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Abstract

Are Plurality voting, the Kemeny rule, Approval voting, and the Borda Mean Di-
chotomy rule all versions of the same voting rule? Yes, in a sense. In an extension
of work by Barthélemy and Monjardet [3], we consider functions F that assign real
number scoring weights F (R1, R2) to pairs of binary relations on a finite set A of al-
ternatives, serving as symmetric measures of similarity between R1 and R2. Any such
F induces a symmetric binary relational scoring rule F – an abstract aggregation
rule with arbitrary binary relations as ballots R1 and as aggregated outcomes R2.
The level of generality is surprisingly effective. By restricting the classes of relations
allowed as ballots and elections outcomes, F yields more familiar and concrete scor-
ing rules. The symmetric assignment FH , for example, arises from an inner product
in a simple and natural way, and restrictions of the induced scoring rule FH yield
all the aformentioned familiar voting rules. Moreover, the inner product formulation
yields a Euclidean form of distance rationalization for FH , resulting in a universal
distance rationalization for all concrete scoring rules obtained as restrictions.

1 Introduction

In a scoring rule, as defined traditionally, each voter specifies as her ballot a ranking (a linear
order, or sometimes a weak order) of all alternatives in some finite set A. Each such ballot
contributes points to individual alternatives, according to some fixed table of contributions
wherein the contribution of a ballot to an alternative x depends on how highly x is ranked
by that ballot. The outcome of the election is the alternative(s) x awarded the greatest
point total (the sum of individual contributions made to x by the voters). Alternatively,
the outcome might be the social ranking of alternatives in which x is ranked over y when x
has a greater point total than does y. Such a social ranking is a binary relation on A.

In a relational scoring rule, “ballots” come from some class C1 of binary relations on A:
dichotomous weak orders, or partial orders, or equivalence relations, or . . . Each ballot Ri
awards F (Ri, R) points directly to each binary relation R from some possibly different class
C2. The outcome is the relation R ∈ C2 with most points. The idea has been studied in the
case of linear order relations in [20] and [5], where ranking scoring rules are shown to be
strictly more general than traditional ones; [6] takes a related approach towards judgment
aggregation.

Our most important example FH of a universal scoring assignment represents the same
aggregation rule as the median procedure of Barthélemy and Monjardet [3]. While this
manuscript has significant overlap with [3], it also contains substantial novel content. We
discuss these similarities and differences in Appendix II.

If we imagine an axis of abstraction or generality for scoring rules, then traditional
scoring rules (with ballots limited to the class of linear orders) sit at the least abstract end
– at the left, in Fig. 1 – with ranking scoring rules slightly to their right. The generalized
scoring rules, considered implicitly by Meyerson in [15] and defined explicitly in [20], allow
ballots from a completely abstract set I and election outcomes from a second abstract set
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O. They sit at the opposite end of our axis.1 The pairwise scoring rules of Xia and Conitzer
[18] allow partial orders as ballots, with election outcomes that are individual alternatives,
or linear orders, or sets of alternatives having a specified size k.

Figure 1: An axis of abstraction for scoring rules.

The symmetric binary relational scoring rules (aka symmetric BRSRs) introduced here
are situated, on our axis of abstraction, between generalized scoring rules and the scoring
rules for partially ordered ballots in [18], to which they are closely related. The meaning of
“pairwise” rule is essentially the same in both contexts. But there are significant differences.
A principal focus of [18] is the Maximum Likelihood Estimator interpretation that applies
to certain aggregation rules, and we do not consider MLE interpretation here. The partial
orders that serve as ballots for the pairwise rules in [18] allow two distinct alternatives to
be incomparable, but do not allow them to be equivalent (as we do here).

A more important distinction is that complete symmetry between inputs (ballots) and
outputs (potential election outcome) becomes apparent only at the BRSR level of generality.
The value F (R1, R2) can be viewed as a symmetric measure of similarity between the two
relations, so that the points awarded to the potential election outcome R2 by the ballot R1

can equally well be considered an award by the ballot R2 to the potential election outcome
R1. That symmetry is usually broken when we induce a concrete scoring rule by restricting
ballots to members of one subclass C1 of binary relations on A and potential outcomes to
members of a possibly different subclass C2. But the underlying symmetry of the unrestricted
scoring assignment F tells us that this restriction is, in a sense, the same concrete rule as
that obtained by switching the roles of C1 and C2. We will see that Approval voting and the
Borda Mean Dichotomy rule are, in this switching sense, the same (see also [7], [8]).

We’ve all seen examples of false, or empty, generalization, wherein the enlarged class of
objects adds none that are inherently interesting, the idea itself yields no new understanding,
and the proofs and constructions similarly fail to be novel. Its antipode, a consequential
generalization, yields insights that would not be apparent at either higher or lower levels of
abstraction. Our view is that symmetric binary relational scoring rules are consequential in
this sense – a view we hope will be shared by the reader, when they have finished reading.2

The remaining sections are organized as follow: after the technical preliminaries of §2, we
introduce the universal and symmetric binary relational scoring rule FH in §3. Properties
of FH and its restrictions are the principal focus of this paper. Although we initially define
FH via an inner product, we show in §4 that it may also be described as a sum via a table

1In [19], Xia studies “generalized scoring rules” of a very different kind. While Fig 1. depicts an axis of
generalization for scoring rules, it is not the only such axis possible.

