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Abstract

We consider revenue division problems in iterative settings. In our model, a group of players
has some initial resources, used in order to generate revenue. At every time-step, the revenue
shares received at time t are player resources at time ¢t + 1, and the game is repeated. The
key issue here is that the way resources are shared has a dramatic effect on long-term social
welfare, so in order to maximize individual long-term revenue one must consider the welfare
of others, a behavior not captured by other models of cooperation among economic agents.
Our work focuses on homogeneous production functions. We identify conditions that ensure
that what players find best for themselves is “nearly” what is best for the group. We apply our
results to some families of utility functions, and discuss their implication in these domains.

1 Introduction

We consider a setting where players repeatedly engage or compete with each other over time and
need to balance individual welfare and group or social welfare; this is necessary because the future
is conditional on aggregate welfare. We adopt a model where a finite set of players periodically
decide to divide up some resources amongst themselves, and where the resources available to all
of them at the next allocation period depend upon this current division; in other words, there are
complementarities between the individuals or between their associated resources. If we express
players’ preferences using utility functions, then the future utility of an individual at time ¢ depends
upon the aggregate utility of all the players up to time .

This type of interplay between individual desires and global utility is common in settings where
budgets need to be iteratively shared. Consider, for example, a large software company with several
departments. Each department works on a specific product and is allocated a budget at the end of
some time period (say, biannually). Each department uses its budget to produce a product (a tablet,
a gaming console, an operating system etc.), which is pooled at the end of the “fiscal round” and
redistributed. Here, money plays a dual role: when assigned to the divisions, money is a resource,
who use it in order to generate money-as-revenue. We assume that there are complementarities
between divisions, i.e., profits are increased by investing in all divisions; this may be due to the
fact that different products appeal to different markets —it is better to participate in several markets,
rather than focusing solely on OS development— or because some divisions, such as IT and HR,
provide services to other divisions. Divisions are faced with two conflicting agendas. On the one
hand, each division wants to maximize the revenue share that it receives (a division with higher
revenue can increase employee salaries, hire more employees to decrease workload on others, invest
in better equipment and software, etc.); on the other hand, no division wants to receive the entire
share of the revenue, as this may hurt future profits and result in lower future revenue for the division.
If one division receives a disproportionately large share of the profits, total company revenue may
dramatically decrease, which, in turn, hurts future revenue. In this setting, what is the socially
optimal way of dividing revenue? What is the revenue sharing scheme that is best for an individual
division? Is there a way to divide profits such that individual divisions are happy and social welfare
is high?

We consider the following revenue sharing problem: given a valuation function v : R} — R
and an initial endowments vector w(0) € R", find a sequence of resource allocations that maximize
social welfare on the one hand, and on the other hand, are such that players do not want to increase
their share. We begin by showing a simple, yet unfortunate result: any socially optimal sequence
of revenue divisions is not individually optimal. However, we show that when v is homogeneous of



degree k > 1, individual incentives align with group incentives in the limit. In more detail, assuming
that players care about their future utility for a sufficiently long time horizon, individually optimal
payoff divisions tend to be socially optimal payoff divisions. On the other hand, if v is homogeneous
of degree k < 1, players remain selfish even in the limit. We apply our results to CES, Cobb-Douglas
and Leontief production functions to obtain sequences of optimal and individually optimal contracts,
and we discuss the implication of our results to network flow games.

Intuitively, since long-run optimal divisions for players are aligned with the social optimum, in
any “reasonable” strategic setting we would expect players to be able to reach the socially optimal
outcome in equilibrium if they are sufficiently patient. We give two examples of strategic settings
where this is the case. In the first, players must directly negotiate about how to divide production
revenue. In the second, players have private information about their part of the production function
that they report to a mechanism that then decides on the contract.

We conclude with a discussion of related work and future directions.

2 Preliminaries

The key assumption in our work is that while players are interested in receiving a fair share of the
profits at every time step, they are also interested in increasing their long-term profits. Hence it
would not be in the best interest of any player to demand all the profits, as leaving others without a
reasonable share could actually result in lower future profits.

Formally, a group of players N = {1,...,n} has an initial resource vector w(0) =
(w1(0),...,wy(0)) € RY, there is some production function v : R} — R, which, for every
x € R , determines the production level v(x) € R;. Here and throughout the paper, boldface
letters refer to vectors; the set N is the set of all positive integers (excluding 0), and the set R is the
set of all non-negative real numbers (including 0).

Time is divided into discrete epochs indexed by t. At time ¢ = 1, the total payoff (production
value) is v(w(0)), which we denote as V7; players select an allocation vector x; from the n — 1
dimensional simplex, x; € A, where A, = {x € R} | >_"" | #; = 1}, and each player i € N
receives an individual share of w; (1) = x; 1 V3.

