwaite
[1975] have shown that every strategyproof social choice function is either dictatorial or im-
posing. Hence, strategyproofness can only be achieved at the cost of discriminating among
the agents or among the alternatives. One natural possibility to restore fairness, which is
particularly popular in computer science, is to allow for randomization. Functions that map
a profile of individual preferences to a probability distribution over alternatives (a so-called
lottery) are known as social decision schemes (SDSs).

Generalizing his previous result, Gibbard [1977] proved that the only strategyproof and
ex post efficient social decision schemes are randomizations over dictatorships. Gibbard’s no-
tion of strategyproofness requires that no agent is better off by manipulating his preferences
for some expected utility representation of the agents’ ordinal preferences. This condition
is quite demanding because an SDS may be deemed manipulable just because it can be
manipulated for a contrived and highly unlikely utility representation. In this paper, we
adopt a weaker notion of strategyproofness, first used by Postlewaite and Schmeidler [1986]
and popularized by Bogomolnaia and Moulin [2001]. This notion requires that no agent
should be better off by manipulating his preferences for all expected utility representations
of the agents’ preferences. At the same time, we use a stronger notion of efficiency than
Gibbard [1977]. This notion is defined in analogy to our notion of strategyproofness and
requires that no agent can be made better off for all utility representations of the agents’
preferences, without making another one worse off for some utility representation. This
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type of efficiency was introduced by Bogomolnaia and Moulin [2001] and is also known as
ordinal efficiency or SD-efficiency where SD stands for stochastic dominance.

Our main result establishes that no anonymous and neutral SDS satisfies efficiency and
strategyproofness. This settles a conjecture by Aziz et al. [2013b] and generalizes theorems
by Aziz et al. [2013b], Aziz et al. [2014], and Brandl et al. [2016b]. It also strengthens related
statements by Zhou [1990], Bogomolnaia and Moulin [2001], and Katta and Sethuraman
[2006], which were shown within the special domain of assignment.

Our proof of this theorem heavily relies on computer-aided solving techniques. Some
of these have already been applied in computational social choice, where, due to the rig-
orous axiomatic foundation, computer-aided theorem proving appears to be a particularly
promising line of research. Perhaps the best known result in this context stems from Tang
and Lin [2009], who reduce well-known impossibility results, such as Arrow’s theorem, to
finite instances, which can then be checked by a Boolean satisfiability (SAT) solver. Their
work has sparked a number of contributions which, besides using this general idea for more
complex settings or axioms, focus on proving novel results [Geist and Endriss, 2011; Brandl
et al., 2015; Brandt et al., 2016; Brandt and Geist, 2016].

In this paper, we go beyond the SAT-based techniques of previous contributions by
designing an SMT (satisfiability modulo theories) encoding that captures axioms for ran-
domized social choice. SMT can be viewed as an enriched form of the satisfiability problem
(SAT) where Boolean variables are replaced by statements from a theory, such as specific
data types or arithmetics. Similar to SAT, there is a range of SMT solvers developed by
an active community that runs annual competitions [Barrett et al., 2013]. Typically, SMT
solvers are used as backends for verification tasks such as the verification of software. To
capture axioms about lotteries, we use the theory of (quantifier-free) linear real arithmetic.
Solving this version of SMT can be seen as an extension to linear programming in which
arbitrary Boolean operators are allowed to connect (in-)equalities.

We follow the idea of Brandt and Geist [2016] and extract a minimal unsatisfiable set
(MUS) of constraints in order to verify our result. Despite its relatively complex 94 (non-
trivial) constraints, which operate on 47 canonical preference profiles, the MUS enables
manual and computer-aided verification of the encoding, and, hence, releases any need to
verify our program for generating it.

2 The Model

Let A be a finite set ofm alternatives andN = {1, . . . , n} a set of agents. A (weak) preference
relation is a complete and transitive binary relation on A. The preference relation reported
by agent i is denoted by %i, and the set of all preference relations by R. In accordance
with conventional notation, we write �i for the strict part of %i, i.e., x �i y if x %i y but
not y %i x, and ∼i for the indifference part of %i, i.e., x ∼i y if x %i y and y %i x. A
preference relation %i is linear if x �i y or y �i x for all distinct alternatives x, y ∈ A. We
will compactly represent a preference relation as a comma-separated list with all alternatives
among which an agent is indifferent placed in a set. For example, x �i y ∼i z is represented
by %i : x, {y, z}. A preference profile R = (%1, . . . ,%n) is an n-tuple containing a preference
relation %i for each agent i ∈ N . The set of all preference profiles is thus given by RN . For
a given R ∈ RN and % ∈ R, Ri 7→% denotes a preference profile identical to R except that
%i is replaced with %, i.e., Ri 7→% = R \ {(i,%i)} ∪ {(i,%)}.