2Had someone suggested to me, six months ago, that scoring rules for arbitrary binary relations was a
worthwhile topic for exploration, my private reaction would probably have been “False generalization!”
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of pairwise contributions. Section 5 discusses FS , which is related to but distinct from
FH . A Euclidean version of distance rationalization for FH (and for all its restrictions) is
demonstrated in §6, with some brief concluding remarks (that mention a BRSR for the Borda
count) in §7. Appendix I contains two proofs, and Appendix II discusses the relationship of
this paper to [3].

2 Technical preliminaries

We’ll use A to denote a finite set of alternatives – alternatives might be candidates in a
multicandidate election (for example) or objects that must be grouped into several clusters
based on similarity (a very different example). A binary relation R on A is a subset of the
cartesian product A× A – equivalently, R is an element of the power set 2A×A. A class of
binary relations for A is a set C ⊆ 2A×A of binary relations on A. Such classes are typically
specified in terms of the properties required for membership. The following definitions for
these properties are not completely standard, in that they mention only those ordered pairs
(x, y) that are distinct, satisfying x 6= y.3

Definition 1 A binary relation R on a set A is

• symmetric if (x, y) ∈ R⇒ (y, x) ∈ R for each x, y ∈ A with x 6= y,

• antisymmetric if (x, y) ∈ R⇒ (y, x) /∈ R for each x, y ∈ A with x 6= y,

• complete if (x, y) ∈ R or (y, x) ∈ R for each x, y ∈ A with x 6= y,

• transitive if (x, y), (y, z) ∈ R ⇒ (x, z) ∈ R for each x, y, z ∈ A with x 6= y, x 6= z,
and y 6= z

Definition 2 Some classes of binary relations:

• W, the weak orders: binary relations on A that are complete and transitive

• L, the linear orders: binary relations on A that are antisymmetric, complete and
transitive

• P, the partial orders: binary relations on A that are antisymmetric and transitive

• E, the equivalence relations: binary relations on A that are symmetric and transitive.

Definition 3 Given a binary relation R on A, the three primitive derived relations are:

• R = {(x, y) ∈ A×A | (x, y) /∈ R},

• Rreverse = {(x, y) ∈ A×A | (y, x) ∈ R}

• Rreverse = {(x, y) ∈ A×A | (y, x) /∈ R}, also known as the dual relation Rd

and the four classifying derived relations are:

1. R ∩Rreverse = {(x, y) ∈ A×A | (x, y) ∈ R and (y, x) /∈ R}
3We have chosen, as a simplifying assumption, to ignore differences between two relations based on which

pairs of form (x, x) are members. However, most natural classes of relations contain exclusively reflexive
relations – satisfying (x, x) ∈ R for all x ∈ A – or exclusively antireflexive relations – satisfying (x, x) /∈ R
for all x ∈ A, so those pairs (R1, R2) to which we award points will typically agree on all (x, x) pairs, or
all disagree on all (x, x) pairs. Thus, if we did award points based on (x, x) differences, those points might
shift all totals up or down by a common amount, but would usually contribute nothing to the differences
among the totals.
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2. R ∩Rreverse = {(x, y) ∈ A×A | (x, y) /∈ R and (y, x) ∈ R}

3. R ∩ Rreverse = {(x, y) ∈ A × A | (x, y) ∈ R and (y, x) ∈ R}, also known as the
indifference relation ∼R (or just ∼)

4. R ∩ Rreverse = {(x, y) ∈ A × A | (x, y) /∈ R and (y, x) /∈ R}, also known as the
incomparability relation ↓R (or just ↓)

Definition 4 Let R be a binary relation on A and (x, y) ∈ A×A be a distinct pair of alter-
natives. Then (x, y) is a member of exactly one of the four classifying relations, numbered
1-4 in definition 3). We’ll use pair-caseR(x, y) to denote the classifying relation to which
(x, y) belongs.

The following proposition contains observations that, while self-evident, are useful for
what follows.

Proposition 1 Let R be any transitive binary relation on A. Then:

1. R is a weak order ⇔ no distinct pairs (x, y) ∈ R fall into pair case 4

2. R is a partial order ⇔ no distinct pairs (x, y) ∈ R fall into pair case 3

3. R is a linear order ⇔ no distinct pairs (x, y) ∈ R fall into pair cases 3 or 4

4. R is an equivalence relation ⇔ no distinct pairs (x, y) ∈ R fall into pair cases 1 or 2

5. ∼R is an equivalence relation, with equivalence classes we call I-classes

Definition 5 Two additional classes of binary relations:

• D, the dichotomous orders: weak orders on A having exactly two I-classes, known
as T – or “top” – and B – or “bottom.” When {T,B} partitions A into non-empty
pieces, we will write T > B to denote the dichotomous order relation R wherein
(x, y) ∈ R⇔ x ∈ T or y ∈ B.

• U , the plurality orders: dichotomous orders {t} > N \ {t} on A whose top contains a
unique element t ∈ A.

An Approval voting ballot (in which X ⊂ A is the set of approved alternatives) can be
identified with a dichotomous order (in which T = X and B = A \X). A Plurality voting
ballot (cast in favor of the alternative t) can be identified with a plurality order (in which
T = {t}). We are now ready to introduce the principal objects of study:

Definition 6 Let A be a finite set of alternatives. A binary relation scoring assignment,
or BRSA, is a function F that assigns a real number scoring weight F (R1, R2) to each pair
(R1, R2) of binary relations in its domain Dom(F ) ⊆ 2A×A × 2A×A. If Dom(F ) = 2A×A ×
2A×A (F assigns scoring weights to every pair of binary relations), then F is universal. If
Dom(F ) = C1 × C2, where C1 and C2 are classes of binary relations, then F is Cartesian.
If Dom(F ) = C × C and F (R1, R2) = F (R2, R1) for each (R1, R2) ∈ C × C, then F is
symmetric.