At time 2, the aggregate production is Vo = v(w(1)), players select xo € A,,, and the process
repeats.

A contract x is a sequence (x;);2, of vectors in A,,. At every time step ¢, player ¢ receives a
share of w;(t) = x;V;, where V; = v(w(t — 1)). The revenue that a contract x generates at time
t is denoted V;(x), and is computed recursively as described above. Observe that the value V;(x)
depends only on the first ¢ — 1 payoff divisions; we sometimes write V;(x1,...,X;—1) when this
property needs to be emphasized.

We say that a contract is stationary if for all ¢ we have x; = x for some fixed x € A,,. A
stationary contract is then identified with x, rather than the constant sequence (x),= ;.

Given a contract x = (x¢)$2 4, the fotal welfare at time T is simply Zthl Vi(x), and is denoted
swr(x). We say that a contract x* is pointwise optimal at time T if x* maximizes swp () over the
space of all possible contracts. We say that x* is universally optimal if x* is optimal at time 7" for
all T'.

We assume that players are not interested in the global social welfare provided by a contract, but
rather in their own revenue. Given a player ¢ € N, the benefit that player ¢ receives from the contract
X = (x¢)52; at time ¢ is given by x; , V;(x); we also write U, 1(x) = 23:1 x;,+Vi(x), to be player
1’s utility (or individual revenue) at time T'. We say that x* is individually optimal for player i at
time T if x* maximizes U; 7 over the space of all possible contracts. Observe that if v is continuous,
then for all 7" there exists some contract x* that is individually optimal for ¢ at time 7.

Remark 2.1. By taking the share that player ¢ receives as his utility, we implicitly assume that player
1 wants to receive a higher share of the profits at every time step. However, we also assume that the



players invest all of their revenue at time ¢ in time ¢ + 1; that is, no part of the players’ revenue
goes to generate “happiness”. This assumption is without loss of generality: our model can easily
accommodate a scenario where a fixed part of player resources goes to their welfare. More explicitly,
we can add a parameter ¢; for every i € N, where ¢; € [0, 1] is the share of the profits that ¢ keeps
for himself; ¢; can represent labor costs, server costs or employee benefits; all of our results can be
modified accordingly.

3 Optimal Contracts: First Observations

Finding a socially optimal contract at time 7" amounts to solving the following problem:

max Zthl v(wy) over (wy)l; )
s.t. S wii =V
S wi = v(wi_) Vt,2<t<T

We first show that if v is monotone increasing', one can find an optimal solution to Equation (1)
using a greedy procedure. Given a non-negative constant C, let us write A,,(C) = {w € R} |
Z;;l w; = C'}; in particular, A,, equals A,,(1).

Proposition 3.1. Let opt (V') be the value of Equation (1) when Vy = V', if v is monotone increasing,
then opt(V') is monotone increasing in V.

As an immediate corollary of Proposition 3.1 (proof omitted), we have that in order to find an
optimal contract at time 7', one must find a point w; € A, (V}) that maximizes v; then, a point
W2 € argmaxy,c A"(VQ)U(W) and so on. In other words, greedily maximizing the revenue at every
time step will result in a universally optimal contract. From a computational point of view, finding
universally optimal contracts is relatively straightforward when v is monotone, and that finding a
point that maximizes v over A,, (V') can be done in polynomial time for any V' (assuming that it is
possible to find a maximum of v over A,, in polynomial time).

Corollary 3.2. Let 7(n) be the time required to find a maximum of v over A,,(V'); if v is monotone
increasing, then finding an optimal contract at time T is in O(7(n)T)

When v is homogeneous, finding an optimal contract is even easier. Recall that a function

v : RY — Ry is called homogeneous of degree k, or k-homogeneous, if for all & > 0 and all
w € R, v(aw) = o*v(w). We now make an important observation (proof omitted): if v is
homogeneous of degree k, then there exists a stationary socially optimal contract.

Proposition 3.3. If v is monotone and homogeneous of degree k, then there is a universally optimal
stationary contract X* € A,,. Also, x* is the maximum of v over A,,.

If v is homogeneous, we get a closed formula for utility under a contract x = (x¢),- ;.

Proposition 3.4. If v is homogeneous of degree k, then the utility at time T under the contract
. T-1 ~T—1 T—1-t
X = (%), is Ve(x) = VI [Ty o(xe)®

Proof. We use induction on T'. For T' = 1 we have V;(x) = V; agreeing with the above formula.
Assuming the claim holds for 7', we show it holds for 7" + 1:

T—1 k
Visi(x) = v<VT<x>xT>VT<x>%<xT>(W“Hv(xt)k”‘l) v(xr)

k}T =1 kT—t _ kT T kT—t,
Vi I vixe) v(xy) = VI [Jox)®

t=1

Uf w; < w! forall ¢ then v(w) < v(w”)



For stationary contracts, we obtain an even simpler formula.

