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Abstract

Reallocating resources to get mutually beneficial outcomes is a fundamental prob-
lem in various multi-agent settings. In the first part of the paper we focus on the
setting in which agents express additive cardinal utilities over objects. We present
computational hardness results as well as polynomial-time algorithms for testing
Pareto optimality under different restrictions such as two utility values or lexico-
graphic utilities. In the second part of the paper we assume that agents express only
their (ordinal) preferences over single objects, and that their preferences are addi-
tively separable. In this setting, we present characterizations and polynomial-time
algorithms for possible and necessary Pareto optimality.

1 Introduction

Reallocation of resources to achieve mutually better outcomes is a central concern in multi-
agent settings. A desirable way to achieve ‘better’ outcomes is to obtain a Pareto im-
provement in which each agent is at least as happy and at least one agent is strictly hap-
pier [1, 5, 28, 30]. Pareto improvements are desirable for two fundamental reasons: they
result in strictly more welfare for any reasonable notion of welfare (such as utilitarian or
leximin). Secondly, they satisfy the minimal requirement of individual rationality in the
sense that no agent is worse off after the trade. If a series of Pareto improvements results in
a Pareto optimal outcome, that is even better because there exists no other outcome which
each agent weakly prefers and at least one agent strictly prefers.

We consider the setting in which agents are initially endowed with objects and they
also have additive preferences for the objects. In the absence of endowments, achieving a
Pareto optimal assignment is easy: simply assign every object to the agent who values it
the most. On the other hand, in the presence of endowments, finding a Pareto optimal
assignment that respects individual rationality is more challenging. The problem is closely
related to the problem of testing Pareto optimality of the initial assignment. A certificate of
Pareto dominance gives an assignment that respects individual rationality and is a Pareto
improvement. In fact, if testing Pareto optimality is NP-hard, then finding an individually
rational and Pareto optimal assignment is NP-hard as well. In view of this, we focus on the
problem of testing Pareto optimality. In all cases where we are able to test it efficiently, we
also present algorithms to compute individually rational and Pareto optimal assignments.

Contributions We first relate the problem of computing an individually rational and
Pareto optimal assignment to the more basic problem of testing Pareto optimality of a
given assignment. We show for an unbounded number of agents, testing Pareto optimality
is strongly coNP-complete even if the assignment assigns at most two objects per agent.
We then identify some natural tractable cases. In particular, we present a pseudo-
polynomial-time algorithm for the problem when the number of agents is constant. We
characterize Pareto optimality under lexicographic utilities (i.e., lexicographic preferences)
and we show that Pareto optimality can be tested in linear time. For dichotomous pref-
erences in which utilities can take values « or 3, we present a characterization of Pareto
optimal assignments which also yields a polynomial-time algorithm to test Pareto optimality.



In the ordinal setting, we consider two versions of Pareto optimality: possible Pareto op-
timality and necessary Pareto optimality. For both properties, we present characterizations
that lead to polynomial-time algorithms for testing the property for a given assignment.

Related Work The setting in which agents express additive cardinal utilities and a welfare
maximizing or fair assignment is computed is a very well-studied problem in computer
science [2, 10, 11, 13, 19, 18, 23, 26, 27, 31, 32]. Although computing a utilitarian welfare
maximizing assignment is easy, the problem of maximizing egalitarian welfare is NP-hard.

Algorithmic aspects of Pareto optimality have received attention in discrete allocation
of indivisible goods, randomized allocation of indivisible goods, two-sided matching, and
coalition formation under ordinal preferences [1, 5, 8, 21, 28]. Since we are interested in
Pareto improvements, our paper is also related to housing markets with endowments and
ordinal preferences [4, 22, 25, 33, 34]. Recently, Damamme et al. [17] examined restricted
Pareto optimality under ordinal preferences.

de Keijzer et al. [18] studies the complexity of deciding whether there exists a Pareto
optimal and envy-free assignment when agents have additive utilities. They also showed
that testing Pareto optimality under additive utilities is coNP-complete. We show that this
result holds even if each agent has two objects.

Cechlérovd et al. [16] proved that Pareto optimality of an assignment under lexicographic
utilities can be tested in polynomial time. In this paper, we present a simple characterization
of Pareto optimality under lexicographic utilities that leads to a linear-time algorithm to
test Pareto optimality.

Bouveret et al. [14] consider necessary Pareto optimality as Pareto optimality for all
completions of the responsive set extension,! and present some computational results when
necessary Pareto optimality is considered in conjunction with other fairness properties.
Reallocating resources to improve fairness has also been studied before [20].

2 Preliminaries

We consider the setting in which we have N = {1,...,n} a set of agents, O = {o01,...,0m}
a set of objects, and the preference profile 7Z= (71, ...,7,) specifies for each agent i her
complete, transitive and reflexive preferences -; over O. Agents may be indifferent among
objects. Let ~; and >; denote the symmetric and anti-symmetric part of =;, respectively.
We denote by E},,Ef the k; equivalence classes of an agent ¢ € N. Those classes
partition O into k; sets of objects such that agent ¢ is indifferent between two objects
belonging to the same class, and she strictly prefers an object of E¥ to an object of E!
whenever k < [.

Each agent may additionally express a cardinal utility function u; consistent with ;:
ui(0) > u; (o) iff o =; o' and w;(0) = wu;(0') iff 0 ~; o/. We will assume that each object
is positively valued, i.e, u;(0) > 0 for all i € N and o € O. The set of all utility func-
tions consistent with »7; is denoted by % (7Z;). We will denote by % (77) the set of all
utility profiles v = (uy,...,u,) such that u; € % (;Z;) for each i € N. When we consider
agents’ valuations according to their cardinal utilities, then we will assume additivity, that
is u;(0') = >, cor ui(o) for each i € N and O' C O. An assignment p = (p(1),...,p(n)) is
a partition of O into n subsets, where p(7) is the bundle assigned to agent . We denote by
Z the set of all possible assignments.