2.1 Social Decision Schemes

Our central objects of study are social decision schemes: functions that map a preference
profile to a lottery (or probability distribution) over the alternatives. The set of all lotteries



over A is denoted by ∆(A), i.e., ∆(A) = {p ∈ RA≥0 :
∑
x∈A p(x) = 1}, where p(x) is the

probability that p assigns to x. Then, formally, a social decision scheme (SDS) is a function
f : RN → ∆(A). By supp(p) we denote the support of a lottery p ∈ ∆(A), i.e., the set
of all alternatives to which p assigns positive probability. Two common minimal fairness
conditions for SDSs are anonymity and neutrality, i.e., symmetry with respect to agents
and alternatives, respectively. Formally, anonymity requires that f(R) = f(R ◦ σ) for all
R ∈ RN and permutations σ : N → N over agents. Neutrality, on the other hand, is defined
via permutations over alternatives. An SDS f is neutral if f(R)(x) = f(π(R))(π(x)) for all
R ∈ RN , permutations π : A→ A, and x ∈ A.1

2.2 Efficiency and Strategyproofness

Many important properties of SDSs, such as efficiency and strategyproofness, require us to
reason about the preferences that agents have over lotteries. This is commonly achieved by
assuming that in a preference profile R every agent i, in addition to this preference relation
%i, is equipped with a von Neumann-Morgenstern (vNM) utility function uRi : A → R. By
definition, a utility function uRi has to be consistent with the ordinal preferences, i.e., for
all x, y ∈ A, uRi (x) ≥ uRi (y) iff x %i y. A utility representation u then associates with
each preference profile R an n-tuple (uR1 , . . . , u

R
n ) of such utility functions. Whenever the

preference profile R is clear from the context, the superscript will be omitted and we write
ui instead of the more cumbersome uRi .

Given a utility function ui, agent i prefers lottery p to lottery q iff the expected utility
for p is at least as high as that of q. With slight abuse of notation the domain of utility
functions can be extended in the canonical way to ∆(A) by letting

ui(p) =
∑
x∈A

p(x)ui(x).

It is straightforward to define efficiency and strategyproofness using expected utility. For a
given utility representation u and a preference profile R, a lottery p u-(Pareto-)dominates
another lottery q if

ui(p) ≥ ui(q) for all i ∈ N , and

ui(p) > ui(q) for some i ∈ N .

An SDS f is u-efficient if it never returns u-dominated lotteries, i.e., for all R ∈ RN , f(R)
is not u-dominated. The notion of u-strategyproofness can be defined analogously: for a
given utility representation u, an SDS can be u-manipulated if there are R ∈ RN , i ∈ N ,
and % ∈ R such that

uRi (f(Ri 7→%)) > uRi (f(R)).

An SDS is u-strategyproof if it cannot be u-manipulated.
The assumption that the vNM utility functions of all agents (and thus their complete

preferences over lotteries) are known is quite unrealistic. Often even the agents themselves
are uncertain about their preferences over lotteries and only know their ordinal preferences
over alternatives.2 A natural way to model this uncertainty is to leave the utility func-
tions unspecified and instead quantify over all utility functions that are consistent with

1π(R) is the preference profile obtained from π by replacing %i with %πi for every i ∈ N , where π(x) %πi
π(y) if and only if x %i y.

2When assuming that all agents possess vNM utility functions, these utility functions could be taken as
inputs for the aggregation function. Such aggregation functions are called cardinal decision schemes [see,
e.g., Dutta et al., 2007]. In addition to the fact that concrete vNM utility functions are typically unavailable,
their representation may require infinite space.



the agents’ ordinal preferences. This model leads to much weaker notions of efficiency and
strategyproofness.

Definition 1. An SDS is efficient if it never returns a lottery that is u-dominated for all
utility representations u.

As mentioned in the introduction, this notion of efficiency is also known as ordinal
efficiency or SD-efficiency [see, e.g., Bogomolnaia and Moulin, 2001; Aziz et al., 2014, 2015].
The relationship to stochastic dominance will be discussed in more detail in Section 4.2.