Corollary 3.5. Given a stationary contract X, if v is homogeneous of degree k, then Vp(x) =
‘/vlkTilfu(X)E;Tzioz kt'

Using Proposition 3.4, we obtain the following formula for the individual utility of player 7 at
time T. Upr(x) = Yo, 2 V¥ TIL_ v(xn)® ", and for a stationary contract, U; 7(x) =
Z; (ZtT=1 Vlkt_lv(x)zz;% kh)'

Remark 3.6 (Discounted Future Welfare). Discounting future returns can also be modelled in our

framework, but are omitted due to space constraints. Briefly, for a large enough discount factor, our
results still hold.

4 Individually Optimal Contracts For Homogeneous Produc-
tion Functions

The results in Section 3 show that the class of homogeneous production functions has a highly
desirable property: namely, it is possible to use the same revenue division in all rounds and derive a
universally optimal contract.

Hence, when v is homogeneous, universally optimal contracts are easy to characterize and find:
simply find a maximum of v over A,,. Identifying individually optimal contracts is a more complex
task. Using the closed formulas for individual player utility, we now turn to show the main result of
this paper: under certain assumptions, the socially optimal contract is “nearly” individually optimal.
Our results are asymptotic in nature, showing that individually optimal contracts at time 7' converge
to the socially optimal contract as T' grows. Taking a large value of T" implies that collaborative
players are far-sighted: only when players care about their long term utility do their goals match
those of the group.

In order to have a robust model of cooperation and individual incentives, we wish to capture
some notion of complementarity among players. If players are actually better off without allocating
resources to some subset of players, then there is little a-priori incentive to collaborating with them.
This notion is captured via the idea of mutual dependency.

Definition 4.1. A function v : R” — R satisfies mutual dependency if forallx € A,, and alli € N,
if z; = 0, then v(x) = 0.

Mutual dependency is an important aspect of negotiating optimal contracts; if mutual depen-
dency does not hold, then there are some players who need not contribute to the group effort, and
are somewhat expendable. In other words, suppose that x* is an optimal stationary contract for v
and that 7 = 0; then the set N \ {¢} can argue that player ¢ should receive no share of the profits,
as there exist optimal contracts that do not require any of his resources (in terms of a company, @
would be a department that is completely redundant). In what follows we assume that the function
v satisfies mutual dependency, and that there are some points in A,, for which v assumes strictly
positive values. The following example shows the importance of the mutual dependency property.

Example 4.2. Consider a setting where for any x € R, we have that v(x) = f(3_." ; x;), where
f R, — R, is a strictly monotone function. In that case, the value of v at time ¢ is simply f*(W),
where W = 7, w;(0), and f* is the composition of f with itself ¢ times. In this setting, the
only thing determining the worth of a player is the amount of money he brings to the table at time
t. Mutual dependency does not hold here. In this setting, any choice x € A,, is universally socially
optimal.



We begin with a basic question regarding properties of optimal versus individually optimal sta-
tionary contracts. Given an optimal (or pointwise optimal) contract x* € A, is it possible that x* is
also individually optimal for some 7 € N? As Lemma 4.3 shows, if v is continuously differentiable,
this is not possible.

Lemma 4.3. Suppose that v is continuously differentiable, and define F' : R" — R with F' €
{Vi,swi} (where t is a fixed time period); Given some x* that is a global maximum of F in the
interior of A\, then x* does not maximize individual utility for any i € N at time t.

Proof. First, observe that if v is continuously differentiable, then F' is as well. Moreover, since x*
is in the interior of A,,, z7 < 1foralli € N.

Let j € N be a player for whom z > 0, where i # j. We show the claim holds by showing
that 0 is not a maximum of the function g;;(z) = (x} + x)F (y(x)), where y(z) equals x* on all
coordinates but 4, j, and y;(v) = =} + z,y;(v) = =} — z.

We note that if x* € A, is a global maximum of F in the interior of A, then —(x ) =
(7 +

gf( *) for all ¢,j € N. Taking the derivative of g;;, we get g”( ) = F(y(z)) +
99
o) (55 (y(2)) — 52 (y(@))); Thus 52 (0) = F(x*) > 0. O

Lemma 4.3 implies that there exist stationary contracts that are better for individuals than opti-
mal stationary contracts. The proof of Lemma 4.3 is simple, but we wish to stress its importance.
For an individual player, this lemma presents a rather unfortunate state of affairs: any contract that
is socially optimal is necessarily individually sub-optimal. This means that social welfare and in-
dividual gains are always at odds. Can we, under certain conditions, mitigate this effect? In what
follows, we show when this is indeed the case.