An assignment p € 2 is said to be individually rational for an initial endowment e € 2~
if u;(p(i)) > wi(e(i)) holds for any agent i. An assignment p € 2 is said to be Pareto

1Brams et al. [15] used the term Pareto ensuring for Pareto optimality for all completions of the responsive
set extension.



dominated by another ¢ € 2 if (i) for any agent i € N, w;(q(7)) > u;(p(i)) holds, (ii) for
at least one agent i € N, u;(q(i)) > u;(p(i)) holds. An assignment is Pareto optimal iff
it is not Pareto dominated by another assignment. Finally, whenever cardinal utilities are
considered, the social welfare of an assignment p is defined as SW(p) = >,y ui(p(i)).

Example 1. Let n = 3, m = 5, and the utilities of the agents be represented as follows.

‘ 01 O2 03 04 Oj5
1116 8 4 2 1
219 3 1 1 3
3|16 1 2 6 2

Since uq(01) > ui(02), we can say that o; =1 0. An example of an assignment is p =
(0204]01]0305) in which p(1) = {02,04}, p(2) = {01}, and p(3) = {03,05}.

3 Additive utilities

In this section we assume that each agent expresses a cardinal utility function u; over O,
where wu;(0) > 0 for all i € N and o € O.

3.1 Complexity of testing Pareto optimality

We will consider Pareto optimality and individual rationality with respect to additive util-
ities. The following lemma shows that the computation of an individually rational and
Pareto-improving assignment is at least as hard as the problem of deciding whether a given
assignment is Pareto optimal:

Lemma 1. If there exists a polynomial-time algorithm to compute a Pareto optimal and
individually rational assignment, then there exists a polynomial-time algorithm to test Pareto
optimality.

Proof. We assume that there is a polynomial-time algorithm A to compute an individu-
ally rational and Pareto optimal assignment. Consider an assignment p for which Pareto
optimality needs to be tested. We can use A to compute an assignment ¢ which is indi-
vidually rational for the initial endowment p and Pareto optimal. By individual rationality
ui(q(?)) > w;i(p(?)) for all ¢ € N. If u;(q(i)) = u;(p(i)) for all i € N, then p is Pareto
optimal simply because ¢ is Pareto optimal. However if there exists ¢ € N such that
u;(q(7)) > u;(p(7)), it means that p is not Pareto optimal. O

A Pareto optimal assignment can be computed trivially by giving each object to the
agent who values it the most. Bouveret and Lang [12] proved that a problem concerning
coalitional manipulation in sequential allocation is NP-complete (Proposition 6). The result
can be reinterpreted as follows.

Theorem 1. Testing Pareto optimality of a given assignment is weakly coNP-complete for
n = 2 and identical preferences.

Corollary 1. Computing an individually rational and Pareto optimal assignment is weakly
NP-hard for n = 2.

One may additionally require the balanced property, i.e., each agent gets as many objects
as she initially owned. Both the theorem above and the corollary above can be extended to
that case easily. If there are an unbounded number of agents, then testing Pareto optimality
of a given assignment is strongly coNP-complete [18]. Next, we show that the problem
remains strongly coNP-complete even if each agent receives exactly 2 objects.



Theorem 2. Testing Pareto optimality of a given assignment is strongly coNP-complete
for an unbounded number of agents even if each agent receives exactly 2 objects.

We relegate the proof of Theorem 2 to the Appendix. Note that Theorem 2 is the best
possible NP-hardness result that we can obtain according to the number of objects received
by each agent because if initially each agent has exactly one object in assignment p, then
our problem can be solved in linear time.

3.2 Complexity of testing Pareto optimality: tractable cases

We now identify conditions under which the problem of computing individually rational and
Pareto optimal assignments is polynomial-time solvable.

3.2.1 Constant number of agents and small weights

Lemma 2. If there is a constant number of agents, then the set of all vectors of utilities
that correspond to an assignment can be computed in pseudo-polynomial time.

Proof. Consider the following algorithm (by 0¥ we denote 0, . ..,0 with k occurrences of 0).

1: L+ {(0™)};
2: for j =1 tom do
3 L'+ {l+ (071 u;(05),0"7%) | i € N;l € L}
4: L+ L'
5: end for

6: return L

Let W be the maximal social welfare that is achievable; then, at any step of the algorithm,
the number of vectors in L cannot exceed (W+1)™. Hence the algorithm runs in O(W"-n-m).
Now, W < >, j u;(0;), and since n is constant, the algorithms runs in pseudopolynomial
time.

We can prove by induction on k that a vector of utilities [ = (v1,...,v,) can be achieved
by assigning objects o01,...,0; to the agents if and only if [ belongs to L after objects
01, - ..,0k have been considered. This is obviously true at the start of the algorithm, when

no object at all has been considered. Now, suppose the induction assumption is true for k.
If I belongs to L after iteration k, then I’ belongs to L after iteration k + 1 iff I’ is obtained
from [ by adding w;(oy) to the utility of some agent ¢, that is, if [ = (vy,...,v,) can be
achieved by assigning objects o1, ..., 0k4+1. O

Theorem 3. If there is a constant number of agents, then there exists a pseudo-polynomial-
time algorithm to compute a Pareto optimal and individually rational assignment.