Example 1. For illustration consider A = {a, b, c, d} and the preference profile R =
(%1, . . . ,%4),

%1 : {a, c}, {b, d}, %2 : {b, d}, {a, c},
%3 : {a, d}, b, c, %4 : {b, c}, a, d

Observe that the lottery 7/24 a+ 7/24 b+ 5/24 c+ 5/24 d, which is returned by the well-known
SDS random serial dictatorship (RSD), is u-dominated by 1/2 a + 1/2 b for every utility
representation u. Hence, any SDS that returns this lottery for the profile R would not be
efficient. On the other hand, the lottery 1/2 a + 1/2 b is not u-dominated, which can, for
instance, be checked via linear programming (see Lemma 4).

We can also define a weak notion of strategyproofness in analogy to our notion of effi-
ciency.

Definition 2. An SDS is strategyproof if it cannot be u-manipulated for all utility repre-
sentations u.

Alternatively, there is a stronger version of strategyproofness by Gibbard [1977], in which
an SDS should not be u-manipulable for some utility representation u.

For more information concerning the relationship between sets of possible utility func-
tions and preference extensions, such as stochastic dominance, the reader is referred to Aziz
et al. [2015].

3 The Result

Our main result shows that efficiency and strategyproofness are incompatible with basic fair-
ness properties. Aziz et al. [2013b] raised the question whether there exists an anonymous,
efficient, and strategyproof SDS. When additionally requiring neutrality, we can answer this
question in the negative.

Theorem 1. If m ≥ 4 and n ≥ 4, there is no anonymous and neutral SDS that satisfies
efficiency and strategyproofness.

The proof of Theorem 1, which heavily relies on computer-aided solving techniques, is
discussed in Section 4. Let us first discuss the independence of the axioms and relate the
result to existing theorems. RSD satisfies all axioms except efficiency ; another SDS known
as maximal lotteries satisfies all axioms except strategyproofness [cf. Aziz et al., 2013b].
Serial dictatorship, the deterministic version of RSD , satisfies neutrality, efficiency, and
strategyproofness but violates anonymity. It is unknown whether Theorem 1 still holds
when dropping the assumption of neutrality. Our proof, however, only requires a technical
weakening of neutrality (cf. Section 4.1).



3.1 Related Results for Social Choice

Our result generalizes several existing results and is closely related to a number of results in
subdomains of social choice. Aziz et al. [2013b] proved a weak version of Theorem 1 for the
rather restricted class of majoritarian SDSs, i.e., SDSs whose outcome may only depend on
the pairwise majority relation. This statement has later been generalized by Aziz et al. [2014]
to all SDSs whose outcome only depends on the weighted majority relation. More recently,
Brandl et al. [2016b] have shown that while random dictatorship is efficient and strategyproof
on the domain of linear preferences, it cannot be extended to the full domain of weak
preferences without violating at least one of these properties. Their theorem, which also
assumes anonymity and neutrality, is a direct consequence of Theorem 1. Other impossibility
results have been obtained for stronger notions of efficiency and strategyproofness, which
weakens the corresponding statements. Aziz et al. [2014] have shown that there is no
anonymous and neutral SDS that satisfies efficiency and strategyproofness with respect to
the pairwise comparison lottery extension and with respect to the upward lexicographic
extension.3 Both of these notions of efficiency and strategyproofness are stronger than the
ones used in Theorem 1.

3.2 Related Results for Assignment

A subdomain of social choice that has been thoroughly studied in the literature is the
assignment (aka house allocation or two-sided matching with one-sided preferences) domain.
An assignment problem can be associated with a social choice problem by letting the set of
alternatives be the set of deterministic allocations and postulating that agents are indifferent
among all allocations in which they receive the same object [see, e.g., Aziz et al., 2013a].4

Thus, impossibility results for the assignment setting can be interpreted as impossibility
results for the social choice setting because they even hold in a smaller domain.