Before we proceed, let us recall the following property of homogeneous functions.

Proposition 4.4. Let f : R™ — R be a k-homogeneous, continuously differentiable function, then
the point x* is a critical point of [ in the interior A,, if and only if %(X*) = %(x*) for all
i J

i,j € N, in that case, W( Y =kf(x*)foralli € N.

Using the formulas for individual utility derived from Proposition 3.4 and Corollary 3.5, we
now show that partial derivatives with respect to player j of the individually optimal contract for
player i are equal for all j # ¢ and all time. To prove this result we require that the optimization
problem faced by player ¢ is Strong Lagrangian, which implies that taking the maximum of the
associated Lagrangian is indeed the maximum of the original optimization. Since we are working
with functions and optimizing over a closed convex set, a sufficient condition is that v is concave.

Lemma 4.5. Assume v is monotone, homogeneous of degree k and that the constrained optimization
problem for player i is strong Lagrangean. Let XT = (x});2, bean individually optimal contract for

player i at time T, then for any ¢ < T and any j,j' € N suchthat j, j' # 1, 895 (x;) = 8ff (x3);
77,9

v

moreover, 5=~ (x;) = Dv_(x*) — v(xg )k Va(XT)
i,q

q - (’)!I}jﬁq q Z?:q+l ktilziyt‘/t(x;-).

Lemma 4.5 (proof omitted) implies that if x% = (x}),-, is an individually optimal contract for
i € N at time T', every point x; is “nearly” a critical point of v: the partial derivatives of v at xj
are all equal except that of player i, which differs by an amount that is O(k~("~9)) for k > 1, and

O(1/(T — q)) when k = 1. Hence, by fixing a time ¢ and taking the horizon T to infinity, we can
ensure that x; approaches a critical point of v over A,,.

First, let us observe a simple property of individually optimal contracts (proof omitted).

Lemma 4.6. Suppose that v is k homogeneous. Let X = (x}),o, be an individually optimal
contract for player i at time T, and let x* be an optimal stationary contract, then x;, > x for all
t.



Since Lemma 4.6 holds for any individually optimal contract, we get as a corollary that there is
some constant ¢ > 0 such that 27, > ¢ for all individually optimal contracts and for all ¢ € N.

Theorem 4.7. Suppose that we are given a sequence of contracts (x’)5_, such that
1. x7 is individually optimal for player i at time T for all T

2. Player i receives a weakly increasing share at every round; i.e., for every x’n = (x4(T));2 |,
it (T)Ve(XT) < i1 (T)Vera (XT)-

If v is continuously differentiable and homogeneous of degree k > 1, for any q € N, if (x4(T))F_,
converges, then limrp_, o x4(T") is a critical point of v over A,,, where the convergence speed is
linear for k > 1, and sublinear for k = 1.

Proof. By Lemma 4.5, 52 (x,(T)) = 2% (x,(T)) for all j,j' # 4. It remains to show that

’ 317.7,(1 8.%]-/7(1

My o0 525 (x4(T)) — 522 (x4(T')) = 0, which under our assumptions is equivalent to showing
ViR (g (T))

a1 Tit (TR VR (XT)
contract; recall from Lemma 4.6, xi,q(T) >z}, and 27 > 0 from mutual dependency. Thus:

Voxp)kw(xo(T))  _  Valxq)k?o(x4(T))
T _ PN — _ "
Zt:q—‘,—l zi (T Vi (XT) Zt:q—i—l w4 q(T)K =1V, (X))
_ (k%(xq(T))) 1) 1
- ] T = * T— '
T,4(T) Zt:q+1 kt=1 2 Zt:oq kt

that limr_, o ST = 0.Letx* € argmax, . v(x) be some optimal stationary
t=

Since v is homogeneous of degree £ > 1, we have that Zz:oq k! goes to infinity is 1" grows, thus
limy_ o0 a% (x4(T)) — 83—? (x4(T)) = 0. According to Proposition 4.4, this implies that the limit
of the sequence (x,(T))3%_, is a critical point of v over A,,. O

As an immediate corollary of Theorem 4.7, if v has a unique critical point in the interior of A,,
(e.g., if v is a strictly concave function), then we can obtain a stronger claim.

Corollary 4.8. Let (x5 = (x¢(T))i2,) 7, be a sequence satisfying the conditions stated in Theo-
rem 4.7; suppose that v is continuously differentiable, concave and homogeneous of degree k > 1;
then for any q, imr_, o x4(T) exists and is an optimal contract for v.

