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Abstract

Most previous research on statistical approaches to social choice focused on the computation
and characterization of maximum likelihood estimators (MLE) of various parametric ranking
models. In this paper, we take a traditional statistical approach by evaluating social choice
mechanisms w.r.t. two important statistical criteria: (1) consistency, a minimum requirement
for reasonable estimators, and (2) minimaxity, a well-accepted optimality criterion.
For consistency, we propose a new and general class of social choice mechanisms called gen-
eralized outcome scoring rules (GOSR) that include many commonly studied social choice
mechanisms. Given any ranking model, we fully characterize all GOSRs that are consistent
estimators of it, and derive an upper bound on the convergence rate. We also showed that the
bound is asymptotically tight for some GOSR and ranking model. This allows us to fully char-
acterize all GOSRs that are consistent w.r.t. some model. For minimaxity, we characterize a
class of minimax estimators for neutral ranking models. As a corollary, the uniformly random-
ized MLE has the highest probability to correctly reveal the ground truth among all estimators
for a number of natural ranking models.

1 Introduction
Social choice theory studies how to combine agents’ opinions or preferences to a joint decision.
Traditional social choice theory concerns how to reach a consensus among subjective preferences
of the agents, and evaluates these mechanisms based on agents’ subjective satisfaction of the joint
decision. Ideally we would like to make a joint decision that every agent is happy about, which is
often impossible due to conflicting preferences of the agents. A typical example of this scenario is
presidential elections.

In many other scenarios, our goal is to aggregate agents’ opinions and preferences to figure
out the ground truth. For example, online retailers (including Amazon.com) aggregate reviewers’
ratings of an item to provide an estimation to the ground truth quality of this item. In such settings,
instead of making a joint decision (e.g. an aggregated score) to make agents (e.g. reviewers of an
item) happy, we want to make a joint decision that is evaluated w.r.t. the objective quality of the
decision.

To reveal the ground truth by aggregating agents’ preferences, it is natural to take a statistical
approach. This can be dated back to the Condorcet Jury Theorem in the 18th century [11], which
states that fix p > 1/2, for two alternatives, suppose agents’ votes are generated i.i.d. such that each
agent has probability p to be correct, then the majority aggregation of agents’ votes converges to the
ground truth as the number of agents goes to infinity.

Let us take a closer look at the framework of the Condorcet Jury Theorem. It has an outcome
space, which is also the parameter space and consists of all possible outcomes of the voting rule,
i.e. the two alternatives. It assumes a probability distribution over agents’ votes for each outcome
(alternative) assuming that the alternative is the ground truth. Then, the majority rule is evaluated
by the probability that it successfully reveals the ground truth for randomly-generated votes, and
justified by showing that as the number of agents goes to infinity, such probability goes to 1. In
modern statistical terms, Condorcet proposed a statistical parametric model to capture the random
generation of votes, and proved that the majority rule, as a statistical estimator, satisfies an important
statistical property called consistency.

Most previous work on statistical approaches towards social choice focus on the computation
and characterization of the maximum likelihood estimators (MLEs) of various ranking models. For



example, Conitzer and Sandholm [13] investigated commonly studied voting rules that are MLEs
of some statistical models. Conitzer et al. [14] further examined this relationship for preference
functions (social choice mechanisms that output rankings). MLE inference algorithms for extensions
of Condorcet’s model, the Mallows model, and random utility models have been studied in [27,
24, 20, 1, 3]; Braverman and Mossel [7] proposed an algorithm that computes the MLE of the
Mallows model with high probability; Elkind et al. [15] studied MLE voting rules that are distance-
rationalizable; Caragiannis et al. [8] justified uniformly randomized MLE (that is, the estimator that
uniformly selects an outcome with the maximum likelihood) under the Mallow model by proving
that it has the smallest sample complexity among all estimators.

Despite the great interests in studying MLEs in social choice applications, the usage of MLEs in
the first place seems to lack a statistical theoretical justification. It is well-known that for continuous
parameter space, e.g. the space of all real numbers, MLEs satisfy many desired statistical properties
including asymptotic normality and asymptotic efficiency (i.e. they have the lowest asymptotic vari-
ance among all unbiased estimators) [16, Theorem 14.1], which justifies the (asymptotic) optimality
of MLEs. However, in many commonly studied ranking models in social choice, the parameter
space is finite and thus discrete, which means that MLEs are not automatically justified as “optimal”
estimators.

More importantly, while it is an important first step to understand properties of MLEs of various
statistical models for social choice, as done in many previous works, it is arguably more important
to move on to tackle the social choice problem by designing novel mechanisms that best reveal
the ground truth. This can be achieved in two interrelated directions: (1) propose new statistical
models to better capture agents’ preferences [27, 24, 8, 25, 12], and (2) learn “optimal” estimators
for existing models and use them as social choice mechanisms [20, 2, 5]. The first direction was
mainly pursued in the computational social choice community while the second was mainly pursued
in the machine learning community, famously known as “learning to rank” [19].