Any Cartesian BRSA F with domain C1 × C2 induces a corresponding binary relation
scoring rule, or BRSR F , as follows. Given a finite set N of voters and any profile P =
{Bi}i∈N of ballots Bi ∈ C1, each voter i ∈ N awards f(Bi, O) points to each O ∈ C2. The
election outcome F(P ) is the set O ⊂ C2 of binary relations O ∈ C2 that amass the greatest
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point total,4 as summed over all voters. F is universal (respectively, Cartesian, symmetric)
if the inducing BRSA F is universal (respectively, Cartesian, symmetric).

When C1 × C2 ⊂ Dom(F ) we’ll use FC1, C2 to denote the BRSA obtained by restricting
F ’s domain to the subdomain C1×C2, and FC1, C2 to denote the corresponding restriction of
the induced scoring rule.5

We have in mind that a single universal and symmetric BRSR F can, via restriction to
various Cartesian subdomains C1 × C2, yield an assortment of more familiar and concrete
aggregation rules. When C1 6= C2, symmetry of the mother rule F is lost in the restriction
FC1, C2 , if only because of the asymmetry of C1 × C2. This factor may explain why scoring
rules have not previously been recognized as arising from symmetric measures of similarity
between binary relations.

3 The universal and symmetric rule FH

Suppose our finite set A of alternatives has cardinality m. Choose some reference enumer-

ation {(xi, yi)}(m)(m−1)
i=1 of all pairs (x, y) ∈ A×A that are distinct (satisfy x 6= y).

Definition 7 Let JH : 2A×A → <(m)(m−1) be defined as follows: for each binary relation
R ∈ 2A×A on A and each i = 1, 2, . . . , (m)(m− 1):

• JH(R)i = 1, if (xi, yi) ∈ R

• JH(R)i = −1, if (xi, yi) /∈ R.

Thus JH embeds the set 2A×A of all binary relations on A into Euclidean space
<(m)(m−1) of dimension (m)(m − 1). Geometrically, JH identifies binary6 relations with
vertices of a certain hypercube H in <(m)(m−1), with JH(R) serving as a symmetric version
of R’s characteristic vector (as qualified by footnote 6). H is centered at the origin, aligned
with the coordinate axes, with side-length 2.

Note that the norm ‖JH(R)‖ of each embedded relation has the same value (here,√
(m)(m− 1) ), so these vertices also sit on the sphere of radius

√
(m)(m− 1) centered at

the origin. JK thus satisfies the following definition:

Definition 8 A function J : 2A×A → <k is spherical if the Euclidean norm ‖J (R)‖2 has
the same value for every binary relation R ∈ 2A×A.

Our initial formulation of FH is via the inner product (aka dot product) of these sym-
metric characteristic functions. More precisely:

Definition 9 The universal and symmetric binary relational scoring assignment FH , with
corresponding scoring rule FH , is given by

FH(R1, R2) = JH(R1) · JH(R2) =

(m)(m−1)∑
i=1

(JH(R1)i) (JH(R2)i). (1)

4As one would expect, O can contain a single relation O, or more than one (tied) relations, when several
O ∈ C2 share a greatest total.

5It does not matter whether one first induces a scoring rule from a scoring assignment and then restricts
the domain, or restricts first and induces second. The result is the same, and we’ll be sloppy about the
distinction.

6This identification is bijective if we restrict JH ’s domain to reflexive relations only (or to antireflexive
relations only), but maps any two relations to the same vertex if they differ only on pairs (x, x) on the
diagonal of A×A.
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and equivalently by a symmetric count of pairs on which R1 and R2 agree and disagree:

FH(R1, R2) = |{(x, y) ∈ A×A | x 6= y and (x, y) ∈ R1 ⇔ (x, y) ∈ R2}|
− |{(x, y) ∈ A×A | x 6= y and (x, y) ∈ R1 ⇔ (x, y) /∈ R2}|.

(2)

We leave the proof of equivalence to the reader. The standard geometric interpretation
of the Euclidean inner product tells us that

FH(R1, R2) = ‖JH(R1)‖ ‖JH(R2)‖ cos(θ) (3)

and we know that the underlined terms are constant. Thus FH(R1, R2) is a scaled version
of the cosine of the angle between the spatial locations (as determined by JH) of the two
relations; this interpretation supports the view that FH(R1, R2) is a symmetric measure of
similarity between binary relations. The equivalent formulation (2) supports this view as
well, and also yields a particularly simple characterization of the induced scoring rule as a
form of pairwise majority rule:

Proposition 2 Let P = {Bk}k∈N be a profile of binary relations, and R be any binary
relation on A. For (x, y) ∈ A× A with x 6= y let supp(x, y) denote |{k ∈ N | (x, y) ∈ Bk}|.
Then R ∈ FH(P ) if and only if R meets majoritarian condition (4)

supp(x, y) >
|N |
2

=⇒ (x, y) ∈ R =⇒ supp(x, y) ≥ |N |
2

(4)

for each (x, y) ∈ A×A with x 6= y.