Corollary 4.8 can be interpreted as follows. Suppose that in a collaborative setting, things are
going well: the production function v exhibits increasing returns to scale (it is homogeneous of
degree £k > 1), and every player © € N can guarantee an increasing share of the profits for an
appropriate choice of contracts. If player ¢ is far-sighted enough —that is, he would consider his
overall utility for a large enough time period 7— then it is in his best interest to choose contracts that
are nearly globally optimal, at least at time periods ¢ that are sufficiently distant from the horizon
T. In other words, when players are not myopic and the production function indicates favorable
future conditions, what is best for the group is also best for the individual. We stress that ¢ must
be sufficiently far from 7'; otherwise, the claims trivially do not hold. For example, at the last time
step, T, it is clearly optimal for a player to choose an allocation that gives him 100% of the revenue.

We mention that the convergence result shown in Theorem 4.7 only requires that

: Vo (r)
hm — Ye\XT)
T=oo ST k=i (x7)

hold. For example, if k is large enough, it may compensate for any decrease in the value of V;(x%).
In general, a high degree of homogeneity would result in faster convergence of (x4 (7)) to a critical
point of v over A,,. However, the degree of homogeneity is not the only factor in play here; even if
k < 1 we may have convergence, if limp_, Zi=q+1 k*=1V,(x%) = oo. However, if k < 1, this
requires that V;(x) exhibits an extremely fast growth rate (at least exponential) in ¢.

= 0. This can occur even if the conditions stated in Theorem 4.7 do not



4.1 Individual Regret Under Stationary Contracts

Suppose that instead of letting players choose any contract, players may only choose stationary
contracts. In other words, rather than choosing a different allocation at every time step, players
choose a single allocation at time ¢ = 1, and stick to this allocation for all future time steps. This
may happen if changing the allocation at every round is costly, or if computing a maximum of v
over A, (V) at every step is computationally expensive.

If we assume that players are only allowed to reason about stationary contracts, then they would
be far more agreeable to choosing what is optimal for the group.

We say that a contract x has non-vanishing welfare if limp_, o, swp(x) = oo; that is, the sum
Zthl Vi(x) does not converge. This condition ensures that the expected future revenue of players
expect does not decay to zero with time. We now show the following claim (proof omitted)

Theorem 4.9. Suppose that v : R™ — R is k-homogeneous and continuously differentiable, such
that an optimal contract for v satisfies the non-vanishing welfare condition, and for each player i
the individual optimization problem is strong Lagrangian. Given some i € N, let (x5.)3_, be a
sequence of individually pointwise optimal stationary contracts for i, such that limrp_, . X7 = x7,
and there exists some point y* such that x* > y*, and y* satisfies the non-vanishing welfare
condition. Then xX* is a critical point of v over A,, if and only if k > 1.

Again, assuming that v has a unique maximum, we obtain the following corollary (proof omit-
ted).

Corollary 4.10. Under the same assumptions as in Theorem 4.9 with v k-homogeneous with k > 1,
if v has a unique maximum over A\,,, then any sequence (x}.)3_, of individually optimal stationary
contracts is convergent, and its limit is a group optimal contract.

We conclude that if the scope of players’ reasoning about alternative outcomes is limited to sta-
tionary contracts, then we can obtain a much stronger result than that given in Theorem 4.7. Namely,
a contract that maximizes individual welfare (over the space of stationary contracts) converges to a
global maximium of v.

Corollary 4.10 is not true if we drop the unique maximum assumption, as the following simple
example shows.

Example 4.11. Suppose that the function v is homogeneous of degree £ > 1, is differentiable over
A,, and satisfies mutual dependency. Let x*,y* € A,, be two different global maxima of v in A,,.
If x* # y*, then in particular there exist i,j € A, such that 7 > z} and y; < yj. Under x",
player j will do much better, and similarly, under y*, player ¢ will do much better. In this case, our
results imply that for every ¢« € IV, there is a socially optimal contract that is “nearly” individually
optimal for 7.

4.2 Non-Differentiable Utility Functions

The results given so far in this Section 4 heavily rely on v being continuously differentiable; we
can, in fact, prove similar claims for functions that are not differentiable, but are uniform limits of
continuously differentiable functions. Such functions are not mere pathologies but arise in some of
the applications we describe later, in Section 5. The main result of this section is Theorem 4.12, the
proof is omitted due to space constraints.

Theorem 4.12. Suppose that (v; );‘;1 is a sequence of functions that are continuously differentiable,
strictly concave and homogeneous of degree k > 1; such that v; converge uniformly to v. Moreover,
suppose that v has a unique global maximum over A,,. Given a universally optimal stationary
contract X* € A, for v, then for any fixed q, and any sequence of contracts (X*T);?:l that are
individually optimal for i at time T, we have that if imp_, o x4(T)* exists, then it is x*.