In the following we discuss impossibility results in the assignment domain which, if in-
terpreted for the social choice domain, can be seen as weaker versions of Theorem 1 because
they are based on stronger notions of efficiency or strategyproofness or require additional
properties. In a very influential paper, Bogomolnaia and Moulin [2001] have shown that
no randomized assignment mechanism satisfies both efficiency and a strong notion of strat-
egyproofness while treating all agents equally. The underlying notion of strategyproofness
is identical to the one used by Gibbard [1977] and prescribes that the SDS cannot be u-
manipulated for some utility representation u. The result by Bogomolnaia and Moulin
even holds when preferences over objects are linear. (Nevertheless, when transferred to the
social choice domain, the preferences over allocations will contain ties.) In a related pa-
per, Katta and Sethuraman [2006] proved that no assignment mechanism satisfies efficiency,
strategyproofness, and envy-freeness for the full domain of preferences.5

Settling a conjecture by Gale [1987], Zhou [1990] showed that no cardinal assignment
mechanism satisfies u-efficiency and u-strategyproofness while treating all agents equally.6

The relationship between Zhou’s result and Theorem 1 is not obvious because Zhou’s the-

3The statement for the pairwise comparison extension holds for at least three agents and three alterna-
tives, whereas Theorem 1 does not hold for less then four alternatives since RSD satisfies all properties for
up to three alternatives. In contrast to Theorem 1, the statement for the upward lexicographic extension
does not require neutrality and also holds for linear preferences.

4Note that this transformation turns assignment problems with linear preferences over k objects into
social choice problems with non-linear preferences over k! allocations.

5Envy-freeness is a fairness property that is stronger than equal treatment of equals as used by Bogomol-
naia and Moulin [2001].

6The theorem by Zhou only requires that agents with the same utility function receive the same amount
of utility but not necessarily the same assignment. Gale’s original conjecture assumed equal treatment of
equals.



orem concerns cardinal mechanisms, i.e., functions that take a utility profile rather than a
preference profile as input. However, every cardinal assignment mechanism can be associ-
ated with an ordinal assignment mechanism by choosing the outcome for some consistent
utility profile for every preference profile. This transformation turns a u-efficient and u-
strategyproof cardinal mechanism into an efficient and strategyproof ordinal mechanism as
these properties are purely ordinal. Hence, Theorem 1 implies that there is no anonymous,
neutral, u-efficient, and u-strategyproof cardinal decision scheme.

4 Proving the Result

In this section, we first reduce the statement of Theorem 1 to the case of m = 4 and n = 4,
which we then prove via SMT solving. We present an encoding for any finite instance
of Theorem 1 as an SMT problem in the logic of (quantifier-free) linear real arithmetic
(QF LRA). For compatibility with different SMT solvers our encoding adheres to the SMT-
LIB standard [Barrett et al., 2010]. In total, we are going to design the following four types
of SMT constraints:

• lottery definitions (Lottery),

• the orbit condition7 (Orbit),

• strategyproofness (SP), and

• efficiency (Efficiency).

Other conditions such as anonymity are taken care of by the representation of preference
profiles.

We then, first, apply an SMT solver to show that this set of constraints for the case of
m = 4 and n = 4 is unsatisfiable, i.e., no SDS f with the desired properties exists. Second,
we explain how the output of the solver can be used to obtain a human-verifiable proof of
this result.

But let us start with the reduction lemma before we turn to the concrete encoding in
the following subsections.

Lemma 1. If there is an anonymous and neutral SDS f that satisfies efficiency and strat-
egyproofness for |A| = m alternatives and |N | = n agents then we can also find an SDS f ′

defined for m′ ≤ m alternatives and n′ ≤ n agents that satisfies the same properties.

Proof. Let f be an anonymous and neutral SDS that satisfies efficiency and strategyproof-
ness for m alternatives and n agents. We define a projection f ′ of f onto A′ ⊆ A, |A′| =
m′ ≤ m and N ′ = {1, 2, . . . , n′} ⊆ N,n′ ≤ n that satisfies all required properties:

For every preference profile R′ on A′ and N ′, let f ′(R′) = f(R), where R is defined by
the following conditions:

%i ∩ (A′ ×A′) = %′i for all i ∈ N ′, (1)

x �i y for all x ∈ A′, y ∈ A \A′ and i ∈ N ′, (2)

y ∼i z for all y, z ∈ A \A′ and i ∈ N ′, and (3)

y ∼i z for all y, z ∈ A and i ∈ N \N ′. (4)

Informally, by (1) agents in N ′ have the same preferences over alternatives from A′ in R and
R′. Moreover, by (2) they like every alternative in A′ strictly better than every alternative

7The orbit condition models a part of neutrality.



not in A′ and by (3) they are indifferent between all alternatives not in A′. Finally, by
(4) all agents in N \ N ′ are completely indifferent. With these conditions, R is uniquely
specified given R′, and only lotteries p with supp(p) ⊆ A′ are efficient in R. Thus, f ′ is
well-defined and it is left to show that f ′ inherits the relevant properties from f . The SDS f ′

is anonymous since f is anonymous and agents in N can only differ by their preferences over
A′. Neutrality follows as f is neutral and all agents are indifferent between all alternatives
not in A′. Efficiency is satisfied by f ′ since f is efficient and the same set of lotteries
is efficient in R and R′. Finally, f ′ is strategyproof because f is strategyproof and the
outcomes of f ′ under the two profiles R′ and (R′)i7→%′ are equal to the outcomes of f under
the two (extended) profiles R and Ri 7→%, respectively.