Proof. We apply the algorithm of Lemma 2, but in addition we keep track, for each I € L,
of a partial assignment that supports it: every time we add [+ (0°",u;(0;),0" %) to L’, the
corresponding partial assignment is obtained from the partial assignment corresponding to
[, and then mapping o; to i. If several partial assignments correspond to the same utility
vector, we keep an arbitrary one. At the end, we obtain the list L of all feasible utility
vectors, together with, for each of them, one corresponding assignment. For each of them,
check whether there is at least one !’ in L that Pareto dominates it, which takes at most
O(|L|?), and we recall that L is polynomially large. The assignments that correspond to
the remaining vectors are Pareto optimal.? O

2Note that it is generally not the case that we get all Pareto optimal assignments: if there are several
assignments corresponding to the same utility vector, then we’ll obtain only one.



3.2.2 Lexicographic Utilities

We say that utilities are lezicographic if for each agent ¢ € N, u;(0) > Zo’—<ioui(0/)‘ By
q() =i p(2), we will mean w;(q(2)) > u;(p(2)).

In order to test the Pareto optimality of an assignment p, we construct a directed graph
G(p) = (V(p), E(p)). The set of vertices V(p) contains one vertex per object belonging to
O. Furthermore, for any vertex of V(p) associated to an object o, the set of edges E(p)
contains one edge (0, 0') for any object o’ belonging to O \ {0} such that o' =; o, where i is
the agent who receives the good o in p. For example, Figure 1 illustrates such a graph for
the assignment p provided by Example 2. In Figure 1, dotted edges represent indifferences
(when o’ ~ 0) and plain edges represent strict preferences (when o' = 0). It follows from
[16] that Pareto optimality of an assignment under lexicographic utilities can be tested in
polynomial time. We provide a simple characterization of a Pareto optimal assignment
under lexicographic utilities. The characterization we present also provides an interesting
connection with the possible Pareto optimality that we consider in the next section.

Theorem 4. An assignment p is not Pareto optimal wrt lexicographic utilities iff there
exists a cycle in G(p) which contains at least one edge corresponding to a strict preference.

Proof. Assume that there exists a cycle C' which contains at least one edge corresponding
to a strict preference. Then, the exchange of objects along the cycle by agents owning the
objects corresponds to a Pareto improvement.

Assume now that p is not Pareto optimal and let ¢; be an assignment which Pareto
dominates p. For at least one agent i, q1(i¢) >; p(i). So there exists at least one object
o1 in q1(4) \ p(¢). Let i1 be the owner of 01 in p. Since preferences are lexicographic, in
compensation of the loss of 01, agent i; must receive an object oy in g; which is at least
as good as 07 according to her own preferences. Let i be the owner of 0y in p and so on.
Since O is finite, there must exist k and &’ such that the sequence op — 011 — ... — O/
forms a cycle, i.e., o = opr. If Al € [k, k" — 1] such that 0,11 >;, o; then we consider the
assignment ¢y derived from ¢; by reassigning any object o1, with [ € [k, k' — 1], to agent ;.
It is obvious that this assignment ¢s is at least as good as ¢; for all the agents. So g» Pareto
dominates p. By following the same reasoning as above, we can state that there exists a
sequence of objects o — og+1 — ... — op such that o, = op and for any [ € [k, k' — 1],
o141 1s assigned to agent 4; in g to compensate the loss of 0; assigned to him in p (obviously
with 0;41 ZZ;, 01). Once again if Al € [k, k" — 1] such that 0,41 >;, o; then we consider
the assignment g3 derived from ¢ by reassigning any object o1, with [ € [k, k' — 1], to
agent i;...Since for any s > 1 we have ),y |gs—1(2) N p(i)] < > n [gs(2) N p(@)], there
must exist a finite value ¢ such that 31 € [k, k" — 1] such that o;4; >; o; for the cycle
Ok — Og4+1 —> ... — o founded in ¢;. Indeed otherwise after a finite number of steps t we
should have ¢;(i) = p(4) for all ¢ € N, which leads to a contradiction with the assumption
that ¢; Pareto dominates p. So there exists a cycle o, — ... = o in G(p) with at least one
edge corresponding to a strict preference. O

It is clear that the graph G(p) can be constructed in linear time for any assignment p.
Furthermore, the search of a cycle containing at least one strict preference edge in G(p) can
be computed in linear time by applying a graph traversal algorithm for any strict preference
edge in G(p). Therefore testing if a given assignment is Pareto optimal can be done in linear
time when utilities are lexicographic.

Example 2. Let n = 3, m = 5, and the following ordinal information about preferences
corresponding to the lexicographic utilities in Example 1 (as a consequence of Theorem 4,
ordinal preferences are enough information to check Pareto optimality).



Figure 1: Graph G(p) for assignment p in Example 2.

1:01 > 00 > 03> 04 > 05
2:01 > 03~ 05> 03~ 04
3:01 ~ 04 > 03~ 05 > 02

Let p = (0204]|01|0305) be the initial assignment. The construction of Theorem 4 gives us
that it is Pareto dominated by (0203|01|0405), hence it is not Pareto optimal.

3.2.3 Two utility values

In this section we assume the agents use at most two utility values for the objects. We say
that the collection of utility functions (ug,...,u,) is bivalued if there exist two numbers
a > > 0 such that for every agent i and every object o, u;(0) € {«, 5}. (The result would
still hold if each agent ¢ had a different pair of values («a;, 3;), provided that % = g—; for all

i,7.) This means that for every agent i, the set of objects O is partitioned into two subsets
E! = {0 € O,u;(0) = a} and E? = {0 € O,u;(0) = B} (with possibly E? = 0). Given an
assignment ¢, let g% (i) = q(i) N E}, and ¢~ (4) = q(i) N EZ.

We provide a first requirement for an assignment to Pareto dominate another one:

Lemma 3. If an assignment p, where all objects are assigned, is Pareto dominated by an
assignment q then |U;cn ¢ ()] > [U;en T (9)].

