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Abstract

We tackle the problem of expressing incomplete knowledge in abstract argumentation frame-
works originally introduced by Dung [15]. In applications, incomplete argumentation frame-
works may arise as intermediate states in an elicitation process, or when merging different
beliefs about an argumentation framework’s state, or in cases where complete information can-
not be obtained. We consider two specific models of incomplete argumentation frameworks,
one focusing on attack incompleteness [4] and the other on argument incompleteness [5], and
we also provide a general model of incomplete argumentation framework that subsumes both
specific models. In these models, we study the computational complexity of variants of the
verification problem with respect to common semantics of argumentation frameworks.

1 Introduction
Abstract argumentation frameworks are a simple, yet powerful tool for non-monotonic reasoning
that were originally introduced by Dung [15]. In this model, individual arguments are considered
to be abstract entities, disregarding their internal structure and focusing only on the attack relation
between them. Various semantics defined by Dung and others allow to investigate the acceptability
status of sets of arguments based on the attack relation. However, abstract argumentation frameworks
are suitable to describe an argumentation’s state only in an optimal situation—they require that all
relevant arguments are included and that there is no uncertainty regarding the attacks between them.
If these conditions are not met, the existing methods for semantic analysis cannot be applied.

This paper merges and extends our previous work on attack-incomplete [4] and argument-
incomplete argumentation frameworks [5] where we have introduced and studied two specific mod-
els for describing incomplete information in argumentation frameworks, the latter allowing to ex-
press uncertainty about the set of arguments and the former about the attack relation between argu-
ments. These formalizations of uncertainty capture various real-world phenomena like intermediate
states of an evolving argumentation, partial-information settings (and, in particular, permanently
unavailable information), and the task of merging individual views on an argumentation.

After describing the two specific models of attack- and argument-incomplete argumentation
frameworks, we combine them to allow simultaneous uncertainty about attacks and arguments. Our
objective in each model is to analyze how the computational complexity of certain variants of the
verification problem (to be formally defined in Section 2) is affected by introducing uncertainty.
However, this problem is defined in Dung’s original model of argumentation framework, so we
first need to adjust it to our extended models. A natural way to adapt a decision problem in the
face of incomplete knowledge is to ask whether the answer is possibly (respectively, necessarily)
“yes”—i.e., given all possible completions of the incomplete state, to ask whether at least one such
completion (respectively, whether all these completions) are yes-instances of the original problem.
This approach has already been taken in various areas of computational social choice, namely vot-
ing [21, 33, 10, 1, 2], fair division [7], algorithmic game theory [22], and judgment aggregation [3],
but is new to argumentation theory: this paper’s predecessors [4, 5] were the first to define and study
possible and necessary verification for certain semantics in incomplete argumentation frameworks.

In related work, incomplete knowledge about the attack relation was first introduced by Coste-
Marquis et al. [11] and analyzed with respect to argument acceptability by Cayrol et al. [8]. Opposed
to us, however, they develop new semantics for attack-incomplete argumentation frameworks and



thus put a lot of focus on the incomplete framework itself, rather than on its completions. Other work
on incomplete knowledge in abstract argumentation includes probabilistic argumentation frame-
works (see, for example, the work of Li al. [23], Rienstra [28], Fazzinga et al. [17, 18], Hunter [20],
and Doder and Woltran [14]), where arguments and/or attacks have an associated probability as a
quantified notion of uncertainty.

A related concept to incomplete knowledge is that of dynamic change. Cayrol et al. [9] study
belief revision, which allows the addition or deletion of one single argument or several arguments,
together with a respective change in the attack relation. Their work focuses on how this can alter the
set of extensions of the given argumentation framework. Liao et al. [24] investigate the complexity
of computing the status of an argument (i.e., whether it is accepted, rejected, or undecided) upon
changing the arguments and attacks. Coste-Marquis et al. [12] study how belief revision postulates
can be applied to argumentation systems. Boella et al. [6] address the question of which arguments
or attacks can be removed without changing the set of extensions. Another dynamic setting is that of
merging or aggregating different argumentation frameworks. Coste-Marquis et al. [11] study incom-
plete argumentation frameworks as a possible result of merging individual views. Tohmé et al. [31]
discuss criteria for methods that aggregate several attack relations into a single attack relation (with-
out uncertainty).

This paper is structured as follows. In Section 2, we provide the formal model of standard ar-
gumentation framework. Sections 3.1 and 3.2 introduce, respectively, the attack-incomplete and
argument-incomplete model extensions, which are then combined into a universal incompleteness
model in Section 3.3. In Section 4, we summarize our results and point out some interesting tasks
that could be tackled in future work.

2 Preliminaries
In this section, we give formalizations of the basic notions of abstract argumentation. While we
adapt some notation from the book chapter by Dunne and Wooldridge [16], the underlying concepts
are due to Dung [15].

Definition 1. An argumentation framework AF is a pair 〈A ,R〉, where A is a finite set of argu-
ments, and R ⊆A ×A is a binary relation. We say that a attacks b if (a,b) ∈R.

We will use the common representation of argumentation frameworks by graphs: Every argu-
mentation framework AF = 〈A ,R〉 can be seen as a directed graph GAF = (V,E) by identifying
arguments with vertices and attacks with directed edges, i.e., V = A and E = R.

Example 2. Figure 1 displays the graph representation of the argumentation framework AF =
〈A ,R〉 with A = {a,b,c} and R = {(a,b),(c,a)}. It will be used—and extended along the way—
as a running example throughout the paper.

a b

c

Figure 1: A simple argumentation framework

In the literature, many semantics have been defined which allow to evaluate the acceptability
status of sets of arguments. We use the semantics introduced by Dung in his seminal paper [15]:



Definition 3. Let AF = 〈A ,R〉 be an argumentation framework. A set S⊆A is
• conflict-free if there are no a,b ∈ S such that (a,b) ∈R,
• admissible if S is conflict-free and every a ∈ S is acceptable with respect to S, where an

argument a ∈A is acceptable with respect to S⊆A if for each b ∈A with (b,a) ∈R there
is a c ∈ S such that (c,b) ∈R,

• preferred if S is a maximal (with respect to set inclusion) admissible set,
• stable if S is conflict-free and for every b ∈A \S there is an a ∈ S with (a,b) ∈R,
• complete if S is admissible and contains all a ∈A that are acceptable with respect to S, and
• grounded if S is the least (with respect to set inclusion) fixed point of the characteris-

tic function of AF , where the characteristic function FAF : 2A → 2A of AF is defined by
FAF(S) = {a ∈A | a is acceptable with respect to S}.

The characteristic function always has a least fixed point, since it is monotonic with respect
to set inclusion, so the existence of the (unique) grounded set is guaranteed. The complete sets
of an argumentation framework can be characterized as the fixed points of FAF —in particular, the
grounded set is complete. Dung [15] also proved several other correlations between his semantics. In
particular, he showed that every admissible set is a subset of a preferred set, and that there always is
at least one preferred set (which may be the empty set). Also, every stable set is preferred, and every
preferred set is complete. It is easy to find examples that a preferred or grounded set does not have
to be stable, and it is easy to show that each of the above defined semantics entails conflict-freeness
and admissibility.

Dung uses the notion of extensions of an argumentation framework as a term for those subsets
that fulfill the criteria of a given semantics. For example, a set of arguments is called a preferred ex-
tension of the argumentation framework if it is a preferred set of the given argumentation framework.
Dung considers conflict-freeness and admissibility to be basic requirements rather than semantics,
and therefore did not call conflict-free or admissible sets “extensions”—for convenience, however,
we will do so sometimes.

We also need some of the basic notions from complexity theory. We assume the reader to be fa-
miliar with the complexity classes P, NP, and coNP, as well as hardness, completeness, polynomial-
time-reducibility,≤p

m, and (oracle) Turing machines. DP is a complexity class introduced by Papadi-
mitriou and Yannakakis [27] as the class of differences of any two NP problems; it also is the second
level of the boolean hierarchy over NP. Problems that are solvable by a nondeterministic oracle
Turing machine with access to an NP oracle belong to Σ

p
2 = NPNP; this class constitutes, together

with Π
p
2 = coNPNP, the second level of the polynomial hierarchy, and was introduced by Meyer and

Stockmeyer [25, 30]. It is known that P ⊆ NP ⊆ DP ⊆ Σ
p
2 , but it is still unknown whether any of

these inclusions is strict. For further details, see, e.g., [26, 29].
Dunne and Wooldridge [16] investigated several decision problems defined for argumentation

frameworks, many of which are hard to decide, as they are complete for NP, coNP, DP, or even
Π

p
2 . Here, we will focus on the verification problem, which is coNP-complete for the preferred

semantics [13], but can be decided in polynomial time for all other semantics defined above, which
follows immediately from the work of Dung [15].

s-VERIFICATION

Given: An argumentation framework 〈A ,R〉 and a subset S⊆A .
Question: Is S an s extension of AF?