4.1 Framework, Anonymity, and Neutrality

For a given number of agents n and set of alternatives A, we encode an arbitrary SDS
f : RN → ∆(A) by a set of real-valued variables pR,x with R ∈ RN and x ∈ A. Each
pR,x then represents the probability with which alternative x is selected for profile R, i.e.,
pR,x = f(R)(x).

This encoding of lotteries leads to the first simple constraints for our SMT encoding,
which ensure that for each preference profile R the corresponding variables pR,x, x ∈ A
indeed encode a lottery: ∑

x∈A
pR,x = 1 for all R ∈ RN , and

pR,x ≥ 0 for all R ∈ RN and x ∈ A.

(Lottery)

We are now going to argue that, in conjunction with anonymity and neutrality (see
Section 2), it suffices to consider these constraints for a subset of preference profiles. This
is because, in contrast to the other axioms, we directly incorporate anonymity and neutral-
ity into the structure of the encoding rather than formulating them as actual constraints.
Similar to the construction involving canonical tournament representations by Brandt and
Geist [2016], we model anonymity and neutrality by computing for each preference profile
R ∈ RN a canonical representation Rc ∈ RN with respect to these properties. In this
representation, two preference profiles R and R′ are equal (i.e., Rc = R′c) iff one can be
transformed into the other by renaming the agents and alternatives. Equivalently, Rc = R′c
iff, for every anonymous and neutral SDS f , the lotteries f(R) and f(R′) are equal (modulo
the renaming of the alternatives).

The SMT constraints and SMT variables are then instantiated only for these canonical
representations RNc ⊆ RN . Apart from enabling an encoding of anonymous and neutral SDSs
without any explicit reference to permutations, this also offers a substantial performance
gain compared to considering the full domain RN of (non-anonymous and non-neutral)
preference profiles.

Technically, we compute the canonical representation Rc as follows: Let R =
(%1, . . . ,%n) ∈ RN be a preference profile. First, we identify R with a function r : R→ N,
which we call anonymous preference profile, and which counts the number of agents with a
certain preference relation, i.e., r(%) = |{i ∈ N | %i = %}|, thereby ignoring the identity of
the agents. This representation fully captures anonymity.

To additionally enforce neutrality, we had to resort to a computationally demanding,
naive solution: given r, we compute all anonymous preference profiles π(r) that can be
achieved via a permutation π : A→ A, and, among those profiles, choose the one πlexmin(r)
with lexicographically minimal values (for some fixed ordering of preference relations). For
the canonical representation Rc we then pick any preference profile R ∈ RN which agrees



with πlexmin(r), for instance, by again using the same fixed ordering of preference relations.
Fortunately, this approach is still feasible for the small numbers of alternatives with which
we are dealing.

While this representation of preference profiles does not completely capture neutrality—
the orbit condition [see Brandt and Geist, 2016] is missing—this weaker version suffices to
prove the impossibility. In favor of simpler proofs we, however, include the simple constraints
corresponding to a randomized version of the orbit condition.

In our context, an orbit O of a preference profile R is an equivalence class of alternatives.
Two alternatives x, y ∈ A are considered equivalent if π(x) = y for some permutation
π : A → A that maps the anonymous preference profile associated with R to itself (i.e.,
π is an automorphism of the anonymous preference profile). In such a situation, every
anonymous and neutral SDS has to assign equal probabilities to x and y. We hence require
that, for each orbit O ∈ OR of a (canonical) profile R, the probabilities pR,x are equal for
all alternatives x ∈ O. As an SMT constraint, this reads

pR,x = pR,y (Orbit)

for all R ∈ RNc , O ∈ OR, and x, y ∈ O.

Example 2. Consider the anonymous preference profile r based on R from Example 1 and
the permutation

π =

(
a b c d
b a d c

)
.

As π(r) = r (and since no other non-trivial permutation has this property) the set of orbits
of R is OR = {{a, b}, {c, d}}.