Proof. For contradiction we assume that |[J;cy ¢ ()] < |U;enp™(4)]. In that case
SW(@) = [Uiew ¢ @+ |Uscw g 018 < [Ujen ¢ (Dl (a—B) +1018 < |U,en #* (0] (0=
B) + 1018 = a|Usen pT ()| 4+ BlU;en p~(0)|- So SW(p) > SW(q), which contradicts the
assumption that ¢ Pareto dominates p. O

Lemma 4. If an assignment p, where all objects are assigned, is not Pareto optimal then
there exists an assignment q that Pareto dominates p with the following two properties: (i)

Vie N,|gt (i) > [pt(i)| and (ii) 35 € N, |gt(5)| > |[p*(5)| and p~(5) # 0.

Proof. Assume that p is not Pareto optimal. Then there exists an assignment ¢, which
Pareto dominates p. Let ¢, chosen to be as close to p as possible, namely such that
| Usen @+(2) \ p(4)| is minimal.

First we note that the above assumption implies that there is no such clear winner
agent i that p~(i) = 0 and ¢} (i) D p*(¢). This is because we could reallocate any object
in ¢ (i) \ p*(4) to its owner in p, and obtain another assignment g, from ¢, which also
Pareto-dominates p, but which is closer to p than ..



Lemma 3 implies that |{J;cn ¢ (1)] > [U;en P (9)|, so there exists an object o) €
(Uien @8 (1)) \ (U;en T (9). Let us suppose that object o1 belongs to g (iz) for a given
agent ig, and to p~(i1) for another agent i;. If p~(iz) # 0 then starting from p, 4; and iy
could exchange 0; with an object of p~(i2) leading to an assignment g where both (i) and
(ii) hold. Otherwise, if p~(iz) = 0, then let 0y € pT (i) \ ¢i (i2) (which must exists since io
is not a clear winner), and let 0» € ¢.(i3). Note that oo must belong to g (i3), as otherwise
i3 and i3 could exchange 0, and o5 in g, and we would obtain another assignment g,. that
still Pareto-dominates p, but which is closer to p. Now, again, if p~(i3) # 0 then starting
from p we could create a Pareto dominating assignment g with properties (i) and (ii) by
exchanging the objects along this cycle, namely, by assigning o0y to i3, 05 to i3 and o3 to i1,
where o3 is an object of p~(i3). However, if p~(i3) = @ then we continue the construction
of the sequence.

The last case that we have to discuss is a possible repetition occurring in the above
sequence. Suppose that for some indices k < I, 0; € ¢ (i) for the first time in the sequence.
So the agents involved in this sub-sequence exchange their top objects in g, compared to
p. But then we can construct another assignment ¢., from ¢, by reassigning these objects
to their original owners in p, contradicting with our assumption of ¢, being as close to p as
possible. O

Based on the lemma, we obtain the following characterization of Pareto optimality in
the bivalued case.

Theorem 5. An assignment p, where all objects are assigned, is Pareto dominated iff there
exists an assignment q such that (i) Vi € N,|q"(i)| > |pT(?)| and (ii) 3j € N,|q*(5)] >
P ()] and p=(j) # 0.

Proof. One implication has already been proved in Lemma 4. To prove the second implica-
tion we assume first that there exists ¢ such that (i) and (ii) holds. Let j be as described as
in (ii). For any i € N\{j}, let A; C ¢* (i) such that |A;| = [pT(7)|. Let A; C ¢ (j) such that
|A;| = IpT(j)I + 1. Let A= O\ U,cy Ai- Note that by definition |A] = |U;cyp™ (i) — 1
because |A] = [O] = [Ujen Ail = Xien [P()| = Xien 07 ()] =1 =3cy [p7(0)] — 1.

We partition A into n subsets Aj,... A, such that Vi € N\ {j},|4: = [p~(¢)] and
|A;| = [p~(4)| — 1. Finally, let g. be the assignment such that Vi € N, ¢.(i) = 4; U A;. By
the construction of g, we have |g} (7)| > [pT(7)| with |g.(i)] = |p(7)| for every i € N and
()| > [p*(5)] with |g.(5)| = |p(j)|- So p is Pareto dominated by g.. O

Theorem 6. Under bivalued utilities, there exists a polynomial-time algorithm for checking
Pareto optimality and finding a Pareto improvement, if any.

Proof. If at least one object is not assigned then a trivial Pareto improvement would be to
assign this object to an agent. So we can focus on the case where all objects are assigned.
According to Theorem 5, a Pareto improvement can be computed by focusing on the as-
signment of top objects for the agents. We describe an algorithm based on maximum flow
problems to obtain such an assignment. For any ¢ € N, let G; = (V;, E;) be a directed graph
which models the search for a Pareto improvement for agent ¢ as a flow problem. The set
of vertices V; contains one vertex per agent and per object, plus a source s and a sink ¢.
To ease the notation, we do not discriminate between the vertices and the agents or objects
that they are representing, therefore, we note V; = N UO U {s,t}. The set of edges E; and
their capacities are constructed as follow:

e For any [ € N and o € O such that o € E} there is an edge (,0) with capacity 1.
e For any o € O there is an edge (o, t) with capacity 1.



e For any [ € N \ {i} there is an edge (s,l) with capacity [pT ()|, and there is an edge
(s,4) with capacity |pT(i)| + 1.

