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Abstract

Several methods exist for making collective decisions on a set of variables when voters possibly
have preferential dependencies. None is based on approval voting. We define a family of rules
for approval-based voting on combinatorial domains, where voters cast conditional approval
ballots, allowing them to approve values of a variable conditionally on the values of other
variables. We study three such rules. The first two generalize simple multiwinner approval
voting and minimax approval voting. The third one is an approval-based version of sequential
voting on combinatorial domains. We study some properties of these rules, and compare their
outcomes.

1 Introduction
Collective decisions on combinatorial domains cover a large variety of common situations, such as
finding a set of dates for a series of meetings, electing a committee of representatives, adopting
or rejecting each of a series of yes-no questions about common facilities to be built, or finding a
common set of movies for a group to watch together.

Several methods have been proposed and studied for making such collective decisions. An
important source of problems is when voters have preferential dependencies between variables:
someone may be willing to attend the second meeting on a Friday provided that the first meeting is
not already on a Friday; someone may want Ann to be elected at the department council only if both
Betty and Charles are not elected too (they all belong to the same research group and would have
too much joint power); I may want to watch one comedy and one drama, but not two films of the
same genre.

It has been argued many times that making decisions independently on each variable cannot take
such preferential dependencies into account. If we want to deal with them, we have to allow voters
to express these dependencies. Several classes of methods have been proposed and studied (see [24]
for a recent survey). Direct methods work by asking voters a one-shot report of their preferences,
expressed in some language that allows preferential dependencies to be (at least partly) specified;
sequential methods proceed by eliciting the voters’ preferences on a first (fixed) variable, decide its
value, broadcast it, then eliciting the voters’ preferences on a second variable conditionally on the
value chosen for the first one, and so on.

Most of the existing methods for voting in combinatorial domains assume that voters express,
implicitly or explicitly, rankings over the values of variables, or else cardinal utility functions. Both
may induce a cognitive burden to the voters, as well as an increased complexity in communication
and computation. On the other hand, in simple domains, approval voting is a well-studied method
for elections, where each voter may approve of any number of candidates, and the candidate with
the largest number of approvals wins. Approval voting has nice properties, and is easy to use and
understand [9].

Approval voting can be extended to combinatorial domains, and especially to committee elec-
tions. The simplest way, if we want to select k candidates, consists in selecting those with the largest
k approvals. Other ways of extending approval voting to multiple winner elections have been con-
sidered and are surveyed in [22]. Similar methods can be used for multiple referenda, as argued in
[2], due to the structural similarity of committee elections and multiple referenda: in both cases, a
decision has to be made over a set of possible subsets (of candidates in one case, of binary issues
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in the other case) subject to feasibility constraints (such as the number of winners in committee
elections, or budget constraints in multiple referenda). However, the methods we know of for multi-
winner approval voting do not allow voters to express conditional preferences; they must vote as if
they had separable preferences.

We propose a family of methods for reconciliating the simplicity of approval voting with the
possibility for voters to express preferential dependencies. In Section 3 we define conditional ap-
proval ballots where voters approve some values of variables conditionally on the value of some
other variables. In Section 4 we define two first rules based on conditional approval ballots, where
the winning alternative minimizes respectively the maximum or the sum, over all voters, of the
number of ‘disagreements’, and we show that these rules generalize simple (or ‘minisum’) approval
voting and minimax approval voting [12]. In Section 5 we define sequential conditional approval
voting: given a fixed order of variables, the voters approve some of their values, one variable after
the other. We conclude in Section 6.

2 Background and related work
In a committee (or multi-winner) election, there is a set of candidates C, a set of voters N , each
casting a vote (or a ballot), and a number k of winners (or sometimes a more flexible constraint,
or even no constraint at all such as in Hall-of-Fame elections). In multiwinner approval ballotting,
each voter casts an approval ballot where she approves as many candidates as she wants (in some
variants, there are also constraints on the number of approvals on a ballot).