Proposition 2 shows that at the level of generality of a universal BRSR, it is possible to
reconcile the conflict between being a scoring rule and satisfying (an abstract version of)
Condorcet’s principle; one could say that this conflict arises from the restriction process.
This proposition may also seem to suggest that rule FH is both trivial and uninteresting, so
we turn next to arguing otherwise, by noting the remarkable variety of familiar aggregation
rules that can be obtained as restrictions of FH . We’ll have more to say, in the next section,
about the intuition behind definition 9.

In perusing the following Theorem 1 the reader should note both the earlier comments
on plurality and approval ballots (immediately preceding definition 6), and the remarks that
follow the theorem’s statement. The proof (parts of which are in the Appendix) is elucidated
by material in the next section.

Theorem 1 (Restrictions of FH) The following aggregation rules are restrictions FHC1,C2
of FH to the indicated classes C1 (for ballots) and C2 (for election outcomes) of binary
relations.

• FHL,L = the Kemeny rule

• FHD,D = the Mean rule of Duddy and Piggins [7] (defined below)

• FHD,U = Approval voting 1 (the election outcome contains the individual alternative(s)
with greatest Approval score)

• FHD,L = Approval voting 2 (the election outcome is the weak order induced by Approval
score)

• FHL,D = the Borda Mean Dichotomy rule (defined below)
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• FHU,U = Plurality voting 1 (the election outcome contains the individual alternative(s)
with greatest Plurality score)

• FHU,L = Plurality voting 2 (the election outcome is the weak order induced by Plurality
score)

How do these restricted rules behave when there are ties? In Plurality voting1 and Approval
voting1, a tie means that several alternatives t yield plurality orders {t} > N \ {t} sharing
a highest score. With Plurality voting2 and Approval voting2 ties imply that the order ≥
induced by score is weak and not linear. The election outcome represents such a weak order
≥ in the form of the set containing all linear orders that extend ≥ (by breaking all ties);
these extensions all achieve the same greatest score. (In the Kemeny rule, as we know, the
set of linear orders with highest score need not correspond, in this way, to any weak order.)

These restrictions need not satisfy Proposition 2, because if one applies majority rule on a
pair-by-pair basis to aggregate ballots chosen from some specified class C1 of binary relations,
there is no reason to expect the result to belong to a second specified class C2. Whether or
not the restriction process retains some remnant of Condorcet’s principle depends on the
particular restriction.

Definition 10 The Mean rule of Duddy and Piggins [7] aggregates dichotomous ballots
{Ti > Bi}i∈N into a dichotomous social order T > B by considering the average

q =

∑
a∈A
|{i ∈ N : a ∈ Ti}|

m
(5)

number of approvals taken over all m alternatives. An alternative a ∈ A is placed in T if a
is approved more than q times, and is placed in B if approved fewer than q times. If there
are alternatives approved exactly q times, each may be placed in T or in B, resulting in a
tie among all dichotomous orders obtained by making such choices freely and independently
for all such alternatives.

Definition 11 When {Ri}i∈N is a profile of linear orders and a ∈ A is an alternative, we’ll
use aβ to denote the Borda score of a, in the standard sense. The Borda Mean Dichotomy
rule [8] aggregates linear ballots into a dichotomous social order T > B by considering the
average

qβ =

∑
a∈A

aβ

m
(6)

Borda score taken over all m alternatives. An alternative a ∈ A is placed in T if aβ > qβ

and is placed in B if aβ < qβ. If there are alternatives with aβ = qβ, each may be placed in
T or in B, resulting in a tie among all dichotomous orders obtained by making such choices
freely and independently for all such alternatives.

Note that Borda Mean Dichotomy is not a new rule – it is used as a single step in the
iterative elimination process of Nanson’s rule.

One method for calculating a Borda score in the context of weakly ordered ballots is to
extend each such ballot to a linear order, and then award to each alternative x the average
number of points awarded (according to the standard Borda score, applied to the linear
extension) to all alternatives in x’s I-class. If one applies that method to the Borda mean
Dichotomy rule with dichotomous ballots, the result is the Mean rule of Definition 10.

The seven restrictions mentioned in Theorem 1 are not the only possibilities. For ex-
ample, the restriction FHE,E seems to be an interesting and plausible rule for aggregating
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equivalence relations, and could be adjusted via further restrictions that impose an endoge-
nously specified number of equivalence classes (among ballots, outcomes, or both). For that
matter, the restrictions of FHW,W and FHP,P also seem worth exploring, but we leave that for

the most part to the future, except for a brief comment in section 5.7

4 Pairwise Scoring Rules

One way to generate a scoring weight F (R1, R2) from a pair of binary relations is to sum
independent contributions from each pair (x, y) ∈ A × A. We will think of (x, y)’s con-
tribution KR1,R2

(x, y) as measuring the extent to which R1 and R2 “agree” on the two
alternatives x and y, and will assume that each contribution depends only on the values of
pair-caseR1

(x, y) and pair-caseR2
(x, y) (see definition 4) – equivalently, KR1,R2(x, y) depends

only on the vector of answers to the following four membership questions:

(x, y) ∈ R1? (y, x) ∈ R1? (x, y) ∈ R2? (y, x) ∈ R2? (7)

More precisely:

Definition 12 A pairwise contribution function K is a partial function8 that assigns a
real number output KR1,R2(x, y) to a pair (R1, R2) of binary relations on A together with a
distinct pair (x, y) ∈ A×A, and that satisfies the following condition:

pair-caseR1
(x, y) = pair-caseR1

(x′, y′) and pair-caseR2
(x, y) = pair-caseR2

(x′, y′)

=⇒
KR1,R2(x, y) = KR1,R2(x′, y′)