It is easy to show that there exists a flow of value Y7, \ [p™(1)] + 1 iff there exists an
assignment such that any agent [ € N\ {i} receives at least |p(l) N E}| top objects and agent
i receives [pT(I)| + 1 top objects. So by Theorem 5, there exists a Pareto improvement of p
iff there exists i € N such that p(i)NE? # () and there exists a flow of value Y-, v [p*(1)|+1
in G;. Therefore finding a Pareto improvement can be performed in polynomial time by
solving at most n maximum-flow problems. In each Pareto improvement the number of top
objects increases by at least one so there can be at most m Pareto improvements. O

Note that we can find a Pareto optimal Pareto improvement in polynomial time as well:
in each Pareto improvement the number of top objects increases by at least one so there
can be at most m Pareto improvements.

Example 3. Let n = 3, m = 6, E} = {01,09,03}, E3 = {02}, E3 = {01, 03,05,06}, and
p = (0104]0205|0306). G is depicted in Figure 2. The flow of value 5 (boldface) gives the
assignment (0103|0204|0506), which Pareto-dominates p.
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Figure 2: Flow network GG in Example 3.

4 Ordinal preferences

In this section, we consider the setting in which the agents have additive cardinal utilities
but only their ordinal preferences over the objects are known by the central authority.
This could be because the elicitation protocol did not ask the agents to communicate their
utilities, or simply because they don’t know them precisely. In this case, one can still reason
whether a given assignment is Pareto optimal with respect to some or all cardinal utilities
consistent with the ordinal preferences. An assignment p is possibly Pareto optimal with
respect to 27 if there exists u € % (Z) such that p is Pareto optimal for u. An assignment
is necessarily Pareto optimal with respect to = if for any u € % () the assignment p is
Pareto optimal for w.

4.1 Possible Pareto Optimality

We first note that necessary Pareto optimality implies possible Pareto optimality. Secondly,
at least one necessarily Pareto optimal assignment exists in which all the objects are given
to one agent. We focus on the problems of testing possible and necessary Pareto optimality.

In order to characterize possible Pareto optimality, we first define stochastic dominance
(SD) which extends ordinal preferences over objects to preferences over sets of objects (and



even over fractional allocations in which agents can get fractions of items). We say that
an allocation q(i) stochastically dominates an allocation p(i), denoted by q(i) 277 p(i), iff
|q(i)ﬂU?:1 El| > |p(i)ﬂU§:1 El|forallk € {1,...,k;}. In the case of fractional allocations,
q(@) N U?Zl E’ denotes the units of items given to ¢ for items in U§:1 E/.

The SD relation is equivalent to the responsive set extension [9], which also extends
preferences over objects to preferences over sets of objects. Formally, for agent ¢ € N, her
preferences -, over O are extended to her preferences 5% over 29 as follows: ¢(i) =55 p(i)
iff there exists an injection f from p(i) to ¢(#) such that for each o € p(i), f(o0) Z; 0. Since
=BS5S is a partial order, we say a preference R; is a completion of =FS if it is a complete
and transitive relation over sets of objects that is consistent with =¥, We say that an
assignment is SD-efficient if it is Pareto optimal with respect to the SD relation of the
agents, and RS-efficient if it is Pareto optimal with respect to the RS set extension relation
of the agents. Under ordinal preferences, an agent ¢ prefers one allocation ¢(i) over another
p(#) with respect to responsive set extension iff she prefers it with respect to stochastic
dominance [14, 7]. Thus, a (discrete) assignment is RS-efficient iff it is SD-efficient. We say
that ¢ strictly RS-dominates p if ¢ Pareto dominates p with respect to RS.

Theorem 7. An assignment is possibly Pareto optimal iff it is SD-efficient iff it is RS-
efficient iff there exists no cycle in G(p) which contains at least one edge corresponding to
a strict preference.

Proof. By the ordinal welfare theorem, a fractional assignment is possibly Pareto optimal
iff it is SD-efficient (among the set of fractional assignments) [3, 6, 29]. Furthermore, a
discrete assignment p that is SD-efficient among all discrete assignments is also SD-efficient
among all fractional assignments because SD-efliciency of p depends on the non-existence
of a cycle with a strict edge in the underlying graph G(p) [3, 24]. Hence, we obtain the
equivalences. O

Since the characterization in Theorem 4 also applies to RS-efficiency and possible Pareto
optimality, hence possible Pareto optimality can be tested in linear time. The argument
in the proof above also showed that possible Pareto optimality is equivalent to Pareto
optimality under lexicographic preferences.

We point out that a possibly Pareto optimal assignment may not be a necessarily Pareto
optimal assignment.

Example 4. Consider two agents with identical preferences o1 > 0y > 03 > 04. Every
assignment is possibly Pareto optimal; however the assignment p in which agent 1 gets
{01,04} and 2 gets {02, 03} is not necessarily Pareto optimal since it is not Pareto optimal
for the following utilities.
‘ 01 O 03 04
1110 9 8 7
2110 3 2 1

4.2 Necessary Pareto Optimality

Next we present two characterizations of necessary Pareto optimality. The first highlights
that necessary Pareto optimality is identical to the necessary Pareto optimality considered
by Bouveret et al. [14].

Theorem 8. An assignment is necessarily Pareto optimal iff it is Pareto optimal under all
completions of the responsive set extension.