In simple multiwinner approval voting, the winners are simply the k candidates approved most
often. Simple approval voting can be criticized for failing to guarantee a sufficient level of fairness
or representativeness, and a number of other rules that map a collection of approval ballots to a
set of winners have been studied; see [22] for a survey. One prominent such rule is minimax ap-
proval voting, where the elected committee minimizes the maximum, over all voters, of the number
of ‘disagreements’ (i.e., formally, the Hamming distance) between the voter’s ballot and the cho-
sen committee [12]. Unlike simple approval voting, minimax approval voting is NP-hard [30] and
manipulable, but it can be efficiently approximated [26, 16, 15]; see [29] for its parameterized com-
plexity. [2] generalize these two rules to other aggregation functions, and [5] extend them beyond
approval ballots.

Other multiwinner approval voting rules, such as proportional or satisfaction approval voting
[11], have been recently studied from the point of view of computation [4] or of their properties
[3]. A number of works address the computation of full proportional representation with approval
ballots, two good representatives being [31] and [33]. The computational aspects of strategic be-
haviour for single- and multi-winner approval voting are adressed in [28] and in [6]. The properties
of multiwinner voting rules are studied more generally in [20].

Combinatorial domains are sets of alternatives consisting of the Cartesian product (or some-
times, a subset of it) of finite domain values corresponding to issues, variables, attributes, seats, or
even individuals (in the case of committee elections). The main difficulty in voting in combinatorial
domains is the presence of preferential dependencies. To deal with them, some approaches make
use of compact representations, such as [32, 17, 27]. Some others make use of sequential voting,
variable after variable, such as [23, 19, 1]. None of them makes use of approval ballots. See [24] for
a recent overview of voting in combinatorial domains.

3 Conditional approval ballots
Let X = {X1, . . . , Xp} be a set of variables, each of them associated with a finite value domain
Di. Let D = D1 × . . . ×Dp, and D∗ ⊆ D be a set of feasible alternatives (by default, D∗ = D).
A group of voters have to decide of a common outcome in D∗. When Xi is binary, we will usually
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take Di = {xi, xi}. For J ⊆ {1, . . . , p} we note DJ = ×j∈JDj , and for d = (d1, . . . , dp) ∈ D,
dJ denotes the tuple d projected to the indices in J .

For instance, in a designated-post committee election [7], X is a set of different seats to be filled
and their domains are the respective sets of candidates for each position (an alternative is feasible
only if it does not assign the same candidate to more than one seat). In a standard committee
election where the size of the committee is fixed to k, X can be identified with the set of candidates,
with binary domains {elected, not elected}, and an alternative is feasible iff k variables have value
‘elected’. In a multiple referendum [10], X is a set of binary issues.

As a running example, a group of friends have to decide on a common menu. The variables
are X1 (main dish), with D1 = {m, f, v} (meat, fish, vegetarian dish), and X2 (drink), with D2 =
{r, w, b} (red wine, white wine, beer).

The most common way of using approval ballotting in such domains consists in asking voters
to approve values for each variable separately. This does not require much communication, but
it is not possible for voters to report conditional preferences. For instance, a voter may approve
{m, f} ⊆ D1 and {r, w} ⊆ D2 but cannot express that he approves the red wine only if the main
dish collectively chosen is meat.

One could also think of asking voters to specify all combinations of values they approve (possi-
bly in a compact way by means of a propositional formula). Here, preferential dependencies can be
expressed, but the communication is costly, and moreover, a problem is that once a voter obtains a
value he does not like for a variable, his opinion about the other variables does not count. Assume
for instance that a voter hates fish and beer, and wants red wine with meat. It is reasonable to expect
that he approves the set of menus {mr, vw, vr}, and disapprovesmw,mb, fr, fw, fb, vb. However,
if the collective decision turns out to give the value fish to X1, our voter won’t have a chance to
express that he still does not want to drink beer.

A trade-off between these two (extreme) methods consists in allowing voters to approve sets of
values for each variable, conditioned on the value of some other variables.

Definition 1. A conditional approval (CA) ballot over variables X1, . . . , Xp with domains
D1, . . . , Dp is a pair

B = 〈G, {Ai | i = 1, . . . , p}〉

where G is a directed graph over {X1, . . . , Xp}, and for each i, Ai is a set of conditional approval
statements {u : ai(u)|u ∈ DParG(Xi)}, where ai(u) ⊆ Di, and ParG(Xi) is the set of parents of
Xi in G. B↓Xi|u = ai(u) denotes the projection of B over Xi conditioned by u.