In our notation, the boldfaced letter s is a placeholder for any of the six semantics defined earlier.
For better readability, we will sometimes shorten their names and write CF for conflict-freeness, AD
for admissibility, PR for preferredness, ST for stability, CP for completeness, and GR for grounded-
ness.



3 Incomplete Argumentation Frameworks
In this section, we introduce three different notions of incompleteness for argumentation frame-
works. We start with attack incompleteness in Section 3.1, followed by argument incompleteness
in Section 3.2. In Section 3.3, both approaches are combined to provide a general model of incom-
pleteness in argumentation frameworks.

3.1 Attack Incompleteness
The first notion of incompleteness we consider concerns the attack relation between arguments [4].
While Dung’s original model only allows to express whether an attack (a,b) exists ((a,b) ∈R) or
doesn’t exist ((a,b) /∈R), the extended model also allows to explicitly express lack of information
about an attack. Attack-incomplete argumentation frameworks were originally proposed by Coste-
Marquis et al. [11]—we employ their model, but use a slightly modified notation.

Definition 4. An attack-incomplete argumentation framework is a triple 〈A ,R,R?〉, where A is a
nonempty set of arguments and R and R? are disjoint subsets of A ×A . R denotes the set of all
ordered pairs of arguments between which an attack is known to definitely exist, while R? contains
all possible additional attacks not (yet) known to exist. The set of attacks that are known to never
exist is denoted by R− = (A ×A )\ (R ∪R?).

Example 5. Extending the argumentation framework from Example 2 by three possible attacks,
R? = {(a,a),(b,a),(b,c)}, yields the attack-incomplete argumentation framework 〈A ,R,R?〉 the
graph representation of which is given in Figure 2c. This incomplete framework might be the product
of several individual (subjective) views that share a common set of arguments but may have different
attacks. Figures 2a and 2b show two such individual argumentation frameworks, which are merged
into the attack-incomplete argumentation framework of Figure 2c by including those attacks that
exist in all individual views as definite attacks (R), and including attacks that exist in some but not
all individual views as possible attacks (R?).

a b

c

(a) Agent 1’s individual view

a b

c

(b) Agent 2’s individual view

a b

c

(c) Merging the views of 1 and 2

Figure 2: Attack incompleteness from merging two individual argumentation frameworks

In an attack-incomplete argumentation framework 〈A ,R,R?〉, for each possible but as yet un-
known attack in R?, when deciding whether or not the attack will be included, one obtains a standard
argumentation framework that can be seen as a completion of 〈A ,R,R?〉.

Definition 6. Let AtIAF = 〈A ,R,R?〉 be a given attack-incomplete argumentation framework. An
argumentation framework AF∗ = 〈A ,R∗〉 with R ⊆R∗ ⊆R∪R? is called a completion of AtIAF .

The number of possible completions for a given attack-incomplete argumentation framework is
clearly 2|R

?|. For R? = /0, there is no uncertainty and only one completion exists, which coincides
with the attack-incomplete framework itself. In general, however, the number of completions may
be exponential in relation to the instance’s size.



In an attack-incomplete argumentation framework AtIAF , we say that a property defined for
standard argumentation frameworks (e.g., a semantics) holds possibly if there exists a completion
AtIAF∗ of AtIAF for which the property holds, and a property holds necessarily if it holds for all
completions of AtIAF . Accordingly, we can define two variants of the verification problem in the
attack-incomplete case for each given semantics s:

s-ATT-INC-POSSIBLE-VERIFICATION (s-ATTINCPV)

Given: An attack-incomplete argumentation framework AtIAF = 〈A ,R,R?〉 and
a set S⊆A .

Question: Is there a completion AF∗ of AtIAF such that S is an s extension of AF∗?

s-ATT-INC-NECESSARY-VERIFICATION (s-ATTINCNV)

Given: An attack-incomplete argumentation framework AtIAF = 〈A ,R,R?〉 and
a set S⊆A .

Question: For all completions AF∗ of AtIAF , is S an s extension of AF∗?

Both problems are potentially harder than standard verification, since they add an existential
(respectively, universal) quantifier over a potentially exponential space of solutions. However, in
most cases we were able to prove that the complexity in fact does not increase.

We now give our proof for the complexity of s-ATTINCPV for s ∈ {CF,AD, ST}, which uses a
single critical completion to reduce the problem to standard VERIFICATION. The other proofs are
deferred to the appendix. Our results from [4] for both problems are stated in Table 1 in Section 4.

Definition 7. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework and let
S⊆A . The optimistic completion of AtIAF for S is AtIAFopt

S = 〈A ,Ropt
S 〉with Ropt

S =R∪{(a,b)∈
R? | b 6∈ S}.

Example 8. Consider again the attack-incomplete argumentation framework from Figure 2c. Its
optimistic completion for the set S = {b,c} is given in Figure 3b. Arguments in S are highlighted by
a boldfaced circle, and the possible attacks added to the set of attacks in the optimistic completion
are displayed as boldfaced arcs.

a b

c

(a) An attack-incomplete argumenta-
tion framework

a b

c

(b) The optimistic completion for the
set S = {b,c} of arguments

Figure 3: Optimistic completion of an attack-incomplete argumentation framework.

Lemma 9. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework, let S⊆A ,
and let AtIAFopt

S be the optimistic completion of AtIAF for S.
1. S is possibly conflict-free in AtIAF if and only if S is a conflict-free extension of AtIAFopt

S .
2. a ∈ S is possibly acceptable with respect to S in AtIAF if and only if a is acceptable with

respect to S in AtIAFopt
S .

3. S is possibly admissible in AtIAF if and only if S is an admissible extension of AtIAFopt
S .

4. S is possibly stable in AtIAF if and only if S is a stable extension of AtIAFopt
S .



Proof. The converse is trivial in all cases: If S fulfills a given criterion in AtIAFopt
S , this immedi-

ately yields that S possibly fulfills the criterion in AtIAF . We now prove the other direction of the
equivalence individually for each criterion:

1. If a set S of arguments is not conflict-free in AtIAFopt
S , then there must be an attack between

elements of S in Ropt
S , which must be already in R due to how Ropt

S is constructed, and which
therefore exists in every completion of AtIAF . Thus S is not a possibly conflict-free set in
AtIAF .

2. If there is some a ∈ S that is not acceptable with respect to S in AtIAFopt
S , then it is attacked

by some b ∈ A in Ropt
S and there is no attack from an element of S against b in Ropt

S . By
construction, Ropt

S does not contain any possible attacks (members of R?) that attack elements
of S, and it contains all possible attacks that can defend S. Therefore, all attacks in Ropt

S
against elements of S are already in R, so the undefended attack from b against a is in every
completion of AtIAF . Since a cannot be acceptable with respect to S in any completion of
AtIAF , a is not possibly acceptable with respect to S in AtIAF .

3. Assume that S is not an admissible extension in AtIAFopt
S , i.e., S is not conflict-free in AtIAFopt

S
or there is some a ∈ S that is not acceptable with respect to S in AtIAFopt

S . In either case,
the previous results imply that S is not conflict-free in any completion of AtIAF or a is not
acceptable with respect to S in any completion of AtIAF . Thus S is not a possibly admissible
extension in AtIAF .

4. If a set S of arguments is not stable in AtIAFopt
S , S is necessarily not conflict-free in AtIAF or

there is an a ∈A rS that is not attacked by S in AtIAFopt
S , and therefore—by construction of

AtIAFopt
S —a cannot be attacked by S in any completion of AtIAF . In both cases, there is no

completion of AtIAF for which S is stable, so S is not a possibly stable extension of AtIAF .
This completes the proof. q

Theorem 10. For s ∈ {CF,AD, ST}, s-ATTINCPV is in P.

Proof. The optimistic completion can obviously be constructed in polynomial time. As already
mentioned, the problem s-VERIFICATION can be solved in polynomial time for a given completion.
Lemma 9 then provides that the answer to s-ATTINCPV is the same as that to s-VERIFICATION for
the optimistic completion. q

3.2 Argument Incompleteness
In our second model, which we proposed previously [5], we allow uncertainty about the set of
arguments. While the total set of arguments that may take part in the argumentation is known (and
finite), there is uncertainty for some of these arguments as to whether or not they actually exist in
the argumentation—they may not be constructible given a certain knowledge base, they may not be
applicable, or they may simply not be brought forward by any agent. Note that this notion of possible
non-existence is different from that of (in)acceptability.