(8)

for all distinct pairs (x, y), (x′, y′) ∈ A × A. K satisfies relational symmetry if
KR1,R2

(x, y) = KR2,R1
(x, y) holds for all R1, R2, and x 6= y, and satisfies pair-reversal

symmetry if KR1,R2
(x, y) = KR1,R2

(y, x) holds for all R1, R2, and x 6= y.9

Definition 13 A BRSA F is pairwise if is a restriction of some BRSA

FK(R1, R2) =
∑

(x,y) ∈ A×A, x 6= y

KR1,R2(x, y) (9)

induced as in equation (9) by a pairwise contribution function K. The domain of FK is
{(R1, R2) ∈ 2A×A × 2A×A | KR1,R2(x, y) is defined for all (x, y) ∈ A×A with x 6= y}.

As each contribution KR1,R2
(x, y) is eventually added to the contribution KR1,R2

(y, x) of
the reverse pair, it seems that one might as well replace a K that fails pair-reversal symmetry
with a symmetrized version KSym

R1,R2
(x, y) = 1

2 [KR1,R2
(x, y) +KR1,R2

(y, x)], but some K will
arise in an initially asymmetric form.

An pairwise contribution function K may be presented in the form of a pairwise con-
tribution table similar to Table 1A (below). Any such table is read as follows: given any

7Observe that when R1 is a linear order and R2 is an equivalence relation, JH(R1) · JH(R2) = 0 (this
can be seen more directly in Table 1B, section 4). Such relations are orthogonal, according to JH , implying
that FH has no useful restrictions that aggregate equivalence relations to obtain linear orders (or vice-versa).
Is this consequence peculiar to JH , or reflective of some more general sense in which these two classes of
relations are somehow orthogonal? We suspect the latter, but as yet have no formulation expressing that
sense precisely.

8We allow KR1,R2
(x, y) to be undefined for some values of R1, R2 ∈ 2A×A and x, y ∈ A with x 6= y.

9 Our convention for either of these symmetry equations will be that they hold when both sides are
undefined, but fail when exactly one side is defined.
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distinct pair (x, y) of alternatives, we choose the row i labeled with pair-caseR1
(x, y) and the

column j labeled with pair-caseR2
(x, y); KR1,R2(x, y) given by the number in the (i, j) cell of

the table. The particular entries of Table 1A represent a pairwise contribution function KH

that induces the same BRSA FH defined in the previous section. We can see this by match-
ing the table entries with terms of the sum representing FH (in definition 9) as an inner
product. For example, suppose (a, b) is a pair of distinct alternatives, with (a, b) = (xi, yi)
and (b, a) = (xj , yj), in the enumeration fixed at the start of section 3. Further assume
(a, b) ∈ R1 ∩Rreverse

1 and (a, b) ∈ R2 ∩Rreverse
2 . Then the ith term in the inner product sum

(of equation (1)) is (+1)(−1) = −1, matching the (3, 2) entry KH
R1,R2

(a, b) in Table 1A. The

jth term makes a contribution of (+1)(+1) = 1, and this is the (3, 1) entry (as dictated by
the pair-cases of (b, a) for the two relations).

(x, y) R2 ∩Rreverse
2 R2 ∩Rreverse

2 R2 ∩Rreverse
2 R2 ∩Rreverse

2

R1 ∩Rreverse
1 1 −1 1 −1

R1 ∩Rreverse
1 −1 1 −1 1

R1 ∩Rreverse
1 1 −1 1 −1

R1 ∩Rreverse
1 −1 1 −1 1

Table 1A: The table for the pairwise contribution function
KH , inducing the universal and symmetric BRSA FH .

In particular, KH
R1,R2

(a, b) 6= KH
R1,R2

(b, a), and so the KH given by Table 1A fails to
satisfy pair-reversal symmetry. More generally, pair-reversal symmetry of a pairwise contri-
bution function K is equivalent to the following property for K’s table: the combined effect
of switching the first row of entries with the second row and also switching the first column
of entries with the second column (without switching labels for these rows and columns) is
to leave the entries unchanged.10

Thus, when we construct Table 1A so as to match the inner product formula on a
term-by-term basis, the consequence is a table that violates the condition for pair-reversal
symmetry. However, if we then apply to KH the averaging process described earlier (imme-
diately after definition 13), the result is the reversal-symmetric function KH? of Table 1B.
For example, the (3, 2) entry of −1 and (3, 1) entry of +1 (from Table 1A) are averaged,
yielding 0 as the Table 1B entries in the (3, 2) and (3, 1) positions. Thus while KH? does
satisfy pair-reversal symmetry, and induces the same BRSA FH as Table 1A, it no longer
matches the inner product formula on a term-by-term basis.

(x, y) R2 ∩Rreverse
2 R2 ∩Rreverse

2 R2 ∩Rreverse
2 R2 ∩Rreverse

2

R1 ∩Rreverse
1 1 −1 0 0

R1 ∩Rreverse
1 −1 1 0 0

R1 ∩Rreverse
1 0 0 1 −1

R1 ∩Rreverse
1 0 0 −1 1

Table 1B: The table for the pairwise contribution function KH?,
which satisfies pair-reversal symmetry and induces the same BRSA FH .