4.2 Stochastic Dominance

In order to avoid quantifying over utility functions, we leverage well-known representations
of efficiency and strategyproofness via stochastic dominance (SD) [cf. Bogomolnaia and
Moulin, 2001; McLennan, 2002; Aziz et al., 2015]. A lottery p stochastically dominates a
lottery q for an agent i (short: p %SD

i q) if for every alternative x, lottery p is at least as
likely as lottery q to yield an alternative at least as good as x. Formally,

p %SD
i q iff

∑
y%ix

p(y) ≥
∑
y%ix

q(y) for all x ∈ A.

When p %SD
i q and not q %SD

i p we write p �SD
i q.

As an example, consider the preference relation %i : a, b, c. We then have that

(2/3 a+ 1/3 c) �SD
i (1/3 a+ 1/3 b+ 1/3 c)

while 2/3 a+ 1/3 c and b are incomparable according to stochastic dominance.

Lemma 2. Let %i ∈ R. A lottery p SD-dominates another lottery q for an agent i iff
ui(p) ≥ ui(q) for every utility function ui consistent with %i. As a consequence,

1. an SDS f is efficient iff, for all R ∈ RN , there is no lottery p such that p %SD
i f(R)

for all i ∈ N and p �SD
i f(R) for some i ∈ N , and

2. an SDS f is manipulable iff there exist a preference profile R, an agent i, and a
preference relation % such that f(Ri 7→%) �SD

i f(R).



Proof. For the direction from left to right, assume that p %SD
i q. Let A = {x1, . . . , xm}

and xj %i xk if and only if j ≤ k for all j, k ∈ {1, . . . ,m}. Then, by definition, for all

j ∈ {1, . . . ,m},
∑j
k=1 p(xk) ≥

∑j
k=1 q(xk). Let ui be a utility function consistent with %i,

i.e., ui(xj) ≥ ui(xk) if and only if j ≤ k. Then,

ui(p)− ui(q) =

m∑
j=1

(p(xj)− q(xj))ui(xj) =

m∑
j=1

(ui(xj)− ui(xj+1))︸ ︷︷ ︸
≥0

j∑
k=1

(p(xk)− q(xk))︸ ︷︷ ︸
≥0

≥ 0,

where ui(xm+1) is set to 0. Hence, ui(p) ≥ ui(q).
For the direction from right to left, assume that ui(p) ≥ ui(q) for all utility functions ui

consistent with %i. Assume for contradiction that p 6%SD
i q, i.e., there is x ∈ A such that∑

y%ix
q(x)−

∑
y%ix

p(x) = ε > 0. Let ui be a utility function consistent with %i such that

ui(y) ∈ [1 − ε/2, 1] for all y %i x and ui(y) ∈ [0, ε/2] for all x �i y. Such a ui exists, since
ε > 0. Then,

ui(q) ≥ (1− ε/2)
∑
y%ix

q(y) >
∑
y%ix

p(y) + ε/2 ≥ ui(p),

which contradicts the assumption.

In words, Lemma 2 shows that an SDS f is efficient if and only if f(R) is Pareto-efficient
with respect to stochastic dominance for all preference profiles R. Secondly, f is manipulable
if and only if some agent can misrepresent his preferences to obtain a lottery that he prefers
to the lottery obtained by sincere voting with respect to stochastic dominance.

4.2.1 Encoding Strategyproofness

Starting from the above equivalence, encoding strategyproofness as an SMT constraint is
now a much simpler task. For each (canonical) preference profile R ∈ RNc , agent i ∈ N ,8

and preference relation % ∈ R, we encode that the manipulated outcome f(Ri 7→%) is not
SD-preferred to the truthful outcome f(R) by agent i:

¬
(
f(Ri7→%) �SD

i f(R)
)

≡ f(Ri 7→%) 6%SD
i f(R) ∨ f(R) %SD

i f(Ri7→%)

≡

(∃x ∈ A)
∑
y%ix

f(Ri 7→%)(y) <
∑
y%ix

f(R)(y)

∨
(∀x ∈ A)

∑
y%ix

f(Ri 7→%)(y)
(∗)

≤
∑
y%ix

f(R)(y)


≡

∨
x∈A

∑
y%ix

p
(Ri7→%)c,πRi7→%

c (y)
<
∑
y%ix

pR,y

∨
∧
x∈A

∑
y%ix

p
(Ri7→%)c,πRi7→%

c (y)

(∗∗)
=
∑
y%ix

pR,y

 ,

(SP)

8Note that, due to anonymity, it is not necessary to iterate over all agents i. Rather it suffices to pick
one agent per unique preference relation contained in R.



where πR
i7→%

c stands for a permutation of alternatives that (together with a potential renam-
ing of alternatives) leads from Ri 7→% to (Ri7→%)c. The inequality (∗) can be replaced by the
equality (∗∗) since the case of at least one strict inequality is captured by the corresponding
disjunctive condition one line above.