Definition 11. An argument-incomplete argumentation framework is a triple 〈A ,A ?,R〉, where
A and A ? are disjoint sets of arguments and R is a subset of (A ∪A ?)× (A ∪A ?). A is the set
of arguments that are known to definitely exist, while A ? contains all possible additional arguments
that are not (yet) known to exist.

Note that, in this model, there is no uncertainty regarding the attack relation—even though at-
tacks may be indirectly excluded by excluding an incident argument. As an example, consider a
discussion where each agent has a private set of arguments that they can bring forward, but they may
also choose to not introduce some of the arguments that they know of—maybe for strategic purposes.



However, for the “outcome” of the argumentation, only those arguments that were explicitly stated
by some agent are considered. Such a situation could be modeled using an argument-incomplete
argumentation framework.

Example 12. Extending the argumentation framework from Example 2 by two possible arguments
A ? = {d,e} together with an extension of the attack relation, by including the attacks (d,b), (d,c),
(b,d), and (e,c), yields the argument-incomplete argumentation framework 〈A ,A ?,R〉 the graph
representation of which is given in Figure 4c. As already discussed in Example 5, this incomplete
framework might result from merging several individual views, which agree on all attacks over those
arguments that are known to all agents but may have different argument sets. Figures 4a and 4b show
two such individual argumentation frameworks, which are then merged into the argument-incom-
plete argumentation framework of Figure 4c by including all arguments that are known in every
agent’s argumentation framework as definite arguments (A ), and including arguments that exist in
some but not in all agents’ argumentation frameworks as possible arguments (A ?). Note that there
is no choice of whether or not we include attacks: An attack is included if and only if there is at least
one agent who has this attack in her individual argumentation framework.

a b

c d

(a) Agent 1’s individual view

a b

ce

(b) Agent 2’s individual view

a b

c de

(c) Merging the views of 1 and 2

Figure 4: Argument incompleteness from merging two individual argumentation frameworks

Also for argument-incomplete argumentation frameworks, we can define completions quite sim-
ilar to those of Definition 6:

Definition 13. Let ArIAF = 〈A ,A ?,R〉 be an argument-incomplete argumentation framework. For
a set A ∗ of arguments with A ⊆A ∗ ⊆A ∪A ?, define the restriction of R to A ∗ by

R|A ∗ = {(a,b) ∈R | a,b ∈A ∗}.

Then, an argumentation framework AF∗ = 〈A ∗,R|A ∗〉 is called a completion of ArIAF .

Obviously, the total number of possible completions is again exponential—this time in the num-
ber of possible new arguments, i.e., there can be up to 2|A

?| possible completions.
Let us now define the two variants of the verification problem in argument-incomplete argumen-

tation frameworks for each given semantics s:

s-ARG-INC-POSSIBLE-VERIFICATION (s-ARGINCPV)

Given: An argument-incomplete argumentation framework ArIAF = 〈A ,A ?,R〉
and a set S⊆A ∪A ?.

Question: Is there a completion AF∗ = 〈A ∗,R|A ∗〉 of ArIAF such that S|A ∗ = S∩
A ∗ is an s extension of AF∗?

s-ARG-INC-NECESSARY-VERIFICATION (s-ARGINCNV)

Given: An argument-incomplete argumentation framework ArIAF = 〈A ,A ?,R〉
and a set S⊆A ∪A ?.

Question: For all completions AF∗ = 〈A ∗,R|A ∗〉 of ArIAF , is S|A ∗ = S∩A ∗ an s
extension of AF∗?



We now present two selected proofs that showcase how the complexity of both problems can
be different even for the same semantics. Theorem 14 is taken from our previous work [5], while
Theorem 15 presents a new result. The remaining proofs for the argument-incomplete model are
deferred to the appendix. Again, our complexity results—including those from [5] —are stated in
Table 1 in Section 4.

Theorem 14. AD-ARGINCPV is NP-complete.

Proof. NP-membership follows from the fact that, given a completion, it can be verified in poly-
nomial time whether a set S is admissible in that completion. To show NP-hardness, we reduce from
the following NP-complete problem (see the book by Garey and Johnson [19]):

EXACT-COVER-BY-3-SETS (X3C)

Given: A set B = {b1, . . . ,b3k} and a family S of subsets of B, with ‖S j‖ = 3 for
all S j ∈S .

Question: Does there exist a subfamily S ′ ⊆S of size k that exactly covers B, i.e.,⋃
S j∈S ′ S j = B?

Given an instance (B,S ) = ({b1, . . . ,b3k},{S1, . . . ,Sm}) of X3C, we construct an instance
(〈A ,A ?,R〉,S) of AD-ARGINCPV as follows:1

A = {x}∪B,

A ? = S ,

R = {(bi,x) | bi ∈ B}∪
{(S j,b j1),(S j,b j2),(S j,b j3) | S j = {b j1 ,b j2 ,b j3} ∈S }∪
{(Si,S j),(S j,Si) | Si,S j ∈S and Si∩S j 6= /0},

S = {x}∪S .

In particular, A ∪A ? contains one argument bi for every element bi ∈ B, 1≤ i≤ 3k, one argu-
ment S j for every set S j in S , 1≤ j≤m, and one additional argument x. All arguments correspond-
ing to elements of B attack x, and each argument S j attacks the three arguments corresponding to
those elements of B that belong to S j in S . Additionally, there are attacks between Si and S j if the
corresponding sets in S are not disjoint. Finally, A and S act as opponents: x belongs to both, but
the arguments corresponding to elements in B belong to A only, whereas the arguments correspond-
ing to the sets in S belong to S only. See Figure 5 for two examples of this construction: Figure 5a
shows a yes-instance of AD-ARGINCPV created from a yes-instance of X3C, and Figure 5b shows
a no-instance of AD-ARGINCPV created from a no-instance of X3C.

We claim that (B,S ) ∈ X3C if and only if (〈A ,A ?,R〉,S) ∈ AD-ARGINCPV.
(=⇒) Clearly, if (B,S ) is a yes-instance of X3C, we can add exactly those arguments Si to A

that correspond to an exact cover of B. Let A ∗ be the argument set of this completion. In A ∗, every
bi, 1≤ i≤ 3k, is attacked by exactly one argument S j, 1≤ j ≤ m, as of the exact cover. Hence, x ∈
S|A ∗ is defended against every attack. Additionally, the arguments S j in A ∗ have no attacks between
them, because the corresponding sets are pairwise disjoint, which implies that no new attacks on the
elements of S|A ∗ are introduced. But this means that S|A ∗ is admissible in 〈A ∗,R|A ∗〉.

(⇐=) If there is a completion with the argument set A ∗, this completion must defend x against
every bi, 1 ≤ i ≤ 3k. This means that there must exist a cover of the elements of B by the sets
of S . But because the arguments S j attack each other whenever they are not disjoint, this cover
must be exact; otherwise, the set S|A ∗ would not be conflict-free. Hence, there exists an exact cover
of B. q

1We slightly abuse notation and use the same identifiers for both instances; it will always be clear from the context,
though, which instance an element belongs to.



x

b1 b2 b3 b4 b5 b6

S1 S2 S3

(a) S = {{b1,b2,b3},{b3,b5,b6},{b4,b5,b6}}.
(B,S ) is a yes-instance of X3C that yields a yes-
instance of AD-ARGINCPV.

x

b1 b2 b3 b4 b5 b6

S1 S2 S3

(b) S = {{b1,b2,b3},{b3,b5,b6},{b2,b4,b6}}.
(B,S ) is a no-instance of X3C that yields a no-
instance of AD-ARGINCPV.

Figure 5: Two examples of the reduction from X3C to AD-ARGINCPV. Both X3C instances have
B = {b1, . . . ,b6}. A contains the solid arguments, the dotted arguments belong to A ?, and the thick
arguments are part of S.

Theorem 15. AD-ARGINCNV and ST-ARGINCNV are in P.

Proof. Let I =(〈A ,A ?,R〉,S) be an instance for AD-ARGINCNV. If S is not necessarily conflict-
free in 〈A ,A ?,R〉, it is not necessarily admissible in 〈A ,A ?,R〉, either. Since CF-ARGINCNV is
in P, this can be checked in polynomial time. In the following, we may assume that S is necessarily
conflict-free.