10Symmetry of the table about the diagonal (i.e., equality of the (i, j) entry with the (j, i) entry) corre-
sponds to relational symmetry of the corresponding pairwise contribution function K. Table 1A is symmetric
in this sense, as are the other tables we provide.
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What role do these two tables play? Table 1A suffices to establish that the universal and
symmetric BRSA FH is a pairwise rule (Definition 13, which is consistent with the definition
of “pairwise” in [18]). Of course, it is also the case that FH arises as an inner product, so
it is worth remarking that these properties are independent; a symmetric BRSA can be
pairwise without arising as an inner product, and can arise as an inner product without
being pairwise (and such examples exist even among universal BRSAs), Nonetheless, the
natural examples that we know of (at the time of writing) are pairwise and also arise as
inner products (hence, they are symmetric), although not all are universal.

Table 1B may be thought of as a simplified version of 1A. We turn to Table 1B to gain
insight when thinking about the nature of various restrictions of the scoring rule FH (in
the proof of theorem 1, for example) or when comparing corresponding restrictions for two
different BRSAs (as in the next section). As one example, consider the scoring rule FH2A×A, E
which aggregates arbitrary relations11 into an equivalence relation and is represented by the
eight entries of columns 3 and 4 of Table 1B. What do the four zeros (among these eight
entries) tell us one thing about the behavior of FH2A×A, E . . . and what do the four nonzero
entries tell us?

5 FS – an alternative to FH

We next consider a different unrestricted pairwise extension FS , which shares some, but
not all, of FH ’s properties.

Definition 14 Let J S : 2A×A → <(m)(m−1) be defined as follows: for each binary relation
R ∈ 2A×A on A and each i = 1, 2, . . . , (m)(m− 1):

• J S(R)i = 1, if (xi, yi) ∈ R ∩Rreverse

• J S(R)i = −1, if (xi, yi) ∈ R ∩Rreverse

• J S(R)i = 0, if (xi, yi) ∈ R ∩Rreverse or (xi, yi) ∈ R ∩Rreverse

Thus J S is an alternative embedding of binary relations on A into <(m)(m−1). Unlike the
case for JH , the norm ‖J S(R)‖ of an embedded relation varies for different R, so J S is not
spherical. While some relations are still located at vertices of the same hypercube H, others
now sit at midpoints of H’s lower-dimensional faces (or at the origin). Our first formulation
of FH is again via an inner product:

Definition 15 The universal and symmetric binary relational scoring assignment FS, with
corresponding scoring rule FS, is given by

FS(R1, R2) = J S(R1) · J S(R2) =

(m)(m−1)∑
i=1

(J S(R1)i) (J S(R2)i). (10)

Note that for (a, b) ∈ A × A with a 6= b, if (a, b) = (xi, yi) and (b, a) = (xj , yj), then
J Si = J Sj . This was not the case for IH , and explains why there is no need to apply
averaging to Table 2; its initial form – wherein table entries match the corresponding terms
of the sum in (10) – is already pair-reversal symmetric:

11A ballot that fails itself to be an equivalence relation might be interpreted as a noisy observation of
some “true” equivalence relation, in the spirit of Condorcet’s Jury Theorem.
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(x, y) R2 ∩Rreverse
2 R2 ∩Rreverse

2 R2 ∩Rreverse
2 R2 ∩Rreverse

2

R1 ∩Rreverse
1 1 −1 0 0

R1 ∩Rreverse
1 −1 1 0 0

R1 ∩Rreverse
1 0 0 0 0

R1 ∩Rreverse
1 0 0 0 0

Table 2: The table of pairwise contributions inducing FS.

In what ways are FS and FH similar? Different? As Tables 1B and 2 agree in all but 4
of their 16 entries, it is clear that any restriction of FS that never makes use of these 4 cells
must be equal to the corresponding restriction of FH . For example, FSL,L = FHL,L (each is

the Kemeny rule) and FSP,L = FHP,L; more generally, for any class X of binary relations,

FSX ,L = FHX ,L and FSL,X = FHL,X .
On the other hand, thanks to the different (3, 3) entries of Tables 1B and 2 (and the

different(4, 4) entries), some very simple profiles demonstrate that FSW,W 6= FHW,W (respec-

tively that FSP,P 6= FHP,P). Given a profile {Wi}i∈N of weak orders and a potential weak

order outcome W /∈ L, let W † be a linear extension of W . Then according to FS , the total
score

∑
i∈N F

S(Wi,W ) awarded W is equal to the score
∑
i∈N F

S(Wi,W
†) awarded to W †,

so it is impossible for W to be the uniquely highest-scoring member of W. With FH it is
certainly possible for some W ∈ W \ L to achieve the uniquely highest score (for example,
when the profile consists of unanimous ballots of W ). Something similar happens when one
substitutes P for W.

Our tentative interpretation is that FS treats weak orders (and partial orders) purely
as knife-edge transitions among a set of tied linear orders, while FH treats them as credible
stand-alone outcomes.12 Perhaps the only distinction between FS2A×A, 2A×A and FS2A×A,L is
that the non-linear relations achieving maximal score are explicit for the former and are
implied (by the set of linear orders achieving greatest score) for the latter. If so, that might
suggest that FS has no raison d’être, representing a “naive” extension of Kemeny, while
FH is a more sophisticated extension. But these assertions are speculative at this time.