We say that B is acyclic if G is acyclic. B is a separable CA ballot if G has no edges.

Most often, we will alleviate the notation and only write the CA statements (and not the graph)
when we specify a CA ballot. Also, we omit some curly brackets when it cannot lead to any confu-
sion (in particular, for singletons).

Definition 2. Given an CA ballot B and an assignment d = (d1, . . . , dp) ∈ D1× . . .×Dp, we say
that d disagrees with B on variable Xi if di /∈ B↓Xi|dU , where U = ParG(Xi). The disagreement
of d with respect toB, denoted by δ(d, B), is the number of variablesXi on which d disagrees with
B.

Example 1. Consider a voter expressing the CA ballot

B = 〈[X1 → X2], {{f, v}; m : r; f : w; v : {r, w}}〉

This voter has a preference for not having meat: B↓X1 = {f, v}; but in case the collective decision
is to have meat, she still has her word to say about the drink, and approves (only) the red wine:
B↓X2 | m = {r}. If the collective decision is the vegetarian dish, then she approves both the red and
the white wine: B↓X2 | v = {r, w}. Now, d = mr disagrees with B on X1 but not X2, therefore
δ(d, B) = 1 (she is not satisfied with the choice of the dish, but is satisfied by the choice of the
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drink given that the dish is meat). Likewise, we have δ(fw,B) = δ(vr,B) = δ(vw,B) = 0 (she is
satisfied by the choice of the dish and the choice of the drink conditional on the value of the dish),
δ(fr,B) = δ(fb,B) = δ(vb,B) = 1, and δ(mw,B) = δ(mb,B) = 2.

Equivalently, p−δ(·, B) can be seen as a utility function which counts the number of conditional
preferences satisfied. Thus, even though voters are using approval-like ballots, the preferences they
express are not dichotomous.

Observation 1. If B is acyclic and ai(u) 6= ∅ for all i ≤ p and u ∈ DParG(Xi), then δ(d, B) = 0
for some d ∈ D.

This, however, is no longer true if B is not acyclic: let for instance B = {x1 : x2, x1 : x2, x2 :
x1, x2 : x1}, then for every d ∈ D we have δ(d, B) = 1.

Conditional approval ballots have a clear resemblance with CP-nets [8]. For the sake of simplic-
ity, assume that variables are binary and let N(B) the CP-net obtained by replacing all conditional
approval sets u : ai(u) by u : ai(u) � ai(u), with xi = xi. The semantics of B and N(B) are
different: if �N(B) is the partial order over D induced from N(B), and �B the order defined by
d �B d′ if δ(d, B) < δ(d′, B), then �B and �N(B) are incomparable:

Observation 2. There exists B and d,d′ such that d �B d′ and d′ �N(B) d.

This can be seen on this example: X = {X1, X2, X3}; B = {x1, x1 : x2, x1 : x2, x1x2 : x3,
x1x2 : x3, x1x2 : x3, x1x2 : x3}. We have x1x2x3 �N(B) x1x2x3, because N(B) contains
x1 � x1, however x1x2x3 ≺B x1x2x3, because δ(x1x2x3, B) = 1 < δ(x1x2x3, B) = 2.

Note that δ(·, B) is a function from D to [0, p], but not all functions from D to [0, p] can be
expressed by a CA ballot; this can be seen by a simple counting argument. Therefore, assuming that
a voter’s preferences are representable by a CA ballot is a domain restriction.

4 Conditional minisum and minimax
Definition 3. An n-voter conditional approval profile is a collection P = 〈B1, . . . , Bn〉 of CA
ballots. It is separable if every Bi is a separable CA ballot. A CA irresolute rule is a function
mapping any CA profile to a nonempty subset of D∗.

Resolute rules can be obtained by combining an irresolute rule with a tie-breaking mechanism:
if F is an irresolute rule and T is a tie-breaking mechanism induced by a fixed priority ranking over
D∗, then FT is the composition of F by T . (Note that T is a relation over an exponentially large
set, and thus should be represented in some compact way; this has no impact in our results.) We
now define two specific rules.