Theorem 4.7 states that when v is differentiable, strictly concave and homogeneous of degree
k > 1, individual incentives coincide with social welfare in the limit. Theorem 4.12 allows us to drop
the differentiability requirement, if we know that v is the uniform limit of a sequence of differentiable
functions that satisfy Theorem 4.7. We mention that a result analogous to Theorem 4.12 can be
shown for Theorem 4.9. That is, if v is the uniform limit of differentiable functions for which
Theorem 4.9 can be applied, then an analogue of Theorem 4.12 can be shown.

S Applications

In this section we analyze certain classes of functions to which our results apply. In first set of
examples, we explore common production functions used in the economic literature, where a; are a
set of positive weights whose sumisa =Y. | a;.

5.1 CES Production Functions
We first look at the CES production functions (Constant Elasticity of Substitution). Let v,.(x) =
1
™ 7
c- (% Z:’:l (%) ) , where c and a1, ..., a, are positive constants, and  # 0. We note that v,
is homogeneous of degree 1 and differentiable for all . When r > 1 v, is convex, when r = 1 it is
linear, and when r < 1 it is concave. We can in fact show that the optimal contract (for any r < 1)

r
Bi,r .7‘*

sz = ST A where 3; , = a/ ", this is a unique critical point of v, in the interior of A,,, but
when r > 1, it is a minimum of v,.. Applying our results, we obtain that if » < 1, then any sequence
of individually optimal contracts necessarily converges to the universally optimal contract described
above. In other words, for all strictly concave CES production functions, individual incentives
eventually align with social welfare.

It is also known that lim,._,o v,-(x) is the Cobb-Douglas production function (Section 5.2), and
lim,—, o v,-(x) is the Leontief production function (Section 5.3).

5.2 Cobb-Douglas Production Functions

A Cobb-Douglas production function is a function of the form v.(x) = ¢[]}_, z{". Note that the

Cobb-Douglas production function is a-homogeneous: v.(Ax) = c[[/_, (Az;)* = A v.(x). It
is well-known in the economic literature that the maximum of v, over A,, is unique, and equals
(%, ..., %), with the shares directly proportional to the weights a;. This is also example where the
individual utility functions have the same form as the production function, namely U; is the same
functional form with parameters ay, ..., a;—1,a; + 1,a;41...ap.

Since x* = (%,..., “») is a universally optimal stationary contract, and Cobb-Douglas func-
tions are differentiable and homogeneous of degree a, according to Theorem 4.9, we know that for
a > 1, both Theorems 4.7 and 4.9 apply.

5.3 Leontief Functions

Consider the function v(x) = ¢ min;e n{ % }, known as a Leontief production function, where ¢ and
(a;)ien are all strictly positive constants. Now vy is 1-homogeneous, which implies, by Lemma 3.5
and Corollary 3.3 that the global maximum of v, is a universally optimal contract. Since vy is not
differentiable, Theorem 4.9 does not apply here. However, observe that lim,_, _ ., v,(x) = vp(x). If
we show that v, has a unique maximum over A,,, then we can apply Theorem 4.12 and show that the
unique optimal contract has no regret for any player in the limit. Let x* be in argmaxwy; it is clear

that - = ﬁ for all i, j € N; combining this fact with > ;" | z7 = 1, implies that 27 = . Since



this optimum is unique, we know that x* is nearly individually optimal for all players, according to
Theorem 4.12.

5.4 Network Flow Games

Suppose we are given a directed, weighted graph I' = (V, E'), with a source-terminal node pair
s,t € V, where the edge set E = {ej,...,e,} and the weight of the edge e € F is a positive
integer w.. Then we define the maximum flow game vr : R™ — R to be the maximum flow
from s to ¢ that can be achieved on I' multiplied by some constant value c. Here we assume that
E ={ey,...,e,}. The constant c can be thought of as the per unit value of the commodity that is
passed through the network; in other words, the edges are players, and vr(x) is the maximum flow
through I', given that e has a capacity of c.z.. The edge e uses the amount of money it has, z., to
purchase capacity, which is multiplied by the factor c.. Given x € R”, we write I'(x) to be the graph
T with capacities c.x, instead of c.; thus I'(1") = T, and we indeed assume that w(0) = 1™. This
means that vp(x) equals the maximum flow through I'(x). This is a straightforward generalization
of the classic network flow cooperative game [10].

The first observation we make is that vr is homogeneous of degree 1: changing all edge capaci-
ties by a factor of A results in a change of A to the maximum flow as well, hence v is homogeneous
of degree 1. In consequence, finding the optimal contract takes polynomial time.

We contrast our payoff division with the canonical core-stable payoff division, which pays only
edges that are in the minimum cut (for details, see [8]). Paying only the edges in the minimum cut
in our setting is clearly not optimal: only the edges in the minimum cut survive the first iteration,
and the graph cannot pass any further flow (unless I is a degenerate graph where there are no paths
of length more than 1 from s to ¢).