6 Euclidean Distance Rationalization of Inner Product
Scoring Rules

The standard approach to distance rationalization of a voting rule G (see [1], [2], [4], [9], [10],
[11], [12], [13], [14], [16], [17]) begins with a metric δ on the space of possible ballots, and
extends it via summation to a measure of distance on profiles, with δ({Bi}i∈N , {B′i}i∈N ) =∑
i∈N δ(Bi, B

′
i). If {B′i}i∈N represents a consensus among the voters that the winner is t, and

is closer to {Bi}i∈N than is any other such consensus profile, we demand G({Bi}i∈N ) = t. If
one can identify a metric δ as well as a notion S of consensus such that all such demands are
satisfied, we say that G is metric rationalized via δ and S. Reasonable notions of consensus
in favor of t include “unanimous rankings (with t top-ranked),” “existence of a Condorcet
alternative t,” and others.

Euclidean distance rationalization for a voting rule G differs in some respects, but is
closely related in spirit (see [20]). We assume that ballots are drawn from set I and election
outcomes from another set O, and with functions JI : I → <k and JO : O → <k used to

12This suggests the possibility that a Maximum Likelihood Estimator interpretation of FS views weak
or partial orders as noisy observations of an objectively “correct” ground truth consisting of a linear order,
while FH allows the ground truth itself to be weak or partial.
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induce the Euclidean metric (so that δ(b, o) = ‖JI(b) − JO(o)‖2 for each (b, o) ∈ I × O,
with ‖ ‖2 denoting the standard Euclidean norm). The extension δ is now a bit different.
If {bi}i∈I is a profile of ballots in I and o ∈ O, we set

δ({bi}i∈N , o) =
(∑

i∈N
δ(bi, o)

2
) 1

2 =
∥∥(δ(b1, o), δ(b2, o), . . . , δ(bn, o))∥∥2 (11)

Notice that in the special case I = O, JI = JO this agrees with the earlier extension of δ
to δ with the second profile consisting of unanimous ballots of o . . . except of course that we
are using the ‖ ‖2-norm rather than the ‖ ‖1-norm to extend metrics to cartesian product
spaces.13 Euclidean rationalization of rule G via JI and JO now demands that G({bi}i∈N )
equal the element o ∈ O minimizing δ({bi}i∈N , o).14 Our immediate goal here is:

Proposition 3 The universal and symmetric scoring rule FH is Euclidean rationalizable
via the same embedding JH used, in definition 9, to represent FH as an inner product (with
JH serving both as JI and as JO in the above definition of Euclidean rationalization).

Corollary 1 All restrictions FHC1,C2 of FH are Euclidean rationalizable via the common

embedding JH – i.e., via a common induced Euclidean metric.

There is a limited sense, then, in which the Kemeny rule, plurality voting, the Borda mean
dichotomy rule, etc. are all Euclidean rationalized by the same metric.15 The very short
proof of proposition 3 that follows relies on JH being spherical.16

Proof: For Ri, R any two binary relations,

‖JH(Ri)− JH‖22 = (JH(Ri)− JH(R)) · (JH(Ri)− JH)

= ‖JH(Ri)‖22 + ‖JH(R)‖22 − 2JH(Ri) · JH(R)
(12)

and the underlined term is constant, so that the R minimizing
∑
i∈N ‖JH(Ri)−JH(R)‖22

is the same as the R maximizing
∑
i∈N JH(Ri) · JH(R).

7 Borda-like Rules and Concluding Remarks

For x an alternative and R a binary relation, let xR denote {y ∈ A | (x, y) ∈ R}, Rx denote

{y ∈ A | (y, x) ∈ R} and xβR = |xR|−|Rx| = |xR\Rx|. It is easy to see that when R happens

to be a linear order, xβR is a symmetric version of the Borda scoring weight awarded x by

ranking R. Let J B : 2A×A → <m by J B(R)i = (xi)
β
R, where x1, x2, . . . , xm enumerates

A. Thus J B is a third embedding of binary relations on A into Euclidean space (of lower
dimension than that for the earlier embeddings).

Linear orders are mapped by J B to the vertices of the m-permutahedron (see [20])
and these vertices are equidistant from the origin, but other relations are sent closer, and
J B is not spherical. The universal and symmetric binary relational scoring assignment
FB , with corresponding scoring rule FB , is given by FB(R1, R2) = J B(R1) · J B(R2) =

13Except for the historic precedent set by Kemeny in extending Kendall distance between individual
rankings, I am unclear why the standard distance-rationalization approach extends via the ‖ ‖1-norm only.

14As shown in [20] Euclidean rationalizability is equivalent to being a Mean Proximity Rule (G always
selects the output closest to the mean input) and to being a scoring rule (in the appropriate sense).

15“Limited” in that the common embedding JH does not map two different classes of binary relations to
the same points of <(m)(m−1).

16Lirong Xia has pointed out (private communication) that the argument goes through providing at least
one of JI , JO are spherical.

12



m∑
i=1

(J B(R1)i) (J B(R2)i). Examples suggest that FBL,L is the Borda count (in the same

sense that FHD,L was a form of approval voting), but we do not yet have a proof. Prelimi-

nary investigation suggest that certain of the other restrictions of FB may agree with the
corresponding restrictions of FH , but that restrictions of FB to partial orders may not be
interesting.

Is there a broad class of universal and symmetric binary relational scoring rules that
are truly interesting, or is FH the only really notable example? Does the uniform form of
Euclidean distance rationalization for all FH restrictions extend to a universal, interesting
Euclidean version of maximum likelihood rationalization for all its restrictions? These are
matters for further study.
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8 Appendix I
We provide proofs for a few parts of Theorem 1:

FHD,L = Approval voting 2 (the election outcome is the weak order induced by Approval score, expressed as

a tie among all linear orders that extend this induced weak order.)