4.1 Conditional minisum
Definition 4. Given a CA profile P = 〈B1, . . . , Bn〉, the conditional minisum rule outputs the
outcomes that minimize the total number of disagreements over all voters:

CondMiniSum(P ) = argmind∈D∗

n∑
i=1

δ(d, Bi)

Example 2. Let D∗ = D = {m, f, v} × {r, w, b} and let P be the following 19-voter CA profile;
the number on the top row denotes the number of voters; for instance, 5 voters express the CA ballot
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{{m, f},m : r, f : w, v : {r, w}}. Note that the CA ballots of the second column are separable.

5 4 4 3 3
{m, f} m {m, f, v} {f, v} v
m : r m : b m : {r, w} m : r m : b
f : w f : b f : w f : w f : b

v : {r, w} v : b v : {r, b} v : {r, w} v : {r, w, b}

The table below gives the disagreement values for each group of voters, and the total disagree-
ment value.

mr mw mb fr fw fb vr vw vb
5 0 1 1 1 0 1 1 1 2
4 1 1 0 2 2 1 2 2 1
4 0 0 1 1 0 1 0 1 0
3 1 2 2 1 0 1 0 0 1
3 2 2 1 2 2 1 0 0 0

total 13 21 18 26 14 19 13 17 17

and we have CondMiniSum(P ) = {mr, vr}.

If P is separable, then the outcome of CondMiniSum(P ) can be obtained simply by decom-
posing the vote into a series of standard approval votes, variable by variable. Let C be a set of
candidates; a (standard) approval profile is a collection of approval ballots (A1, . . . , An) where
Ai ⊆ C for each i; the (standard) approval rule App maps any approval profile to a winner (or a set
of tied winners), and is defined by App(A1, . . . , An) = argmaxc∈C |{i : c ∈ Ai}|.

Observation 3. If P = 〈B1, . . . , Bn〉 be a separable CA profile. Then CondMiniSum(P ) =

App(P ↓X1)× . . .×App(P ↓Xp), where P ↓Xi = (B↓Xi

1 , . . . , B↓Xi
n ).

In particular, if all variables are binary, we are in the context of a multiple referendum without
preferential dependencies between issues, and where the decision is made issue by issue according
to majority.

On the other hand, classical committee elections correspond to a collection of such separable
conditional approval ballots, where binary variables correspond to candidates, together with a con-
straint on the cardinality of the committee.

Observation 4. Let D = {yes, no}p (plus possibly a cardinality constraint), and P =
〈B1, . . . , Bn〉 a separable CA profile. ThenCondMiniSum(P ) coincides with the output of simple
multiwinner approval voting (also called minisum in [12]).

4.2 Conditional minimax
Conditional minisum has a utilitarianistic flavor: minimizing the sum of disagreements corresponds
to maximizing social welfare. We may instead take an egalitarian point of view and minimize the
maximum disagreement:

Definition 5. Given a CA profile P = 〈B1, . . . , Bn〉, the conditional minimax rule outputs the
outcomes that minimize the maximum number of disagreements over all voters :

CondMiniMax(P ) = argmind∈D∗
n

max
i=1

δ(d, Bi)

Example 2, continued. The only outcome that has a disagreement at most 1 (in fact, exactly 1) with
every conditional ballot is fb, therefore CondMiniMax(P ) = {fb}: every agent is either happy
with the fish, or unhappy with the fish, but in that case, happy with the beer given that the dish is
fish.

A similar result as Observation 4 holds for conditional minimax:
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Observation 5. Let D = {yes, no}p (plus possibly a cardinality constraint), and P =
〈B1, . . . , Bn〉 a separable CA profile. Then CondMiniMax(P ) is the output of minimax approval
voting [12]).

4.3 Computation
Computing a winning committee for minimax approval voting is NP-hard [30], which of course car-
ries over to conditional minimax approval voting. On the other hand, the polynomial time computa-
tion of winning committees for simple approval voting does not carry over to conditional minisum
(even without feasibility constraints):

Proposition 1. Given a CA profile P and an integer k, deciding whether there exists d ∈ D such
that

∑
i δ(d, Bi) ≤ k is NP-complete, even for binary variables and, for each voter, an acyclic

dependency graph with maximal indegree 1.