Let A0 =A ∪ (A ? \S) and C0 = 〈A0,R|A0〉, and for each argument a ∈A ?∩S, let Aa =A0∪
{a} and Ca = 〈Aa,R|Aa〉. If, for some x ∈ {0}∪ (A ?∩S), S|Ax is not admissible in the completion
Cx, we clearly have I 6∈ AD-ARGINCNV. Since the number of these completions is bounded by the
number of arguments (plus one), this can again be verified in polynomial time. We may now assume
that, in each completion Cx, S|Ax is admissible.

Note that each of these completions includes all possible attacks against the respective set S|Ax ,
because the completions include all possibly harmful arguments (members of A0) and because there
cannot be any attacks among members of S. This yields that S|A0 defends all attacks against its
elements in any completion, and, for all a ∈A ?∩S, S|Aa defends all attacks against a in any com-
pletion. Finally, since in any completion C∗ = 〈A ∗,R|A ∗〉, it holds that S|A ∗ ⊆

⋃
x S|Ax , we can

conclude that each element of S|A ∗ is acceptable with respect to S|A ∗ in C∗, so S is necessarily
admissible in 〈A ,A ?,R〉 and I ∈ AD-ARGINCNV.

For ST-ARGINCNV, the same construction as above can be used. We can again conclude that
I 6∈ ST-ARGINCNV in all cases where we had I 6∈ AD-ARGINCNV, since each stable set needs
to be admissible. In addition, it is easy to see that, in order for S to be necessarily stable, the set
S|A0 in the completion C0 as defined above needs to attack all arguments in A0 \S. However, since
A0 \S = A \S (A0 contains all arguments that are not in S) and further S|A0 is a subset of S|A ∗ for
any completion with argument set A ∗, this already yields that S|A ∗ necessarily attacks all arguments
outside of S|A ∗ in any completion, and we have I ∈ ST-ARGINCNV. q

3.3 General Incompleteness
We now combine the two given models by allowing incomplete knowledge about both the attack
relation and the set of arguments at the same time.

Definition 16. An incomplete argumentation framework is a quadruple 〈A ,A ?,R,R?〉, where A
and A ? are disjoint sets of arguments and R and R? are disjoint subsets of (A ∪A ?)× (A ∪A ?).



A (respectively, R) is the set of arguments (respectively, the set of attacks) that are known to
definitely exist, while A ? (respectively, R?) contains all possible additional arguments (respectively,
all possible additional attacks) not (yet) known to exist.

Again, an incomplete argumentation framework can be the result of merging a number of indi-
vidual argumentation frameworks. Recall that in Section 3.1 we only allowed those argumentation
frameworks to be merged that share a common set of arguments, i.e., we could aggregate only
those argumentation frameworks AF1 = 〈A1,R1〉, . . . ,AFn = 〈An,Rn〉 for which Ai = A j holds for
any i, j ∈ {1, . . . ,n}. And in Section 3.2 we restricted ourselves to those argumentation frameworks
that agree on all attacks between common arguments. Formally, this can be expressed by requiring
Ri|Ai∩A j = R j|Ai∩A j for all i, j ∈ {1, . . . ,n}.

In this section, however, we do not restrict the input anymore. Hence, we need to specify how we
can merge argumentation frameworks that were not mergeable before, namely those over possibly
different sets of arguments regarding attack incompleteness, and those over possibly different attack
relations in the case of argument incompleteness.

Definition 17. The merging operation for n individual argumentation frameworks AF1, . . . ,AFn is
defined to be the following incomplete argumentation framework 〈A ,A ?,R,R?〉: A consists of
all arguments that belong to all AF ∈ {AF1, . . . ,AFn}. A ? consists of all arguments that belong to
at least one (but not to all) AF ∈ {AF1, . . . ,AFn}. R consists of all attacks (a,b) that belong to all
AF ∈ {AF1, . . . ,AFn} containing both a and b. R? consists of all attacks (a,b) that belong to at least
one (but not to all) AF ∈ {AF1, . . . ,AFn} that contain both a and b.

a b

ce

(a) Another agent’s individual view

a b

c de

(b) Merging the argumentation frameworks of
Figures 2a, 2b, 4a, 4b, and 6a

Figure 6: Incompleteness from merging five individual argumentation frameworks

Example 18. Extending the argumentation framework from Example 2 the same way we did in
Examples 5 and 12, we obtain the incomplete argumentation framework 〈A ,A ?,R,R?〉 the graph
representation of which is given in Figure 6b. This incomplete argumentation framework is the result
of merging the individual argumentation frameworks from Figures 2a, 2b, 4a, 4b, and 6a according
to Definition 17.

The given merge operation is a strict generalisation of those in Sections 3.1 and 3.2. If we
restrict the input of the merging operation the same way we restricted the input in Section 3.1 (that
is, requiring Ai = A j for all i, j ∈ {1, . . . ,n}), we have A ? = /0 and the same merging operation as
defined there. On the other hand, if we restrict the input the same way we did in Section 3.2 (that
is, requiring Ri|Ai∩A j = R j|Ai∩A j for all i, j ∈ {1, . . . ,n}), we have R? = /0 and the same merging
operation as defined there.

The merging operation we defined above regarding the argument sets can be seen as a global
merging: If an argument is contained in all input argumentation frameworks, put it into A , otherwise
into A ?. In contrast, the merging operation regarding the attack relation is a local merging: If an
attack (a,b) is contained in all those inputs that actually have an opinion over both a and b, put it



into R, otherwise into R?. This conforms to the way in which consensual expansion as defined by
Coste-Marquis et al. [11] handles the merging of attacks.

In the general model of incomplete argumentation framework, a notion of completion can now
be defined as follows.

Definition 19. Let IAF = 〈A ,A ?,R,R?〉 be a given incomplete argumentation framework.
An argumentation framework AF∗ = 〈A ∗,R∗〉 with A ⊆ A ∗ ⊆ A ∪A ? and R|A ∗ ⊆ R∗ ⊆(
R ∪R?

)
|A ∗ is called a completion of IAF .

Finally, for each given semantics s, the variants of the verification problem adapted to incomplete
argumentation frameworks are defined analogously to those in the attack-incomplete and argument-
incomplete setting.

s-INC-POSSIBLE-VERIFICATION (s-INCPV)

Given: An incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 and a set
S⊆A ∪A ?.

Question: Is there a completion AF∗ = 〈A ∗,R∗〉 of IAF such that S|A ∗ = S∩A ∗ is
an s extension of AF∗?

s-INC-NECESSARY-VERIFICATION (s-INCNV)

Given: An incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 and a set
S⊆A ∪A ?.

Question: For all completions AF∗ = 〈A ∗,R∗〉 of IAF , is S|A ∗ = S∩A ∗ an s exten-
sion of AF∗?

Let us start with a collection of straightforward results, the proofs of which are basically the
same as the ones of the individual models (see [4] and [5]). These results are possible due to the
fact that the space of possible solutions is increased by a factor of, respectively, 2|R

?| and 2|A
?| in

the attack-incomplete and argument-incomplete models. In the combined model, the total number
of binary choices is |R?|+ |A ?|, so this factor is at most 2|R

?|+|A ?|, where the exponent is still
polynomial in the input size.2

Lemma 20. 1. CF-INCPV and CF-INCNV both are in P.

2. For s ∈ {AD, ST,CP,GR}, s-INCPV is in NP.

3. For s ∈ {AD, ST,CP,GR}, s-INCNV is in coNP.

4. PR-INCPV is in Σ
p
2 .

5. PR-INCNV is in coNP.

Proof. Given an incomplete argumentation framework IAF = 〈A ,A ?,R,R?〉 and a set S⊆A ∪
A ? of arguments, S is possibly conflict-free in IAF if and only if S|A is conflict-free in the minimal
completion 〈A ,R|A 〉 of ArIAF , which discards all additional arguments and attacks. Similary, S
is necessarily conflict-free in IAF if and only if S is conflict-free in the maximal completion 〈A ∪
A ?,R∪R?〉 of ArIAF , which includes all additional arguments and attacks. Since both the minimal
and maximal completion can clearly be constructed in polynomial time, we have P-membership for
both problems.

The remaining results of this lemma follow directly from the quantifier representations of the
given problems: In the possible case, we start with an existential quantifier, and in the necessary case

2Since excluding possible arguments may implicitly also exclude possible attacks, it may be that not all 2|R
? |+|A ? | com-

binations are feasible.



with an universal quantifier. For s ∈ {AD, ST,CP,GR} it is checkable in polynomial time whether the
given subset is an s extension, which provides the results of Items 2 and 3. The standard verification
problem for the preferred semantics belongs to coNP, hence it can be written as a universal quan-
tifier followed by a statement checkable in polynomial time. Therefore, we have two alternating
quantifiers in the case of PR-INCPV (Item 4), and two collapsing universal quantifier in the case of
PR-INCNV (Item 5). This completes the proof. q

It is easy to see that all lower bounds obtained for both individual incomplete models carry
over to the combined model. For example, consider an instance IAF = 〈A ,A ?,R,R?〉 where the
set A ? of unknown arguments is empty, then IAF is equivalent to the attack-incomplete argumen-
tation framework 〈A ,R,R?〉 and both s-INCPV and s-INCNV collapse to s-ATTINCPV and s-
ATTINCNV, respectively. An analogous comment applies to R? = /0 and the argument-incomplete
model. We conclude those results in the following corollary.