Proof: Recall that A is our set of alternatives, and N is the set of voters. Let P = {Xi}i∈N be an
approval profile (so that Xi ⊂ A is the set of alternatives approved by voter i) and P † = {Di}i∈N be the
corresponding profile of dichotomous orders; in terms of the notation introduced in Definition 5, this means
that Di = Xi > N \Xi for each i ∈ N .

For any x ∈ A, let
App(x) = |{i ∈ N |x ∈ Xi}| (13)

denote the conventional approval score of alternative x, and for any linear order relation R ∈ L, let

Score(FH, R) =
∑
i∈N

FH(Di, R) (14)

denote the total FH-score of relation R for the profile P †. We need to establish that a linear order achieves
a maximal FH-score if and only if it is an extension of the weak order induced by approvel score.

Suppose that > is a linear ordering of A and >’s FH-score is at least as great as that for any other

linear ordering of A. Rename the alternatives so that x1 > x2 > · · · > xj > xj+1 > · · · > xm. To

show that > is an extension of the weak order induced by approvel score, it suffices to show for each two

successive alternatives xj > xj+1 that App(xj) ≥ App(xj+1). Let >τ be the ordering of A that transposes

xj and xj+1 but otherwise agrees with >: x1 >τ x2 >τ · · · >τ xj−1 >τ xj+1 >τ xj >τ xj+2 · · · >τ xm.

Let Nx>y denote {i ∈ N : x ∈ Xi and y /∈ Xi}. Then any single voter who approves xj and does not

approve xj+1 contributes 1 to Score(FH, >) and −1 to Score(FH, >τ ), for a total contribution of 2 to the
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difference Score(FH, >)− Score(FH, >τ ), while any who approves xj and not xj+1 contributes −2 to that

score difference. Thus

0 ≥ Score(FH, >)−Score(FH, >τ ) = 2
(
|Nxj>xj+1 |− |Nxj+1>xj |

)
= 2

(
App(xj)−App(xj+1)

)
(15)

whence App(xj) ≥ App(xj+1), as desired.
Now consider any linear order>1 that extends the weak order induced by approval scores.

We’ll show it achieves a maximal FH-score. Choose any linear order >2 that does achieve
a maximal FH-score. Then >2 also extends that weak order (as shown in the previous
paragraph). It follows that >2 may be transformed into >1 via a sequence of transpositions
of alternatives that are order-adjacent just prior to being transposed. Equation 15 shows
that each such transposition has no effect on FH-score so >1’s FH-score is also greatest
possible.

FHL,D = the Borda Mean Dichotomy rule

The proof that follows imports some ideas and results from [8]. Consider the complete directed graph
G on the vertex set A; this means that for every two distinct alternatives x 6= y, G has both a directed edge
(x, y) from x to y and a directed edge (y, x) from y to x. An antisymmetric edge weighting w assigns a real
number edge weight w(x, y) to each such edge and satisfies that w(y, x) = −w(x, y) for each x, y ∈ A with
x 6= y.

Proof: (a) Let A, N , P = {>i}i∈N and F be as stated. Recall from [8] that the induced net preference
flow (GP , wP ) consists of the complete directed graph G on vertex set A, paired with the antisymmetric
edge weighting w(x, y) = NetP (x > y) = |{i ∈ N : x ≥i y}| − |{i ∈ N : y ≥i x}|. By the Anti-symmetric
Graph Cut Theorem of [8], the dichotomies X maximizing ToSep(X , wP ) are the Borda Mean dichotomies.
To show that these coincide with the dichotomies accruing the maximal F -score for profile P it suffices to
observe that X ’s F -score is equal to ToSep(X , wP ): either sum may be obtained by adding 1 point for each
triple (x, y, i) in XT ×XB ×N with x >i y, and −1 point for triple (x, y, i) in XT ×XB ×N with y >i x.

9 Appendix II
Reference [3] of this paper, “The median procedure in cluster analysis and social choice theory” by J. P.
Barthélemy and B. Monjardet (1981), discusses the broad applicability of the median procedure (which
is the same as our FH) to amalgamation of binary relations from a number of the important classes we
discuss here, including linear orders, weak orders (aka complete preorders), partial orders, and equivalence
relations, as well as others we do not consider, such as tournaments, pointing out that a number of known
amalgamation rules can be seen to be special cases of the median rule.

Barthélemy and Monjardet do not consider dichotomous weak orders or plurality orders, and so do
not consider approval voting, plurality voting, the mean rule, or the Borda mean rule. The reason may
be related to a difference in perspective; while our emphasis here is on scoring rules, with some secondary
discussion of distance rationalization, [3] uses the distance approach exclusively. Consequently, it is not
concerned with scoring weights that arise as inner products, but does discuss the equivalence of Kendall’s
tau to the squared Euclidean distance (under the “hypercube” embedding of relations into space), as well
as the permutahedron embedding we touch on in Section 7, and connections with Maximum Likelihood
Estimation. Note, as well, that to represent certain rules (both forms of approval voting that we consider
here, one form of plurality voting, and the Borda mean rule) as restrictions of FH it is essential that the
class C1 of binary relations from which ballots are drawn be different from the class C2 of potential election
outcomes. The focus in [3] is on examples for which the two classes are the same (although the description
on page 238 of the Slater suggests using different classes).

It might be better for the material in this appendix to be integrated with the text, rather than appearing
separately as it does here. The current approach is due primarily to shortness of time between our learning
of the connections to [3] and the date for submitting revised Comsoc-2014 manuscripts.
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