4.2.2 Encoding Efficiency

While Lemma 2 helps to formulate efficiency as an SMT axiom it is not yet sufficient since a
quantification over the set of all lotteries ∆(A) remains. In order to get rid of this quantifier,
we apply two lemmas by Aziz et al. [2015], for which we include (slightly simplified) proofs
in favor of a self-contained presentation. The first lemma states that efficiency of a lottery
only depends on its support. The second lemma shows that deciding whether a lottery is
efficient reduces to solving a linear program.

Lemma 3 (Aziz et al., 2015). Let R ∈ RN . A lottery p ∈ ∆(A) is efficient iff every lottery
p′ ∈ ∆(A) with supp(p′) ⊆ supp(p) is efficient.

Proof. We prove the statement by contraposition: if p′ ∈ ∆(A) is not efficient, then no
lottery p with supp(p′) ⊆ supp(p) is efficient. If p′ is not efficient, there is q′ ∈ ∆(A) such
that q′ u-dominates p′ for all utility representations uR, i.e., for all agents i ∈ N and all
utility functions ui consistent with %i, ui(q′)− ui(p′) ≥ 0 and ui′(q

′)− ui′(p′) > 0 for some
agent i′ ∈ N and all utility functions ui′ consistent with %i′ . Let v = q′ − p′ ∈ RA. Note
that, for all x ∈ A, v(x) < 0 implies x ∈ supp(p′). Now let q = p+ εv for ε > 0 small enough
such that q ∈ ∆(A). This is possible because supp(p′) ⊆ supp(p). By definition of q, we have
that, for all i ∈ N and all ui consistent with %i, ui(q)−ui(p) = εui(v) = ε(ui(q

′)−ui(p′)) ≥ 0
and ui′(q)− ui′(p) > 0 for all ui′ consistent with %i′ . Thus, p is not efficient.

Lemma 4 (Aziz et al., 2015). Whether a lottery p ∈ ∆(A) is efficient for a given preference
profile R can be computed in polynomial time by solving a linear program.

Proof. Given the equivalence from Lemma 2, a lottery p is easily seen to be efficient iff the
optimal objective value of the following linear program is zero (since then there is no lottery
q that SD-dominates p):

max
q,r

∑
i∈N

∑
x∈A

ri,x subject to∑
y%ix

qy − ri,x =
∑
y%ix

py for all x ∈ A, i ∈ N ,

∑
x∈A

qx = 1, qx ≥ 0 for all x ∈ A,

ri,x ≥ 0 for all x ∈ A, i ∈ N .

Recall that an SDS is efficient if it never returns a dominated lottery. By Lemma 3,
this is equivalent to never returning a lottery with inefficient support. To capture this, we
encode, for each (canonical) preference profile R ∈ RNc , that the probability for at least one
alternative in every (inclusion-minimal) inefficient support IR ⊆ A is zero:∨

x∈IR

pR,x = 0. (Efficiency)



4.3 Restricted Domains

Since RSD (cf. Section 3) is known to satisfy both strategyproofness as well as efficiency
for up to 3 alternatives, the search for an impossibility has to start at m = 4 alternatives.
For n = 3 agents, the encoding is solved as satisfiable; for n = 4, an encoding of the full
domain, unfortunately, becomes prohibitively large. Hence, for m = 4 and n = 4, one has to
carefully optimize the domain under consideration, on the one hand, to include a sufficient
number of profiles for a successful proof, and, on the other hand, not to include too many
profiles, which would prevent the solver from terminating within a reasonable amount of
time.

The following incremental strategy was found to be successful. We start with a specific
profile R, from which we only consider sequences of potential manipulations as long as (in
each step) the manipulated individual preferences are not too distinct from the truthful
preferences. To this end, we measure the magnitude of manipulations by the Kendall tau
distance τ , which counts pairwise disagreements between Ri and R′i [see also Sato, 2013]. A
change in the individual preferences of an agent will be called a k-manipulation if τ(Ri, R

′
i) ≤

k. Then, for example, strategically swapping two alternatives is a 2-manipulation, and
breaking or introducing a tie between two alternatives is a 1-manipulation.