Corollary 21. 1. For s ∈ {AD, ST,CP,GR}, s-INCPV is NP-hard.

2. PR-INCPV is DP-hard.

3. PR-INCNV is coNP-hard.

4 Conclusion and Open Questions
We introduced a general model of incompleteness in argumentation frameworks, subsuming two
previous models, one focusing on attack incompleteness and the other on argument incompleteness.
We then have studied the computational complexity of variants of the verification problem with
respect to common semantics of argumentation frameworks.

Table 1: Overview of complexity results in the standard model [15, 13], the attack-incomplete
model [4], the argument-incomplete model ([5] and Theorem 15), and the combined model
(Lemma 20 and Corollary 21).

s VER ATTINCPV ATTINCNV ARGINCPV ARGINCNV INCPV INCNV

CF in P in P in P in P in P in P in P
AD in P in P in P NP-c. in P NP-c. in coNP
ST in P in P in P NP-c. in P NP-c. in coNP
CP in P in P in P NP-c. in coNP NP-c. in coNP
GR in P in P in P NP-c. in coNP NP-c. in coNP
PR coNP-c. coNP-h., in Σ

p
2 coNP-c. DP-h., in Σ

p
2 coNP-c. DP-h., in Σ

p
2 coNP-c.

Table 1 gives an overview of the complexity results for the verification problem in the standard
model and in the three incompleteness models considered in this paper. A task for future work is
to determine the exact complexity in those cases where we haven’t found tight bounds yet, e.g., for
PR-ATTINCPV. Also, we would like to analyze the complexity of possible and necessary variants
of other decision problems than verification.
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A Appendix

A.1 Proofs for the verification problems in attack-incomplete argumentation
frameworks

Definition 22. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework and
let S ⊆ A . The pessimistic completion of AtIAF for S is AtIAFpes

S = 〈A ,Rpes
S 〉 with Rpes

S = R ∪
{(a,b) ∈R? | b ∈ S}.

Lemma 23. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework, S ⊆A ,
and let AtIAFpes

S be the pessimistic completion of AtIAF for S.
1. S is necessarily conflict-free in AtIAF if and only if S is a conflict-free extension of AtIAFpes

S .
2. a ∈ S is necessarily acceptable with respect to S in AtIAF if and only if a is acceptable with

respect to S in AtIAFpes
S .

3. S is necessarily admissible in AtIAF if and only if S is an admissible extension of AtIAFpes
S .

4. S is necessarily stable in AtIAF if and only if S is a stable extension of AtIAFpes
S .

Proof. Here, the left-to-right implications are trivial: If S necessarily fulfills a criterion in AtIAF ,
it must fulfill it in particular in the pessimistic completion. We prove the other direction of the
implications individually:

1. If S is conflict-free in AtIAFpes
S , then all interior attacks among elements of S are in R−,

because if such an attack were in R, S would not be conflict-free in any completion of AtIAF ,
and if such an attack was in R?, it would have been included in Rpes

S , which contradicts our
assumption that S is conflict-free in AtIAFpes

S . Since all interior attacks among elements of S
are in R−, S is necessarily conflict-free in AtIAF .

2. If each a ∈ S is acceptable with respect to S in AtIAFpes
S , then S defends each of these argu-

ments against all their attackers. By construction, Rpes
S contains all possible attacks from R?

that attack elements of S, and no possible attacks that can defend S. Therefore, all attacks in
Rpes

S that defend elements of S against possible or definite attacks are already in R, otherwise
they could not be in Rpes

S , and are therefore in R∗ for any completion AtIAF∗. This implies
that each a ∈ S is necessarily acceptable with respect to S in AtIAF .

3. Assume that S is an admissible extension of AtIAFpes
S , i.e., S is conflict-free in AtIAFpes

S and
each a ∈ S is acceptable with respect to S in AtIAFpes

S . The previous results then imply that S
is necessarily conflict-free in AtIAF and each a ∈ S is necessarily acceptable with respect to
S in AtIAF , which immediately yields that S is necessarily admissible in AtIAF .

4. Assume that S is a stable extension of AtIAFpes
S , i.e., S is conflict-free in AtIAFpes

S and S
attacks each element b 6∈ S in AtIAFpes

S . Again, this implies that S is necessarily conflict-free
in AtIAF . Further, since Rpes

S only contains attacks by S that are already in R, S necessarily
attacks each element b 6∈ S in AtIAF . Combined, we have that S is necessarily stable in AtIAF .

This completes the proof. q

Theorem 24. For s ∈ {CF,AD, ST}, s-ATTINCNV is in P.

Proof. The pessimistic completion can obviously be constructed in polynomial time. As already
mentioned, the problem s-VERIFICATION can be solved in polynomial time for a given completion.
Lemma 23 then provides that the answer to s-ATTINCNV is the same as that to s-VERIFICATION
for the pessimistic completion. q

Definition 25. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework and
S ⊆A . The fixed completion AtIAFfix

S of AtIAF is the completion that is obtained by the following
algorithm. The algorithm defines a finite sequence (AtIAFi)i≥0 of attack-incomplete argumentation
frameworks, with the fixed completion being the minimal completion of the sequence’s last element.



1. Include definite attacks: Let AtIAF0 = AtIAF .
2. Include external conflicts: Let AtIAF1 = 〈A ,R1,R

?
1〉 with R1 = R ∪ {(a,b) ∈ R? | a 6∈

S and b 6∈ S} and R?
1 = R? \R1.

3. Include defending attacks: Let T = {t ∈A rS | ∃s ∈ S : (t,s) ∈R1} (i.e., each argument in
T necessarily attacks S) and let AtIAF2 = 〈A ,R2,R

?
2〉 with R2 = R1 ∪{(a,b) ∈ R?

1 | a ∈
S and b ∈ T} and R?

2 = R?
1 \R2.

4. Avoid arguments outside of S to be acceptable with respect to S: For the current i (initially,
i = 2), let AtIAFmin

i be the minimal completion of AtIAFi and Ti = FAtIAFmin
i

(S)rS (i.e., Ti is
the set of arguments that are not in S, but that are acceptable with respect to S in the current
minimal completion). Let AtIAFi+1 = 〈A ,Ri+1,R

?
i+1〉 withRi+1 = Ri ∪{(a,b) ∈R?

i | a ∈
S and b ∈ Ti} and R?

i+1 = R?
i \Ri+1, and set i← i+1.

5. Repeat Step 4 until no more attacks are added.
6. The fixed completion of AtIAF is AtIAFfix

S = 〈A ,Rfix
S 〉 with Rfix

S = Ri.

Definition 26. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework and
S⊆A . The unfixed completion AtIAFunf

S of AtIAF is the completion that is obtained by the follow-
ing algorithm. The algorithm defines a finite sequence (AtIAFi)i≥0 of attack-incomplete argumenta-
tion frameworks, with the unfixed completion being the minimal completion of the sequence’s last
element.

1. Include definite attacks: Let AtIAF0 = AtIAF .
2. Include attacks against S: Let AtIAF1 = 〈A ,R1,R

?
1〉 with R1 = R ∪{(a,b) ∈R? | b ∈ S}

and R?
1 = R? \R1.

3. Exclude external conflicts: Let AtIAF2 = 〈A ,R2,R
?
2〉with R2 =R1 and R?

2 =R?
1 \{(a,b)∈

R?
1 | a 6∈ S and b 6∈ S}.

4. Exclude defending attacks: Let T = {t ∈A rS | ∃s∈ S : (t,s)∈R2} (i.e., each argument in T
necessarily attacks S) and let AtIAF3 = 〈A ,R3,R

?
3〉 with R3 = R2 and R?

3 = R?
2 \{(a,b) ∈

R?
2 | a ∈ S and b ∈ T}.

5. Try to let arguments outside of S be acceptable with respect to S: Let T =A rS = {t1, . . . , tk}.
For the current i (initially, i = 3) and for each t j ∈ T , do:

(a) For S′ = S∪ {t j}, let AtIAFopt
i,S′ be the optimistic completion of AtIAFi for S′ and let

AtIAFmin
i be the minimal completion of AtIAFi.