Proof. The problem is clearly in NP. The hardness proof is based on a reduction from MAX2SAT.
Consider an instance I of MAX2SAT, defined by a set of variables V = {x1, . . . , xp}, a set of 2-
clausesC = {C1, . . . , Cn}, and an integer k. We create a set of binary variablesX = {X1, . . . , Xp}
and, for each clause Ci = lj ∨ lk, where lj ∈ {xj , xj} and lk ∈ {xk, xk}, and j < k, a voter i
whose CA ballot Bi is defined as follows (with the convention lj = xj when lj = xj):

• the dependency graph has a single edge Xj −→ Xk.

• the CA statements are {xj , xj}, lj : {xk, xk}, lj : {lk}, and {xq, xq} for each q 6= k.

First, assume that there exists an assignment of the variables V satisfying at least k clauses.
From that assignment, we define an alternative d as follows: for all q ≤ p, dq = xq if xq is assigned
to true, and dq = xq if xq is assigned to false. Then, we study the number of disagreements between
Bi and d. There are two cases to consider:

• If Ci is satisfied, then either lj is true or lk is true, and from the definition of Bi, we get
δ(d, Bi) = 0.

• If Ci is not satisfied, then both lj and lk are false, and from the definition of Bi, we get
δ(d, Bi) = 1.

Thus, since the assignment satisfies at least k clauses, we have
∑n
i=1 δ(d, Bi) ≤ p− k.

Conversely, if there exists a d such that
∑n
i=1 δ(d, Bi) ≤ p − k, then by a similar line of

reasoning as above, we can construct an assignment that satisfies at least k clauses.

On the positive side, there is a model-preserving translation from winner determination for con-
ditional minisum approval voting into maximum satisfiability. We omit the formal details of the
general construction but only give an example: the CA ballot B = {x, x : y, x : {y, y}} is trans-
lated into the set of clauses CB = {x, x∨ y, x∨ y ∨ y} (equivalent to {x, x∨ y}); then a CA profile
P = 〈B1, . . . , Bn〉 is translated into a multi-set of clauses CP = CB1 ∪ . . . ∪ CBn . For all d ∈ D,
we have

∑
i δ(d, Bi) = α if and only if the number of clauses that are not satisfied in CP is equal

to α.1

This means that conditional minisum approval voting can be solved by off-the-shelf MAXSAT
solvers. Moreover, in the case of binary variables with acyclic dependency graphs, it is easy to
check that this transformation preserves the differential approximation ratio of 4.34/(m + 4.34)
obtained for MAXSAT in [21], where m represents the number of clauses.2

1The translation works also for nonbinary variables, but is more complex, as there is one propositional variable per value
di ∈ Di, and a feasibility constraint ensures that each variable takes exactly one value. More generally, when D∗ is a strict
subset of D, the feasibility constraints are expressed as propositional formulas, and are in sufficiently many copies so as to
be ‘protected’.

2Given an instance I of a combinatorial optimization problem, the differential approximation ratio measures “the relative
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4.4 Properties
We now study some of the properties satisfied by conditional minisum and conditional minimax.
Because our rules have CA ballots as input, some of the standard properties have to be adapted.
Clearly, our rules satisfy anonymity (the outcome is independent from the identity of voters), and
their irresolute versions satisfy value neutrality (the outcome is unchanged after any renaming of the
values of some variable) and variable neutrality (the outcome is unchanged after any renaming of
the variables). Now we define four other important properties. For two profiles P = (P1, . . . , Pn)
and Q = (Q1, . . . , Qm), we note P +Q = (P1, . . . , Pn, Q1, . . . , Qm).

Definition 6. Let F be a CA irresolute rule.

• F satisfies reinforcement (resp. weak reinforcement) if for any two profiles P,Q, if F (P ) ∩
F (Q) 6= ∅ then F (P +Q) = F (P ) ∩ F (Q) (resp. ⊇ F (P ) ∩ F (Q)).