Let C(T") be the set of (s,t) cuts of I'. Given a cut C' € C(I"), we can write C as a vector w¢ in
R™, with we(e) = w, forall e € C, and we(e) = 0 otherwise. We let M be an |C(I')| x n matrix
whose rows are the vectors w¢. This means that vr (x) can be rewritten as vr (X) = mingee(r) we-
x. Now, given a vector in RI¢/, we let f,.(x) be a CES production function, much like in Section 5.3,

1

ie. fr(x) =c ( \]C:II ﬁx:) " (note that here we assume that aq,...,a, = 1). We write Up
R™ — R to be vr,(x) = f.(Mrx), and noting that lim,_,_ o, vr ,(x) = vp(x) with uniform
convergence. We note that all vr ;. are homogeneous of degree 1, differentiable in the interior of
A,,, and when r < 1, are strictly concave. Therefore, if vr has a unique global maximum that is in
the interior of A,,, Theorem 4.12 holds for all vr ., which means that we can apply the results of
Section 4 to network flow games to show that stationary contracts are asymptotically individually

optimal.

6 Strategic Behavior

In Section 4, we described the individual entities in our setting as players; however, this is a slight
abuse of the term. It is usually the case that players are strategic: that is, they are allowed to choose
actions and affect the outcome in order to benefit themselves. In the model described so far, players
could evaluate outcomes based on the utility that they grant them, but they could not take action to
affect them. It was simply assumed that a central authority chooses the socially optimal outcome,
and, given that this was the choice, our analysis shows that individual entities are happy with this
choice in the limit.

The reasons we have done so are twofold. First, our basic model applies to a wide variety of
situations, and the details of the strategic interaction may vary between them. Defining equilibria
for a particular setting can also be somewhat delicate, as players’ utility at each time-step tends to
infinity. Second, in some sense, our results show that under certain assumptions the strategic model



is irrelevant. That is, we describe conditions that ensure that all players desire to reach the same
outcome (up to an €); thus, any “reasonable” setup will allow them to do so. In the remainder of
this section, we examine two particular settings that illustrate this intuition. In the first, players
collectively “vote” on how to divide the surplus. In the second, players have private information
about their part of the production function that they can strategically submit to a mechanism.

6.1 The Division Game

One simple way our model could be turned into a game is to allow each player to propose a division
of resources for each round and then divide the resources according to the (weighted) average of the
proposals. This allows players to be greedy and try and take more resources for themselves, but our
results show that sufficiently farsighted players will not choose to do so.

More formally, we assume that players “vote” on a contract in the following manner: each player
i € N proposes a contract x; € A(n)T, and the contract chosen is a weighted average of players’

choices. That is, we are given constant, non-negative weights oy, . . . , au,, such that ZZL:l a; = 1.
Given 2 = (x1,. .., Xn), the contract that is chosen is x = > ., ;. Each player has a utility
function U;(92).

Recall that a strategy profile € is an e-Nash equilibrium if for all ¢ € N, and for any contract
X Ui(2) > U;(2—;, %) — . Here (Q_;, ) denotes the strategy profile where player i proposes
the contract y and all other players propose the same contracts as under {). In words, a profile
of contracts is an £-Nash equilibrium if no player can gain more than € by proposing a different
contract.

Under this model, we can immediately apply the results in Section 4 to obtain the following
theorem.

Theorem 6.1. Assume that:

(a) The production function v is differentiable, homogeneous of degree k > 1, strictly concave and
its maximum over /\,, is x*.

(b) There exists a point y* € R} such that the non-vanishing welfare condition holds for y*, and
x* > y*.

(¢) Players may only choose stationary contracts.

Then, for any € > 0 there exists some Ty € N such that for all T > Ty, if player utility is given by
Ui 1, then the strategy profile (x*);_, is an e-Nash equilibrium.

Proof. Suppose that all players propose the socially optimal contract; then for any player ¢ € N, the
best that he can do by changing his proposal is an individually optimal stationary contract at time
T. According to Corollary 4.10, under the conditions stated in the theorem, for any € > 0 there is
some Ty such that for all T > Ty U;(x*) is within a factor of & from what is individually optimal
for 7. O

When players can only make a single decision about a contract at the start of negotiation, and
are limited to choosing a single payoff division that will apply to all subsequent rounds, choosing
what is socially optimal is an e-Nash equilibrium for players who consider their long-term utility for
a long enough time-horizon. Assuming that players may only propose a single payoff division that
will apply to all future rounds is not completely unreasonable, if one assumes that negotiations take
place only in the first round: a dynamic contract is a complex object, comprising of a sequence of
vectors in A,,, and would thus require a lot of reasoning on the side of players.