(b) If t j is acceptable with respect to S in AtIAFopt
i,S′ , but not acceptable with respect to S

in AtIAFmin
i , let AtIAFi+1 = 〈A ,Ri+1,R

?
i+1〉 with Ri+1 = Ri ∪ {(a,b) ∈ R?

i | a ∈
S and (b, t j) ∈ Ri} and R?

i+1 = R?
i \Ri+1, and set i← i+ 1. (To accept an argument

t j that is not currently accepted by S but possibly accepted by S, include all possible
attacks by S against t j’s attackers.)

6. Repeat Step 5 until no more attacks are added.
7. The unfixed completion of AtIAF is AtIAFunf

S = 〈A ,Runf
S 〉 with Runf

S = Ri.

Lemma 27. For an attack-incomplete argumentation framework AtIAF = 〈A ,R,R?〉 and a set
S ⊆ A of arguments, the fixed completion AtIAFfix

S and the unfixed completion AtIAFunf
S can be

constructed in polynomial time.

Proof. All individual steps in both constructions can obviously be carried out in time polynomial
in the number of arguments. It remains to prove that the loops in, respectively, Step 4 and Step 5
run at most a polynomial number of times. For the fixed completion, in each execution of a loop
there is either (at least) one possible attack that is added to Ri+1, or no action is taken in which case
the loop terminates. Therefore, the number of times a loop is executed is bounded by the number
of possible attacks in the attack-incomplete argumentation framework AtIAF , which is at most n2,
where n is the number of arguments. For the unfixed completion, the only difference is the sub-
loop in Step 5, which however has a predefined number of iterations that is bounded by the number



n of arguments. Therefore, the total number of loop iterations in the construction of the unfixed
completion is bounded by n3. This completes the proof. q

Lemma 28. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework, S ⊆A ,
and let AtIAFfix

S be the fixed completion of AtIAF for S.
(1) S is a possibly complete extension of AtIAF if and only if S is a complete extension of AtIAFfix

S .
(2) S is a possibly grounded extension of AtIAF if and only if S is the grounded extension of

AtIAFfix
S .

Proof. Again, the converse is trivial in both cases. Further, if S is not an admissible extension in
AtIAFfix

S , then S is not admissible in any completion of AtIAF , due to the same arguments that we
used for the optimistic completion and, therefore, neither possibly complete nor possibly grounded
in AtIAF . So, we may assume that S is admissible in AtIAFfix

S .
(1) Assume that S is not a complete extension of AtIAFfix

S , i.e., S is not a fixed point of FAtIAFfix
S

.
We will show that this implies that S is not possibly complete in AtIAF . Since S is not a fixed point
of FAtIAFfix

S
, there is an argument b 6∈ S which is acceptable with respect to S in AtIAFfix

S . We prove
that, then, there must be some c 6∈ S for which all attackers of c are attacked by S in any completion
AtIAF∗ (c = b may or may not be the case) by individually covering all cases in which attacks are
added to Rfix

S :
All attacks from R? between arguments outside of S, which are added to Rfix

S in Step 2, cannot
make an argument b 6∈ S acceptable with respect to S: If S did not attack all attackers of an argument
before, it cannot do so after more attackers are added.

All attacks that are added in Step 3 are crucial for S to be admissible, and must therefore also
be included in R∗. In a case where multiple arguments in S attack a single attacker of S, it would
be sufficient to include one of these defending attacks, but including all of them does not make a
difference, since the criterion of being acceptable with respect to S does not distinguish between
different elements of S.

All attacks that are added in Step 4 are attacks by S against arguments that are currently accept-
able with respect to S. Since all possible attacks among arguments outside of S were already included
in Step 2, the only way to destroy acceptability of these arguments is by S directly attacking them.
Therefore, none of the attacks added in Step 4 can be omitted without making the respective argu-
ment acceptable with respect to S (again, it is not necessary to distinguish between multiple attacks
by different arguments in S against the same argument). It is possible for a given b 6∈ S to be accept-
able with respect to S in AtIAFfix

S and not in AtIAF∗, but this happens only if S attacks an attacker (or
several attackers) of b in AtIAFfix

S that would otherwise be acceptable with respect to S, and which
therefore must be acceptable with respect to S in AtIAF∗. In either case, if an argument outside of S
is acceptable with respect to S in AtIAFfix

S , then some argument outside of S must be acceptable with
respect to S in each completion AtIAF∗ of AtIAF in which S is admissible. Therefore, if S is not a
complete extension of AtIAFfix

S , it is not a complete extension of any completion AtIAF∗ of AtIAF ,
and therefore not a possibly complete extension of AtIAF .

(2) Let AtIAF∗ be an arbitrary completion of AtIAF and assume that S is its grounded extension.
We prove that, then, S is also the grounded extension of AtIAFfix

S . Let Ai = F i
AtIAF∗( /0) and Bi =

F i
AtIAFfix

S
( /0), where F i is the i-fold composition of the respective characteristic function F . Since S

is grounded in AtIAF∗, it is complete in AtIAFfix
S due to our previous result, and it holds that Ai ⊆ S

for all i ≥ 0 and there exists a j ≥ 0 such that for all i ≥ j, it holds that Ai = S. We will prove that
Ai ⊆ Bi ⊆ S for all i≥ 0. Combined, these statements show that there exists some j such that Bi = S
for all i≥ j, which is equivalent to S being the grounded extension of AtIAFfix

S .
First, we prove that Ai⊆Bi for all i≥ 0. For i= 0, we have Ai =Bi = /0. For i= 1, Ai (respectively,

Bi) is the set of all unattacked arguments in AtIAF∗ (respectively, in AtIAFfix
S ). We know that A1 ⊆ S.

Since the fixed completion does not include any possible attacks against elements of S, all a ∈ S



that are unattacked in AtIAF∗ are unattacked in AtIAFfix
S , too, which proves A1 ⊆ B1. If we now

have Ak ⊆ Bk for some k ≥ 1, this implies Ak+1 ⊆ Bk+1: Assume that this were not true, i.e., that
Ak ⊆ Bk, but there is an argument a ∈ Ak+1 with a 6∈ Bk+1. Then, a is acceptable with respect to Ak
in AtIAF∗, but not acceptable with respect to Bk in AtIAFfix

S . We know that—since Ak+1 ⊆ S—no
possible attacks against Ak+1 (and in particular, against a) are included in AtIAFfix

S and all possible
defending attacks by arguments in Ak+1 against arguments outside of S are included in AtIAFfix

S .
Further, no element of S attacks a in AtIAFfix

S , since a ∈ S and S is complete in AtIAFfix
S . Therefore,

a is acceptable with respect to Ak in AtIAFfix
S ; otherwise it could not be acceptable with respect to

Ak in AtIAF∗. Now, the only way for a to not be acceptable with respect to Bk in AtIAFfix
S is if there

were some b ∈ Bk rAk that necessarily attacks a. Then there would have to be a defending attack
by an argument d ∈ Ak against b in AtIAF∗, since a is acceptable with respect to Ak in AtIAF∗. This
implies that b 6∈ S, since S is conflict-free in AtIAF∗. Finally, since (d,b) is a possible (or even a
necessary) defending attack by an element of S against b 6∈ S, (d,b) ∈ Rfix

S holds by construction
of the fixed completion, which contradicts that Bk is admissible in AtIAFfix

S . Therefore, a must be
acceptable with respect to Bk in AtIAFfix

S , which proves that Ak+1 ⊆ Bk+1.
Now we prove that Bi ⊆ S for all i ≥ 0: Assume that Bi 6⊆ S for some i ≥ 0. Then it also holds

that Gfix
S 6⊆ S for the grounded extension Gfix

S of AtIAFfix
S . It further holds that S ⊂ Gfix

S , since there
exists a j ≥ 0 such that S ⊆ Bi for all i≥ j, as established before. However, this contradicts the fact
that S is complete in AtIAFfix

S , since the grounded extension Gfix
S of AtIAFfix

S is its least complete
extension with respect to set inclusion and the complete set S cannot be a strict subset of Gfix

S . This
completes the proof. q

Lemma 29. Let AtIAF = 〈A ,R,R?〉 be an attack-incomplete argumentation framework, S ⊆A ,
and let AtIAFunf

S be the unfixed completion of AtIAF for S.
(1) S is a necessarily complete extension of AtIAF if and only if S is a complete extension of

AtIAFunf
S .

(2) S is a necessarily grounded extension of AtIAF if and only if S is the grounded extension of
AtIAFunf

S .