Proof. If an assignment is not Pareto optimal under certain additive preferences, it is by
definition not Pareto optimal under this particular completion of responsive preferences.
Assume that an assignment p is not Pareto optimal under some completion of the re-
sponsive set extension. Then there exists another assignment ¢ in which for all i € N
q(i) Zf% p(i) or p(i) #*° q(i) and q(i) #{* p(i), and for some i € N, q(i) ~** p(i)
or p(i) #E5 q(i) and q(i) #E5 p(i). For both cases, if the allocations are incompa-
rable with respect to responsive set extension, then there exists an object o such that
lg(i) N {o" : 0 ZZ; o} > |p(i) N {0’ : 0 ZZ; 0}|. In that case, consider a utility function u;

~

in which u;(0"") — u;(0”) < € for all o, 0" Z; 0 and u;(0) > >,  ui(0') + |Ole. For uy,

~

ui(g(8)) > wi(p(i)). -

For characterizing necessarily Pareto optimal assignments, we define a one-for-two Pareto
improvement swap as an exchange between two agents 7; and i, involving objects ojl, 0? €

p(i;) and oy, € p(ix) such that of >, o} o

J Zis J
Theorem 9. An assignment p is necessarily Pareto optimal iff
(i) it is possibly Pareto optimal and
(ii) it does not admit a one-for-two Pareto improvement swap.

Proof. We first show that if an assignment does not satisfy the two conditions, then it is not
necessarily Pareto optimal. Possible Pareto optimality is a requirement for the assignment
to be necessarily Pareto optimal. To see that the second condition is also necessary, we have
to show that if p admits a one-for-two Pareto improvement swap then p is not necessarily
Pareto optimal. This is because the swap could indeed be a Pareto improvement for these
two agents with the following utilities: w;; (0x) > 2u;; (05 )(> u, (o}) +ui, (of)) and u;, (o) <
u,, (0§) +u;, (03). These utilities are compatible with the ordinal preferences of these agents,

because of the assumption oy >, o} 0? (and irrespective to the ordinal preferences of
i)

J féij J

Conversely, to show that conditions (i) and (ii) are sufficient for the assignment to be
necessarily Pareto optimal, suppose for a contradiction that (1) p is not necessarily Pareto
optimal and (2) p does not admit a one-for-two Pareto improvement swap. We will then
show that there is an assignment that strictly RS-dominates p, implying that p cannot be
possibly Pareto optimal.

From (1) and Theorem 8, we have (3) there is another assignment ¢ and a collection of
additive utility functions v = (u1,...,u,) € % (Z) such that ¢ Pareto dominates p with
respect to u.

Without loss of generality we may assume that each agent receives a nonempty bundle
in p. Regarding the structure of p, first we observe that the lack of one-for-two Pareto
improvement swaps implies that every agent is assigned to some (or none) of her top objects
and possibly to one additional object that she ranks lower. Formally, let T},(i) denote a set
of i’s top objects she is assigned to in p, i.e., T,(i) = {0 : 0 € p(i) s.t. Bo’ & p(i), 0" =; o}.
Then p(i) = T,(¢) U {wp(4) }, where w, (i) is either a single object or no object.

We show that |g(¢)] = |p(¢)] must hold for every agent i. Suppose not, then there
is an agent ¢ for which |¢(¢)] < |p(é)|. By the definition of T,(¢) it is straightforward
that if w,(5) = 0 then w,(p())) = ui(T,(3)) > ui(q(i)), and if w,(i) # O then u:(p(i)) =
w; (Tp(3) U{wyp(d)}) > wi(Tp(3)) > wi(q(i)), a contradiction. Furthermore, for every agent
i, if {wp (i)} # O then for any object o € ¢(i) we have o ZZ; w,(i). Otherwise, if there was
an agent ¢ with o € ¢(#) such that w,(i) >; o, then u;(T,(2)) > u;(q(3) \ {o}) would imply
w(p(0)) = wi(Ty () U {wy(3)}) > wsla(i)).



Now we construct a so-called Pareto improvement sequence with respect to p and
g, which consists of a sequence of agents {i1, iz, ...%x} with possible repetitions and a set of
distinct objects {01, 02,...,0.,} such that

® 01 € q(i2) \ p(i2), 02 € p(i2) \ q(i2), and 01 Z;, 02;

e 0y € q(i3) \ p(iz), 03 € p(iz) \ q(i3), and o0z T4, 03;

® 0, € q(i1) \ p(i1), 01 € p(i1) \ q(i1), and op T4, 01

and with strict preference for at least one agent.

The presence of the above Pareto improvement sequence would imply the existence of an
assignment ¢’ that RS-dominates p, obtained by letting the agents exchange their objects
along the sequence, i.e., with ¢'(i) = p(i) U{og—1 1 ix =i,k =1,...,m}\{ox : i =4,k =
1,...,m}. This would contradict our assumption that p is possibly Pareto optimal.

We first define three types of agents, and a one-to-one mapping 7 from a subset of O
to itself such that if o € p(i)\¢(7) and 7(0) € ¢(i)\p(¢) then i is indifferent between these two
objects. In the set X we put all the agents with either no wy(#) or with w,(i) € ¢(i). Each
agent 4 in this set must be indifferent between all objects in (p(7) \ ¢(¢)) U (¢(%) \ p(¢)) (i.e.,
these object are in a single tie in ¢’s preference list) by the following reasons. |p(i)| = |q()]
implies |p(2) \ ¢(¢)] = |¢(¢) \ p(¢)|. By the definition of T,(¢) it follows that any object in
p(i) \ ¢(7) is weakly preferred to any object in ¢(i) \ p(¢) by i. However, from (3) we have
u;(q(?)) > u;(p(7)), which implies that u;(q(2) \p(¢)) > w;(p(¢)\ ¢(%)), which can only happen
if ¢ is indifferent between any two objects in (p(i) \ ¢(¢)) U (¢(¢) \ p(¢)). Let m map q(i) \ p(4)
to p(i) \ q(%) as a bijective function.

Next, let Y contain every agent ¢ who has object wy(¢) such that there is an object
o € ¢q(i) \ p(¢) with o ~; wp(4). In this case ¢ must be indifferent between all objects in
(T,()\ (g(i) \ {})) U ((a(0) \ oD\ T, ().