6.2 Truthful Contracts

We now turn to a setting with private information. For concreteness, let us assume that v is a CES
production function with » < 1 and player ¢+ € NN has private information a;. A natural choice of
a mechanism (without money) that takes the report from each player and selects a contract is the
mechanism M that chooses the unique optimal stationary contract (see Section 5.1). Therefore,
when reporting their private information, players are essentially choosing among a set of static
contracts. This immediately implies the following theorem.

Theorem 6.2. For any € > 0, there exists a time Ty such that for all T > Ty, M is e-truthful.
Proof. The claim is an immediate corollary of Theorem 4.9. O

In order for Theorem 6.2 to hold, it is necessary that the homogeneity and concavity of v do not
depend on the parameters that are reported. Because v is a CES production function with r < 1, the
concavity of v does not depend on the coefficients that the players report. Thus, if all players believe
that social welfare is adequately represented by such a function and want to maximize their long-
term revenue, they will truthfully report their parameters. However, in the case of Cobb-Douglas
production functions (see Section 5.2), a player is only incentivized to truthfully report his coefficient
if the sum of the coefficients is greater or equal to 1.

7 Related Work

There are several theoretical models that aim to capture a notion of collaboration among rational
players, mostly from the realm of cooperative game theory and social choice. When monetary
incentives are in play, the general setup is as follows: players form the coalition /N (or alternatively,
partition into disjoint coalitions, with the goal of maximizing total revenue, see [1]), divide revenue,
and the game ends. In the terms of our paper, cooperative game theory focuses on a single step of
our iterative process, with no repeated interactions, and no far-sightedness on the part of the players.
Other models of dynamics in collaborative sharing do exist (see [7] for a literature review, or [4] for a
more recent take on dynamics in payoff allocation), but these models do not take into consideration
resource allocation dynamics: in our setting, the payoff to players in previous rounds can affect
production volume in future rounds. There are several papers that study dynamics of coalition
formation among players (see, e.g. [11, 12]; or a literature review in [2]) however, revenue division
and its effects are not studied. The main research effort in this front is computing the maximum of
v given player resources, and doing so in an iterative manner. Thus, no revenue sharing issues are
studied.

Our main result is that the socially optimal outcome is the one that is most desirable to all
players in the limit. This idea is similar to the concept of regret minimization. Regret minimization
is a well-known benchmark in learning [5, 13] (see [9, Chapter 4] for an overview). While we use
a similar benchmark, our analysis and optimization objectives are quite different from that of the
regret minimization literature.

Our work is also similar to the problem of portfolio selection [3]: given a set of n stocks and
a sequence of changes to the stock values (given by vectors in R™), find an optimal investment
portfolio, i.e. an investment strategy that maximizes total wealth. There is a significant body of
work analyzing the performance of algorithms for portfolio selection, and its connection to regret
has been previously studied (see, e.g. [6] and the citations within). One can think of our setting as
one where the individual stocks have incentives and would like more money invested in them.



8 Conclusions and Future Work

In this paper, we explore a new model of long-term cooperation. As highlighted in Section 7, the key
novel point in our work is the fact that payoffs at time ¢ affect revenue at time ¢ + 1. This approach
can be naturally applied to several settings, essentially any strategic setting that can be expressed as
a function v : R™ — R. This includes, for example, several models from cooperative games such as
weighted matching games, market exchange games, weighted voting games, weighted graph games
and others. Of course, not all these settings have the homogeneity property that we heavily relied on,
but we hope that when restricted to classes of games, structural properties of the game can be utilized
in order to obtain some understanding of the behavior of individuals in these settings. We expect that
in settings where homogeneity does not hold, strategic behavior would be much more pronounced.
As we mention in Section 6, under our assumptions, all players want the same outcome; that is, if
they are not myopic, they would be (nearly) fully collaborative.

Alternative versions of our results can be also shown for the case where mutual dependency does
not hold. We mainly require mutual dependency to ensure that all maxima (for players as a whole
and as individuals) occur in the interior of A,,. Weaker versions of our results hold in the case where
maxima occur on the boundary of A,,. Briefly, if there are global maxima on the boundary of A,,,
then in the limit, there are some players who experience no regret at those points. However, in this
setting there may be a difference between points that minimize total regret and points that maximize
utility. Studying the relation between the two would be an interesting direction for future research.

Finally, a natural extension of our model would be the introduction of some measure of uncer-
tainty regarding the value of v. Adding noise to the model would be an interesting extension not
only due to it being more realistic, but also due to the fact that notions such as mutual dependency
may only hold in expectation; in this case, some players may be paid at a round even if they are not
contributive whatsoever, since they may be useful in future iterations.
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