Proof. Again, the left-to-right implication is trivial in both cases. We prove the other direction of
the implications individually. First, if S is not necessarily admissible in AtIAF , S is not admissible
either (and therefore, neither complete nor grounded) in AtIAFunf

S , because AtIAFunf
S includes all

possible attacks against arguments in S and excludes all defending attacks by arguments in S. We
may therefore assume that S is necessarily admissible in AtIAF .

(1) Assume that S is not necessarily complete in AtIAF . We prove that S is not complete in
AtIAFunf

S : Since S is necessarily admissible but not necessarily complete in AtIAF , there is a com-
pletion AtIAF∗ of AtIAF in which there exists some b′ ∈A rS that is acceptable with respect to S
in AtIAF∗. Obviously, this means that b′ is possibly acceptable with respect to S in AtIAF . We will
prove that, after each step of the algorithm, if there is some b∈A rS that is acceptable with respect
to S in AtIAFi, then there also is some c ∈ A r S that is acceptable with respect to S in AtIAFi+1
(c = b may or may not be the case).
• After Step 1, b′ is possibly acceptable with respect to S in AtIAF0, since AtIAF0 = AtIAF .
• After Step 2, b′ is possibly acceptable with respect to S in AtIAF1, because including attacks

against S has no influence on whether S possibly attacks all attackers of b′.
• After Step 3, b′ is possibly acceptable with respect to S in AtIAF2, because excluding attacks

between arguments in A rS can only make it more likely for S to attack all attackers of b′.
• Step 4 has no effect on instances where S is necessarily admissible, because there are no

possible defending attacks by S against A rS that could be excluded, since in such an instance
S necessarily defends itself against all possible attacks.
• The only way for an argument b ∈A rS to no longer be possibly acceptable with respect to

S in AtIAFi+1 after an iteration of Step 5 is if an attack by some a ∈ S against b is included. If



this is the case, the defended argument t j is possibly acceptable with respect to S in AtIAFi+1.
Either way, the previously possibly acceptable argument b or the new argument t j is possibly
acceptable with respect to S in AtIAFi+1.

After Step 4, the only attacks that are not yet definite are attacks by arguments in S against arguments
in A r S. Therefore, the only way for the condition in Step 5b to be met—i.e., t j is possibly, but
not currently accepted by S—is if there is an attack (a,b) ∈R?

i with a ∈ S and (b, t j) ∈Ri, which
proves that AtIAFi+1 6= AtIAFi. So, when the algorithm terminates in Step 7, we know that there is
an argument b ∈ A r S that is possibly acceptable with respect to S in AtIAFi (as proven earlier)
and that is also acceptable with respect to S in AtIAFi’s minimal completion, because otherwise
the condition in Step 5b would have been met. Since the unfixed completion is AtIAFi’s minimal
completion, this establishes that there is an argument in A r S that is acceptable with respect to S
in AtIAFunf

S , which implies that S is not complete in AtIAFunf
S , and concludes the proof of the first

item.
(2) Assume that S is the grounded extension of AtIAFunf

S . We prove that, then, S is the grounded
extension of all completions of AtIAF . Let AtIAF∗ be an arbitrary completion of AtIAF and let Ai =
F i

AtIAF∗( /0) and Bi = F i
AtIAFunf

S
( /0), where F i is the i-fold composition of the respective characteristic

function F . Since S is grounded in AtIAFunf
S , it is complete in AtIAF∗ due to our previous result, and

it holds that Bi ⊆ S for all i ≥ 0 and there exists a j ≥ 0 such that for all i ≥ j, it holds that Bi = S.
We will prove that Bi ⊆ Ai ⊆ S for all i≥ 0. Combined, these statements show that there exists some
j such that Ai = S for all i≥ j, which is equivalent to S being the grounded extension of AtIAF∗.

First, we prove that Bi⊆Ai for all i≥ 0: For i= 0, we have Ai =Bi = /0. For i= 1, Ai (respectively,
Bi) is the set of all unattacked arguments in AtIAF∗ (respectively, in AtIAFunf

S ). We know that B1⊆ S.
Since the unfixed completion includes all possible attacks against elements of S, all a ∈ S that are
unattacked in AtIAFunf

S are necessarily unattacked, and therefore unattacked in AtIAF∗, too, which
proves B1 ⊆ A1. If we now have Bk ⊆ Ak for some k ≥ 1, this implies Bk+1 ⊆ Ak+1: Assume that
this is not true, i.e., that Bk ⊆ Ak, but there is an argument b ∈ Bk+1 with b 6∈ Ak+1. Then, b is
acceptable with respect to Bk in AtIAFunf

S , but not acceptable with respect to Ak in AtIAF∗. Recall
that all possible attacks against Bk+1 (and in particular, against b) are included in AtIAFunf

S and
no possible defending attacks by arguments in Bk+1 against arguments outside of S are included
in AtIAFunf

S . Therefore, since b is acceptable with respect to Bk ⊆ S in AtIAFunf
S , it is necessarily

acceptable with respect to Bk and, in particular, acceptable with respect to Bk in AtIAF∗. Now, the
only way for b to not be acceptable with respect to Ak in AtIAF∗ is if there were some a ∈ Ak rBk
that possibly attacks b. Then there would have to be a defending attack by an argument d ∈ Bk
against a in AtIAFunf

S , since b is acceptable with respect to Bk in AtIAFunf
S . This implies that a 6∈ S,

since S is conflict-free in AtIAFunf
S . Finally, since (d,a) is a necessary attack, it holds in particular

that (d,a) ∈R∗, which contradicts that Ak is admissible in AtIAF∗. Therefore, b must be acceptable
with respect to Ak in AtIAF∗, which proves that Bk+1 ⊆ Ak+1.

Now we prove that Ai ⊆ S for all i ≥ 0: Assume that Ai 6⊆ S for some i ≥ 0. Then it also holds
that G∗ 6⊆ S for the grounded extension G∗ of AtIAF∗. It further holds that S⊂G∗, since there exists
a j ≥ 0 such that S ⊆ Ai for all i ≥ j, as established before. However, this contradicts the fact that
S is complete in AtIAF∗, since the grounded extension G∗ of AtIAF∗ is its least complete extension
with respect to set inclusion [15] and cannot be a strict subset of the complete extension S. This
completes the proof. q

Theorem 30. For s ∈ {CP,GR}, both s-ATTINCPV and s-ATTINCNV are in P.

Proof. Lemma 27 provides polynomial-time constructability for the fixed and unfixed completion.
Given a completion, s-VERIFICATION can be solved in polynomial time, and Lemmas 28 and 29
imply that the answer to, respectively, s-ATTINCPV and s-ATTINCNV is the same as that to s-
VERIFICATION for the respective completion. q



Theorem 31. The problem PR-ATTINCPV is in Σ
p
2 and coNP-hard, and PR-ATTINCNV is coNP-

complete.

Proof. In PR-ATTINCPV one has to check whether, given an attack-incomplete argumentation
framework AtIAF = 〈A ,R,R?〉 and a set S ⊆ A , there is a completion AtIAF∗ = 〈A ,R∗〉 such
that S is preferred in AtIAF∗. To check whether S is preferred in AtIAF∗, one has to check whether
for all sets S′ ⊆A with S ⊂ S′ it holds that S is an admissible extension and S′ is not an admissible
extension. Thus this problem is in Σ

p
2 .

To see that PR-ATTINCNV is in coNP, consider the complementary problem. Here one has to
check whether there is a completion AtIAF∗ of the given attack-incomplete AtIAF such that the
given set S is not preferred. To see this, it is enough to check whether there is a strict superset
of S that is admissible or whether S itself is not admissible. Since admissibility can be checked in
polynomial time, the complement of PR-ATTINCNV is in NP and hence PR-ATTINCNV is in coNP.

On the other hand, coNP-hardness for both problems follows by a direct reduction from the orig-
inal PR-VERIFICATION problem, which is coNP-complete [13]. For a given instance (〈A ,R〉,S)
of PR-VERIFICATION, the constructed instance of both PR-ATTINCPV and PR-ATTINCNV is
(〈A ,R, /0〉,S). The only completion of 〈A ,R, /0〉 is 〈A ,R〉. Now, it is easy to see that (〈A ,R〉,S)∈
PR-VERIFICATION if and only if (〈A ,R, /0〉,S) ∈ PR-ATTINCPV, which in turn is equivalent to
(〈A ,R, /0〉,S) ∈ PR-ATTINCNV. q

A.2 Proofs for the verification problems in argument-incomplete argumenta-
tion frameworks

Proposition 32. PR-ARGINCPV is coNP-hard and PR-ARGINCNV is coNP-complete.