On the domain which starts from the preference profile R from Example 1 and from there
allows sequences of (1, 2, 1, 2)-manipulations9 we were able to prove the result within a few
minutes of running-time.10 On smaller domains (e.g., considering (1, 2, 2)-manipulations
from R) the axioms are still compatible.

4.4 Verification of Correctness

For verification of the result, one would ideally construct a human-readable proof from the
output of the SMT solver. While the approach described by Brandt and Geist [2016] for
SAT solving—of finding a minimal unsatisfiable set (MUS) of constraints, i.e., an inclusion-
minimal set of constraints such that this set is still unsatisfiable—is theoretically also appli-
cable to SMT solving, it is less clear how these “proof ingredients” have to be combined.11

The proof object that z3 can produce, which also contains information of how the MUS
constraints have to be combined, unfortunately, is too long and complicated for humans to
parse.

Hence two aspects of our approach still deserve verification: the correctness of the con-
straints in the MUS and the unsatisfiability of the MUS. In addition to manual inspection
of the constraints and some sanity-checks,12 we have certified in Isabelle/HOL that all con-
straints logically follow from the original axioms presented in Section 2. This also releases
any need to verify our program for generating the constraints. The unsatisfiability of the
MUS, on the other hand, has been verified by the solvers CVC4, MathSAT, Yices2, z3, and
even by the Isabelle/HOL kernel.

9I.e., first we allow any 1-manipulation from R, then, from every resulting profile, any 2-manipulation
is allowed (not necessarily by the same agent), and so forth. Showing the result on this domain implies a
slightly stronger statement where strategyproofness only has to hold for “small” lies (of at most Kendall
tau distance 2).

10The SMT solver MathSAT [Cimatti et al., 2013] terminates quickly within less than 3 minutes with
the suggested competition settings, whereas z3 [de Moura and Bjørner, 2008] requires some additional
configuration, but then also supports core extraction within the same time frame.

11Here we have an MUS of 94 constraints, not counting the (trivial) lottery definitions. This MUS,
annotated with e.g., the 47 required canonical preference profiles, is available as part of an arXiv version of
this paper [Brandl et al., 2016a].

12Such as running solvers on multiple variants of the encoding which represent known theorems. This way,
we reproduced (amongst others) the results by Bogomolnaia and Moulin [2001] and Katta and Sethuraman
[2006], as well as the possibility result for m < 4.



Statement Number of canonical preference profiles

Theorem 1 47
Brandl et al. [2016b, Theorem 1] 13
Aziz et al. [2014, Theorem 2] 7
Aziz et al. [2014, Theorem 4] 7
Aziz et al. [2013b, Theorem 1] 5
Aziz et al. [2014, Theorem 3] 3

Bogomolnaia and Moulin [2001, Theorem 2] 11
Zhou [1990, Theorem 1] 5
Katta and Sethuraman [2006, Section 4] 2

Table 1: Proof complexity comparison of impossibility statements using efficiency and strat-
egyproofness in terms of the number of canonical preference profiles used in the proof. The
last three statements have been proven for the assignment domain.

Furthermore, based on the MUS, a proof of Theorem 1 which no longer relies on SMT
solving has been created in Isabelle/HOL. This proof, however, is tedious to verify by hand
since it is rather large (more than 500 lines of code) and offers little insight.

5 Conclusion

In this paper, we have leveraged computer-aided solving techniques to prove a sweeping
impossibility for randomized aggregation mechanisms.

It seems unlikely that this proof would have been found without the help of computers
because manual proofs of significantly weaker statements already turned out to be quite
complex (see Table 1 for a comparison of the proof complexity of related statements). Nev-
ertheless, now that the theorem has been established, our computer-aided methods may
guide the search for related, perhaps even stronger statements that allow for more intuitive
proofs and provide more insights into randomized social choice.

Generally speaking, we believe that SMT solving is applicable to a wide range of prob-
lems in randomized social choice. In particular, extending our result to the special domain
of assignment (see Section 3.2) is desirable as this would strengthen a number of existing
theorems. Other interesting questions are whether the impossibility still holds when weak-
ening strategyproofness even further to BD-strategyproofness [see, e.g., Aziz et al., 2014] or
when omitting neutrality.
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