• F satisfies monotonicity if for any profile P = (B1, . . . , Bn), if d = (x1, . . . , xp) ∈ F (P )
and B′i is obtained from Bi by adding xj to the set of values of Xj approved conditioned on
dParGi

(Xj), then d ∈ F (B1, . . . , Bi−1, B
′
i, Bi+1, . . . , Bn).

The following properties, participation and strategyproofness, are defined only for resolute
rules.3 Moreover, they require a voters’ preference �i to be induced from her CA ballot. We
say that a voter with CA ballot Bi has δ-induced preferences if for all x, y ∈ D∗, x �i y if and only
if δ(x,B) ≤ δ(y,B). δ-induced preferences generalize Hamming-induced preferences [18].

Definition 7. Let FT the resolute version of some irresolute rule F , for some tie-breaking mecha-
nism T . FT satisfies

• FT satisfies δ-participation if for any CA profile P = (B1, . . . , Bn) and CA ballot Bn+1, we
have δ(FT (P + {Bn+1}), Bn+1) ≤ δ(FT (P ), Bn+1).

• FT satisfies δ-strategyproofness if for any CA profile P = (B1, . . . , Bn) and CA ballot B′i,

δ(FT (B1,. . .,Bi−1,B
′
i,Bi+1,. . .,Bn), Bi) ≥ δ(FT (P ), Bi).

We have the following results for conditional minisum and minimax. All proofs are simple (we
omit them).

Proposition 2.

• CondMinSum satisfies reinforcement.

• CondMinMax does not satisfy reinforcement, but satisfies weak reinforcement.

• CondMinSum and CondMinMax satisfy monotonicity.

• for any T , CondMinSumT and CondMinMaxT satisfy δ-participation.

Since minimax approval voting [16] is manipulable, this is a fortiori the case for
CondMinMaxT . On the other hand, simple approval voting (or ‘minisum’) is strategyproof; how-
ever, as soon as preferences are conditional, strategyproofness is lost:

Proposition 3. CondMinSumT is δ-manipulable, even for two binary variables.

Proof. Without loss of generality, assume T favors x1x2 over x1x2. Consider the two-voter CA
profile consisting of one ballot {x1, x1 : x2, x1 : x2} and one ballot {x1, x1 : x2, x1 : x2}. The
outcome is x1x2. Now, if the second voter casts the ballot {x1, x1 : x2, x1 : x2} instead, then the
outcome is x1x2, which is her preferred alternative under the assumption that her preferences are
δ-induced.
position of the value of an approximated solution in the interval between the value of a worst feasible solution of I , and the
value of a best solution of I” [21].

3For irresolute rules, we would require to first define a preference extension principle (see, e.g., [14] for strategyproofness
and [13] for participation).
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5 Sequential conditional approval voting
For the sake of simplicity, in this section we assume that D∗ = D (handling feasibility constraints
is possible but makes the definitions more complicated).

Sequential conditional approval voting (SCAV) is an approval-based version of sequential voting
in combinatorial domains [23]. Its intuitive principle is that decisions are taken variable by variable,
following a fixed order; for each variable, the winning value is the one that has the maximal approval
score given the values of the variables that come before it. The SCAV rule is defined only for CA
profiles whose dependency graph is compatible with a given order O of the variables. In the rest of
this section, O = X1 > . . . > Xp is a fixed order over X .

Definition 8 (O-legal conditional approval profile). A CA ballot is O-legal if its dependency graph
contains no edge from Xj to Xi with i < j. A CA profile is O-legal if it is composed of O-legal CA
ballots.

Definition 9. The sequential conditional approval voting rule (SCAV) is the rule defined on O-
legal CA profiles as follows. Let AppTi be the standard approval voting rule on Di, together
with a tie-breaking mechanism Ti, and T = (T1, . . . , Tp). For each O-legal P = (B1, . . . , Bn),

let P ↓Xi|x∗
1 ,...,x

∗
i−1 = (B

↓Xi|x∗
1 ,...,x

∗
i−1

1 , . . . , B
↓Xi|x∗

1 ,...,x
∗
i−1

n ); then SCAV T (P ) = (x∗1, . . . , x
∗
p),

where

• x∗1 = AppT1(P ↓X1);

• for each i = 2, . . . , p, x∗i = AppTi(P ↓Xi|x∗
1 ,...,x

∗
i−1).