Indeed, |p(i)| = |q(i)| implies |T;, (i) \ (q(7) \ {o})| = [(q(9) \ {o}) \ T, ()]

By the definition of T),(7) any object in T,(2) \ (¢(¢) \ {o}) is weakly preferred to any
object in (g(%) \ {o}) \ T,,(¢) by . On the other hand, w;(¢(¢)) > u;(p(3)) and o ~; wy,(7)
implies u;((¢(7) \ {0}) \ T, (%)) > w;(Tp(¢) \ (¢(¢) \ {0})), leading to the conclusion that ¢ must
be indifferent between all objects in (T;,(2) \ (¢(2) \ {0})) U ((¢(¢) \ {o}) \ Tp(4)). Therefore
7 can map o to wy(i) and (g(7) \ {o}) \ Tp(¢) to T, (i) \ ¢(¢) \ {o}).

Thirdly, let Z contain every agent i with object w, (i) such that for every o € ¢(i), o >;
wp(7). Note that there is at least one agent in Z, the one who gets strictly better off in ¢, as
otherwise, if there was an object o € ¢() such that wy(¢) 7Z; o, then w;(T,(3)) > u;(q(?)\{o})
would imply u;(p(i)) = ui(T,(7) U {w,(i)}) > wi(q(s)).

Finally, we shall note that if T,(:) is empty then |p(z)| = |q(i)] = 1, so either i is
indifferent between p(i) = {w, (i)} and ¢(4), in which case 7 is in Y with 7(q(¢)) = p(i), or 4
strictly prefers ¢(¢) to p(i) and then ¢ belongs to Z.

To summarize, so far we have that for any ¢ € X UY and o € ¢(¢) \ p(7) we associate an
object m(0) € p(i) \ ¢(7) such that o ~; w(0). Furthermore, for any i € Z and o € ¢(i) \ p(?)
we have that o >; wp(%).

We build a Pareto improvement sequence as a part of a sequence involving agents
i1,12,... with corresponding objects o1, 02,... starting from any i; € Z with o1 = w,(7).
For every k > 2, let ix be the agent who receives ox_1 in gq. If iy € X UY then let
o = m(og—1), and if iy € Z then let o5, = w, (). We terminate the sequence when an object
is first repeated. This repetition must occur at some agent in Z, since for any agent ¢ the
objects in ¢(%) \ p(i) are in a one-to-one correspondence with those in p(4) \ ¢(i) by .



Let the first repeated object belong to, say, is = i € Z for indices 1 < s < t. We show
that the sequence ig,...,7;_1 is a Pareto improvement sequence. To see this, let us first
consider an agent i € X UY. Whenever i appears in the sequence as ix € {isy1,...,0t}
she receives object ox_1 € ¢(%) \ p(¥) and in return she gives away m(ox—1) = o € p(%) \
q(%), where ¢ is indifferent between o,_; and ox. Now, let ¢ € Z \ {i;} that appears as
it € {is41,...,0t}. She receives object 0,1 € ¢(i) \ p(i) and in return she gives away
wp (1) = o € p(i) \ ¢(¢), where 0;_1 >; w,(2) by the definition of Z. Since ¢ appears in this
sequence only once, it is obvious that u;(q(¢)) > w;(p(7)). Finally, regarding i = iy = i; € Z,
i receives 0,1 € ¢(@) \ p(¢) and she gives away wp(i) = o5 € p(4) \ ¢(7), where 0,1 >; wp(%).
So we constructed a Pareto improvement sequence, and therefore p is not possibly Pareto
optimal, a contradiction. O

In Example 4, p is not necessarily Pareto optimal because it admits a one-for-two Pareto
improvement swap: 09, 03 € p(2), 01 € p(1) and 01 >3 02 72 03. It also shows that although
an assignment may not be necessarily Pareto optimal there may not be any assignment that
Pareto dominates it for all utilities consistent with the ordinal preferences. The characteri-
zation above also gives us a polynomial-time algorithm to test necessary Pareto optimality.

5 Conclusions

We have studied, from a computational point of view, Pareto optimality in resource allo-
cation under additive utilities and ordinal preferences. Many of our positive algorithmic
results come with characterizations of Pareto optimality that improve our understanding
of the concept and may be of independent interest. Future work includes identifying other
important subdomains in which Pareto optimal and individually rational reallocation can
be done in a computationally efficient manner.
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Appendix
Below we provide the proof of Theorem 2.

Proof. The reduction is done from 2-NUMERICAL MATCHING WITH TARGET SUMS (2NMTS
in short). The input of 2NMTS is a sequence ay,...,ax of k positive integers such that
S i =k(k+1) and 1 < a; <2k —1fori=1,....k and a; < ay... < ap. We
want to decide if there are two permutations 7 and 6 of the integers {1, ..., %k} such that
w(i) +60(i) =a; for i =1,...,k. 2NMTS is known to be strongly NP-complete [35].

The reduction from an instance of 2NMTS is as follows. There are 3k+1 agents N = LU
CURU{d} where L = {{,..., 4y}, R={r1,...,mx} and C = {cq,...,c;} and 6k+2 objects
O=FUGUHU{o} where F = {fF, fR:i=1,...)k},G={gF,gF :i=1,... k}u{g“},
H = {h¢T h¢E .5 = 1,... k}. Let ¢ be a positive value strictly lower than 1/2. The
following table summarizes the non-zero utilities provided by the different objects, where
agt#1 is the agent which receives the object in the initial assignment and uqge#1 is her
utility for it, and where agt(s)#2 lists the other agents with non-zero utility for the object
and Uggy(s)x2 corresponds to their utility for it:

object || agt#1 | uagtsu agh(s)#2 Uagt(s) 2
h$'L ¢ a; (i l+e
hiCR Ci 3k T 1—¢

fE 4 1 cj witha; > 141 i
e Ti 1 cj witha; >i+1] 3k+1
gk Ti 3 ripr if i <k 3+e

difi=k 3+¢
gk l; 3 by ifi>1 3—¢

rmifi=1 3+¢
gC d 3 4. 3—¢
0 d 1

The initial assignment provides the following utilities to the agents: wu.,({h{'L, h{E}) =
3k + a;, ue, {fE,g5Y) =4 and u,, {fF,gF}) =4 fori=1...k, and ug({g®,0}) = 4.