Proof. We show coNP-hardness by a reduction from the coNP-complete problem PR-VER-
IFICATION. Let (〈A ,R〉,S) be a given instance of PR-VERIFICATION, and construct from it
(〈A , /0,R〉,S), considered as an instance of both PR-ARGINCPV and PR-ARGINCNV. In the
argument-incomplete argumentation framework, there are no arguments that can possibly join the
discussion. Hence, the only completion in both cases is the argumentation framework 〈A ,R〉. Now,
it is easy to see that

(〈A ,R〉,S) ∈ PR-VERIFICATION

⇐⇒ (〈A , /0,R〉,S) ∈ PR-ARGINCPV
⇐⇒ (〈A , /0,R〉,S) ∈ PR-ARGINCNV.

This completes the proof. q

Theorem 33. For s∈ {ST,CP,GR}, s-ARGINCPV is NP-complete, and PR-ARGINCPV is NP-hard.

Proof. Membership of the three former problems in NP is clear. It remains to show hardness for
all four problems. We do this by showing that the reduction used in Theorem 14 also works for those
four problems. To this end, we will prove that

(〈A ,A ?,R〉,S) ∈ AD-ARGINCPV
⇐⇒ (〈A ,A ?,R〉,S) ∈ ST-ARGINCPV
⇐⇒ (〈A ,A ?,R〉,S) ∈ PR-ARGINCPV
⇐⇒ (〈A ,A ?,R〉,S) ∈ GR-ARGINCPV
⇐⇒ (〈A ,A ?,R〉,S) ∈ CP-ARGINCPV



holds for the instance (〈A ,A ?,R〉,S) constructed in the proof of Theorem 14.
(〈A ,A ?,R〉,S) ∈ AD-ARGINCPV implies (〈A ,A ?,R〉,S) ∈ ST-ARGINCPV: If S|A ∗ is ad-

missible for a completion 〈A ∗,R|A ∗〉, it in particular is conflict-free. We know from the reduction
that 〈A ∗,R|A ∗〉 only contains arguments S j that do not attack each other, and all these arguments
belong to S|A ∗ . Hence, the only arguments outside of S|A ∗ are the bi’s. But all of them are attacked,
as explained in the proof of Theorem 14. Therefore, S|A ∗ is a stable extension of 〈A ∗,R|A ∗〉.

(〈A ,A ?,R〉,S) ∈ PR-ARGINCPV implies (〈A ,A ?,R〉,S) ∈ GR-ARGINCPV: If S|A ∗ is pre-
ferred for a completion 〈A ∗,R|A ∗〉, it is admissible, and thus the only arguments that are not at-
tacked by any other argument are those S j that correspond to an exact cover. This means for the
characteristic function of this completion 〈A ∗,R|A ∗〉 that the output of the first step is the set that
contains exactly those S j. In the second step, we add argument x, because all those S j defend x
against all attacks from the arguments bi. No new arguments are added in step three. Therefore, this
set is the grounded extension of the argumentation framework 〈A ∗,R|A ∗〉. But this set is exactly
the set S|A ∗ . Hence, S|A ∗ is the grounded extension of 〈A ∗,R|A ∗〉.

It is easy to see the three remaining implications needed to prove these five statements equivalent:
Every stable set is preferred, every grounded set is complete, and every complete set is admissible.
This completes the proof. q

We now strengthen the NP-hardness lower bound for PR-ARGINCPV given in Theorem 33 to
DP-hardness. The following lemma due to Wagner [32] gives a sufficient condition for proving
hardness for DP.

Lemma 34 (Wagner [32]). Let A be some NP-hard problem, and let B be any set. If there exists a
polynomial-time computable function f such that, for any two instances z1 and z2 of A for which
z2 ∈ A implies z1 ∈ A, we have

(z1 ∈ A and z2 /∈ A) ⇐⇒ f (z1,z2) ∈ B,

then B is DP-hard.

Theorem 35. PR-ARGINCPV is DP-hard.

Proof. We will use Wagner’s lemma to show DP-hardness: Let PR-ARGINCPV be the set B from
Wagner’s lemma, and let X3C be the NP-complete problem A in that lemma. Let z1 and z2 be two
instances of X3C such that z2 ∈ X3C implies z1 ∈ X3C. We construct an instance (〈A ,A ?,R〉,S)
of PR-ARGINCPV as follows:

• Construct an instance (〈A1,A
?

1 ,R1〉,S1) from the X3C instance z1 exactly as in the proof of
Theorem 14.

• The construction of an instance (〈A2,A
?

2 ,R2〉,S2) from the X3C instance z2, however, is
obtained as the composition of two reductions: Since PR-VERIFICATION is coNP-complete
and X3C is NP-complete, there exists a reduction f such that z2 /∈ X3C if and only if f (z2) ∈
PR-VERIFICATION. Now, letting g be the reduction from Proposition 32, we have z2 /∈ X3C
if and only if g( f (z2)) ∈ PR-ARGINCPV.

• Given two instances of PR-ARGINCPV, (〈A1,A
?

1 ,R1〉,S1) and (〈A2,A
?

2 ,R2〉,S2), let
(〈A ,A ?,R〉,S) = (〈A1 ∪A2,A

?
1 ∪A ?

2 ,R1 ∪R2〉,S1 ∪ S2) if (A1 ∪A ?
1 )∩ (A2 ∪A ?

2 ) = /0
(otherwise, simply rename the elements in one instance). Hence, this new instance consists of
two disconnected argument-incomplete argumentation frameworks.

This completes the reduction. We claim that (z1 ∈ X3C and z2 /∈ X3C) if and only if
(〈A ,A ?,R〉,S) ∈ PR-ARGINCPV.

(=⇒) If z1 ∈ X3C and z2 /∈ X3C, then (〈A1,A
?

1 ,R1〉,S1) and (〈A2,A
?

2 ,R2〉,S2) both are yes-
instances of PR-ARGINCPV. Thus we must have a completion for the first and a completion for the



second argument-incomplete argumentation framework such that S1 restricted to the arguments in
this first completion and S2 restricted to the arguments in the second completion are preferred in
their respective completion. But then, using the same completions for each part of 〈A ,A ?,R〉, we
have that S restricted to those arguments must be preferred in this argumentation framework. This
is true because no new attacks are introduced in 〈A ,A ?,R〉 and, therefore, neither are any new
conflicts added nor do the elements of S have to be defended by any other arguments than before.
Hence, (〈A ,A ?,R〉,S) is a yes-instance of PR-ARGINCPV.

(⇐=) Conversely, assume that (〈A ,A ?,R〉,S) is a yes-instance of PR-ARGINCPV, and assume
further that (〈Ai,A ?

i ,Ri〉, Si) is a no-instance of PR-ARGINCPV for some i ∈ {1,2}. Then there is
no completion 〈A ∗

i ,Ri|A ∗i 〉 of 〈Ai,A ?
i ,Ri〉 such that Si|A ∗i is preferred in it. That means that for

every completion 〈A ∗
i ,Ri|A ∗i 〉, Si|A ∗i either is not conflict-free, or is not admissible, or that there

exists a superset of Si|A ∗i in 〈A ∗
i ,Ri|A ∗i 〉 that is admissible. We consider these cases separately:

1. If Si|A ∗i is not conflict-free in 〈A ∗
i ,Ri|A ∗i 〉, this conflict also exists in S|A ∗ for any completion

〈A ∗,R|A ∗〉 of 〈A ,A ?,R〉 with A ∗∩ (Ai∪A ?
i ) = A ∗

i .

2. If Si|A ∗i is not admissible in 〈A ∗
i ,Ri|A ∗i 〉, there must be an undefended attack. However, by

the same argument as above, this attack is still undefended in any completion 〈A ∗,R|A ∗〉 of
〈A ,A ?,R〉 with A ∗∩ (Ai∪A ?

i ) = A ∗
i .

3. If there is a superset of Si|A ∗i preventing it from being preferred in 〈A ∗
i ,Ri|A ∗i 〉, this superset

translates into a superset of S|A ∗ for any completion 〈A ∗,R|A ∗〉 of 〈A ,A ?,R〉 with A ∗∩
(Ai∪A ?

i ) = A ∗
i , thus also preventing S|A ∗ from being preferred in 〈A ∗,R|A ∗〉.

Hence, none of these cases can happen, because (〈A ,A ?,R〉,S) is a yes-instance of PR-
ARGINCPV. But this means that Si|A ∗i is a preferred extension of a completion 〈A ∗

i ,Ri|A ∗i 〉 of
〈Ai,A ?

i ,Ri〉, a contradiction. q