Similarly, we define the SCAV irresolute rule: SCAV (P ) is the set of all (x1, . . . , xp) such that
x1 ∈ App(P ↓X1) and for all i = 2, . . . , p, xi ∈ App(P ↓Xi|x∗

1 ,...,x
∗
i−1).45

A cheap protocol for SCAV T is composed of p rounds: at round i, it elicits only the
voters’ approval ballots B

↓Xi|x∗
1 ,...,x

∗
i−1

j . Thus, the communication complexity of SCAV T is
O(pnmaxi |Di|).

Example 2 (continued). Let O = X1 > X2. The approval scores for m, f and v are respectively
13, 12 and 10: the (unique) selected value for X1 is m. Given X1 = m, the approval scores for r,
w and b are respectively 12, 4 and 7: the selected value for X2 is r. The outcome is mr.

For irresolute SCAV, some winning alternative can be computed in polynomial time, and deter-
mining whether a given alternative is a winner is also polynomial-time computable: at each round,
it suffices to check that xi ∈ App(P ↓Xi|x∗

1 ,...,x
∗
i−1). Also, winner determination is polynomial for

resolute SCAV (with a polynomial-time computable tie-breaking mechanism).
Recall that winner determination for conditional minisum is NP-hard, even for an O-legal pro-

file. Moreover, both conditional minisum and SCAV coincide with simple approval voting when
restricted to separable profiles. Thus, we may wonder how good an approximation SCAV is to
conditional minisum. The approximation ratio is different whether we measure the quality of an al-
ternative by its number of disagreements

∑
i δ(·, Bi) (to be minimized) or its number of agreements∑

i(p− δ(·, Bi)) (to be maximized):

Proposition 4. Consider a combinatorial domain with p variables X1, . . . , Xp with |Di| = αi for
all i.

• The largest possible ratio, over all O-legal CA profiles, between the disagreement score
of the SCAV winner and the disagreement score of the conditional minisum winner, is∑p
i=1(1−

1
αi
)/(1− 1

α1
).

4Note that writing B
↓Xi|x∗

1 ,...,x
∗
i−1

j is a slight abuse of notation, since O-legality implies only that ParGj
(Xi) ⊆

{X1, . . . , Xi−1}.
5Note that the restriction of SCAV to separable profiles coincides with simple approval voting.
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• The largest possible ratio, over all O-legal CA profiles, between the agreement score of the
conditional minisum winner and the agreement score of the SCAV winner, is ( 1

α1
+ p −

1)/
∑p
i=1

1
αi

.

Proof sketch. Consider n CA ballots, with the dependency graph whose edges are {Xi → Xj | 1 ≤
i < j ≤ p}. First, we look for an upper bound of the disagreement score of an alternative that wins
for SCAV. Assume that (x11x

2
1 . . . x

p
1) is the winning alternative for SCAV. Then, for (x11x

2
1 . . . x

p
1)

to be winning for SCAV, x11, respectively x11 : x21, . . . , x11x
2
1 . . . : x

p
1, has to be approved by at

least n/α1 voters, respectively n/α2, . . . , n/αp voters. It leads to a maximal disagreement score of
n ·

∑p
i=1 1− 1/αi.

Now, we look for a lower bound for the disagreement score of a winning alternative for con-
ditional minisum, under the condition that it is winning for SCAV. Assume that (x12x

2
2 . . . x

p
2) is a

winning alternative for conditional minisum. One way to avoid this alternative to be a SCAV winner
is by eliminating it at the first round of the sequential vote. It implies that x12 has to be approved by
less than n

α1
voters, and, in this case, x12 : x22, . . . , x

1
2x

2
2 . . . : x

p
2 can be approved by any number

of voters, and then, the disagreement score for (x12x
2
2 . . . x

p
2) without being a winner for SCAV is at

least n − n
α1

. There exist other ways to avoid (x12x
2
2 . . . x

p
2) to be a winning alternative for SCAV,

but they lead to disagreement scores that are at least as large as that one. The proof for the bound
relative to the agreement score is similar.