Clearly, this instance is constructed within polynomial time and each agent has two
items in the initial assignment. We claim that there is a Pareto improvement of the initial
assignment iff {a; : ¢ = 1...k} is a yes-instance of 2NMT'S.

Assume that there exist m and 6 such that 7(¢) + (i) = a; for i = 1...k, ie., {a; : i =
1...k} is a yes-instance of 2NMTS. Note that this implies for any ¢ = 1...k that

m(1)+1<a; and 0(i)+1<aq; (1)

because (i) > 1 and 6(¢) > 1. Then consider the following assignment:
o {hST gk} (resp. {h{E,gC}) is assigned to ¢; with i < k (resp. to ¢}) with utility 4.
o {hCE gF 1 (vesp. {h{E, gl}) is assigned to r; with i > 1 (resp. to r1) with utility 4.

. {ffﬁi)v fGL(i)} is assigned to ¢;. Using (1), the utility of agent ¢; is 3k + 7 (i) + 0(i) =
3k + a;.

e {0,9{'} is assigned to d with utility 4 + e.
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Figure 3: Initial assignment for agents of L U RU {d}.

This allocation is clearly a Pareto improvement of the initial allocation.

Assume now that {a; : ¢ = 1...k} is a no-instance of 2NMTS. By contradiction, assume
that there exists a Pareto improvement p of the initial assignment. Note first that any agent
should receive in p at least two objects. Indeed there is no object which provides a utility
greater than 3+ ¢ to any agent of LU RU{d}, and any of those agents receives a utility of 4
in the initial assignment. Furthermore, any good f[ provides a utility of at most 3k + i to
an agent c;, which is strictly lower than her utility 3% + a; in the initial assignment because
aj > i+ 1 (otherwise c; would get utility O from f/?). Since the number of objects is twice
the number of agents, we can conclude that p assigns exactly 2 objects to every agent.

Let us focus first on the objects of G. Those objects are the only ones which can provide
a utility of at least 3 — ¢ to the agents of LU RU {d}. All other objects provide a utility of
at most 1 + ¢ to the agents in L U RU {d}. So, to achieve a utility of at least 4 for all those
agents in L U RU {d}, each of them should receive exactly one good from G (with non-zero
utility for it) because |[LURU{d}| = |G| = 2k+1. Figure 3 illustrates the initial assignment
for the agents of L U RU {d}. In this figure, a dashed arrow from an object of G means
that this object can be reassigned to the agent pointed at with a non zero utility. Figure 3
illustrates the fact that the goods of G could be allocated in only two different manners in
p to be a Pareto improvement of the initial endowment: either every good of G is assigned
to the same agent as in the initial assignment, or every good of G is assigned to the agent
pointed at by the corresponding arrow in Figure 3.

First, we consider the case where all goods of GG are assigned in p exactly as in the initial
assignment. To achieve a utility of at least 4, every agent r; should receive the object f*
to complete her bundle of two objects. This implies that those objects cannot be assigned
to agent ¢;, with ¢ = 1...k, in order to ensure that they get a utility of at least 3k + a;.
Therefore every agent ¢; should receive the object hZCR with utility 3k. Furthermore no agent
¢; can receive an object fJR to complete her bundle of two objects because this object would



provide her a utility of at most a; —1. So, every agent ¢; should receive the object h{'Z. From
this, we conclude that p should be exactly the same assignment as the initial assignment,
which contradicts the assumption that p Pareto-dominates this initial assignment.

From the previous paragraphs, we know that any good of G should be assigned in p to
the agent pointed at by the corresponding dotted arrow in Figure 3. To achieve a utility of
at least 4, any agent ¢; should receive the good h$'L to complete her bundle of two objects.
If an agent ¢; did not receive at least one good fJR such that a; > j + 1, then the maximal
utility achievable by ¢; would be 3k 4 a; — 1, which would be strictly lower than her utility
in the initial assignment. So, every agent ¢; should receive exactly one good fJR such that
a; > j + 1. Therefore no good ff can be assigned to agent r;. So, to achieve a utility of
at least 4, any agent r; should receive the good hiCR to complete her bundle of two objects.
Then the good o should be assigned to agent d to complete her bundle of two goods. Finally
it remains to assign to every agent c; a good ij such that a; > 7 + 1.

Now let us focus on the pair of goods assigned to agent ¢; in p with ¢ = 1...k. Note
that those two objects belong to F. We know that the total amount of utility provided by
the goods of F to the agents of C' should be exactly equal to 3k? + k(k + 1). Furthermore
any agent c; should receive a share of at least 3k + a; of this total amount of utility. Since
Zle(Sk + a;) = 3k* + k(k + 1), any agent ¢; should receive two objects f/ and fﬁ such
that ue, ({1, f/'}) = 3k + a;. Let w and 6 be the two permutations of {1,...,k} such that
for any 7 = 1...k, the objects ff(i) and ng(ii) are assigned in p to agent ¢;. Those two
permutations are such that for any i = 1...k, (i) +6(i) = a;. This leads to a contradiction
with the assumption that {a; : i = 1...k} is a no-instance. O