Thus, we get a worst-case ratio of (
∑p
i=1 1 − 1/αi)/(1 − 1/α1). This ratio is reached on a

CA profile for which there is a perfect split between all values of X1 (with each voter approving
only one value), and then, conditionally on the value chosen for X1 (by tie-breaking), there is also
a perfect split for each other variable, while for some of the other values of X1, there is a perfect
agreement between all voters on all other variables. The same profile shows that the bound relative
to the number of agreements is reached too.

In particular, when all domains have the same cardinality α, then these ratios become p and
(1 + (p− 1)α)/p, and in the case of binary domains, p and 2− 1/p.

Corollary 1. If the quality of a solution is measured by the number of disagreements, then SCAV is
a
∑p
i=1(1 −

1
αi
)/(1 − 1

α1
)-approximation of CondMiniSum. If it is measured by the number of

disagreements, then it is a ( 1
α1

+ p− 1)/
∑p
i=1

1
αi

-approximation of CondMiniSum.

Proposition 5. SCAV satisfies anonymity, neutrality, reinforcement and monotonicity. For any tie-
breaking mechanism T , SCAVT does not satisfy δ-participation.

Proof. Anonymity and neutrality are obvious. Reinforcement and monotonicity are easily proven
by induction on the variables, and using the fact that standard approval voting satisfies them. For
participation, consider the two-voter CA profile P = 〈B1, B2〉 with B1 = {x1, x2, x3} and B2 =
{x1, x2, x3}. Assume without loss of generality that T favors x1x2x3 over x1x2x3, thus FT (P ) =
x1x2x3. Now, consider a third voter with preferences δ-induced by B3 = {x1, x1 : x2, x1 : x2,
x1 : x3, x1 : x3}. If she votes, the outcome is x1x2x3, which has only one agreement with her
ballot, while x1x2x3 had two.

Proposition 6. For any tie-breaking mechanism T , SCAVT is not δ-strategyproof for p ≥ 3 (even
for binary variables), and is strategyproof for two variables.

Proof. For p = 3, consider the profile in the proof of Proposition 5. If the third voter expresses his
sincere ballot {x1, x1 :x2, x1 :x2, x1 :x3, x1 :x3}, the outcome is x1x2x3. If he expresses instead
the ballot {x1, x1 :x2, x1 :x2, x1 :x3, x1 :x3} the the outcome is x1x2x3, which he prefers.

For p = 2, let X = {X1, X2}; suppose that voter i with sincere ballot B has a manipulation
B′; let x∗ be the outcome for her sincere vote and x+ the outcome after manipulation. Since B′

is a manipulation and i has δ-induced preferences, we have δ(x+, B′) < δ(x∗, B). This implies
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(1) δ(x+, B′) < 2 and (2) δ(x∗, B) > 0. Once the value of X1 has been fixed, we are left with
a standard approval vote on X2 and i cannot obtain a better outcome than the sincere outcome;
therefore, the manipulation has to bear on X1 and has to change the value of X1, from, without loss
of generality, x1 to x′1, with i initially approving x1 but not x′1. But this implies that δ(x+, B′) ≥ 1
and δ(x∗, B) ≤ 1, which together with (1-2) implies δ(x+, B′) = δ(x∗, B) = 1, therefore i, who
has δ-induced preferences, cannot prefer x+ to x∗.

6 Conclusion
We have generalized approval voting to combinatorial domains and to nonseparable preferences.
Our rules are natural generalizations of simple (or ‘minisum’) and minimax approval voting. They
can be applied for all types of voting on combinatorial domains. Conditional minisum and minimax
are computationally hard, but conditional minisum can be solved by MaxSAT solvers. Sequential
conditional AV is easy to compute. Our rules (especially conditional minisum) satisfy a number of
important properties.

There are other rules for multiwinner elections using approval ballots, where the satisfaction of
a voter is not simply the Hamming distance to his preferred outcome (see [22] for a survey, and [4]
for their computation). These rules could be adapted to CA ballots in the same way as we did for
simple and minimax approval voting. The rules defined in [2], where the dissatisfaction degrees of
the voters is aggregated by ordered weighted averages intermediate between max and sum, could
also be generalized to CA ballots.
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