The topic of this paper is along the second direction. We take a traditional statistical approach to-
wards social choice mechanisms to study mechanisms beyond MLEs, and evaluate them w.r.t. well-
established statistical properties. This is non-trivial due to the finite/discrete parameter space in
popular ranking models and the structure of data, which are rankings over alternatives. We focus on
two well-known statistical properties, i.e. consistency and minimaxity. Consistency is often regarded
as a minimum requirements for reasonable estimators, which states that as the data size goes to infin-
ity, the output of the estimator is the same as the ground truth with probability 1. In fact, consistency
is exactly the property proved in the Condorcet Jury theorem for the majority rule. Minimaxity is a
well-accepted optimality criterion for estimators, which states that the estimator always minimizes
the worst-case frequentist loss, where the worst case is taken over all parameters used to generate
data (see Definition 5).

Our technical contributions are two-fold. First, we propose a new and general class of social
choice mechanisms called generalized outcome scoring rules (GOSR), which are natural extensions
of generalized scoring rules [26] to an arbitrary outcome spaces, including a winner, multiple win-
ners, and rankings. We think GOSRs are interesting in their own right, but in this paper they mainly
serve as a framework to obtain general results on consistency. For any given parametric ranking
model, we characterize all GOSRs that are consistent estimators w.r.t. it, and derive bounds on the
convergence rate for the output of a GOSR to reveal the ground truth; this allows us to investi-
gate a similar question asked by Conitzer and Sandholm [13] and fully characterize all GOSRs that
are consistent w.r.t. some parametric ranking models. For minimaxity, we prove that the uniform
Bayesian estimator is minimax for neutral parametric ranking models (with some loss functions).
As a corollary, for any fixed number of agents and any neutral parametric ranking model, the uni-
formly randomized MLE reveals the ground truth with the highest probability among all (determin-
istic and randomized) estimators, which shows the optimality of the uniformly randomized MLE.
The implication of these two theoretical results on the design of new social choice mechanisms is
that given a parametric ranking model, we know which GOSRs are reasonable estimators (i.e. they



satisfy consistency), and which estimators (not necessarily GOSRs) are optimal (i.e. they satisfy
minimaxity).

1.1 Related Work
Minimax estimators for various statistical models with continuous parameter spaces have been char-
acterized by Berger [6]. Statistical inference under models with discrete parameter space has at-
tracted a lot of attention recently, see [10] and references therein. Specifically, Choirat and Seri
[10] provided a sufficient condition on discrete-parameter models for MLEs to be minimax. How-
ever, their work focused on deterministic estimators, while our work focused on the minimaxity for
randomized estimators.

In social choice, the closest previous work to ours is by Caragiannis et al. [8], who focused on
the Mallows model and other distance-based models. Even though Caragiannis et al. did not ex-
plicitly mention consistency and minimaxity, they essentially proved that many commonly studied
voting rules are consistent estimators w.r.t. the Mallows model. They also obtained fine-grained
convergence rates, and proved the maximality for the uniformly randomized MLE under the Mal-
lows model. We take a different approach towards consistency and minimaxity, and our results on
consistency and minimaxity are for all neutral model, including the Mallows model.

More recently, Caragiannis et al. [9] discovered that there is a unique preference function called
modal rank within a large family of voting rules that is consistent w.r.t. all d-monotonic models. In
this paper we focused on consistency and minimaxity for any parametric ranking model.

Our work is also related to a recent work by Pivato [23], who studied voting rules that can be
viewed as MLEs, maximum a posteriori estimators (MAP), and expected utility maximizers, which
is closely related to the Bayesian estimators studied in this paper. Our work has a different focus:
we are interested in statistical properties of estimators, while Pivato focused on understanding the
mathematical structures of these voting rules.

Lastly, for social choice problems where the parameter space of the statistical model is different
from the outcome space (e.g. when we want to use Mallows model to model agents’ preferences
but want to select a single winner based on agents’ preferences), we refer to an ongoing work on
applying statistical decision theory to social choice [4], in which the framework is more general but
the results there are significantly different from the results in this paper.

2 Preliminary
Let C = {c1, . . . , cm} denote a set of m alternatives and let L(C) denote the set of all linear orders
over C. Each agent uses a linear order in L(C) to represent her preferences, called her vote. The
collection of all agents’ votes P is called a profile. Let L(C)∗ = L(C) ∪ L(C)2 ∪ · · · denote the set
of all profiles.

Let O denote the set of outcomes. A (deterministic) voting rule r is a mapping that assigns
to each profile a single outcome in O. Common choices of O are: (1) C, where voting rules are
often called resolute voting rules; (2) (2C \ ∅), where voting rules often are called irresolute voting
rules; and (3) L(C), where voting rules are often called preference functions (a.k.a. social welfare
function). A randomized voting rule assigns to each profile a probability distribution over O.

Many commonly studied voting rules have resolute, irresolute, and preference function ver-
sions. For example, an irresolute positional scoring rule is characterized by a scoring vector
~s = (s1, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm. For any alternative c and any linear order V , we
let ~s(V, c) = sj , where j is the position of c in V . Given a profile P , the positional scoring rule
chooses all alternatives c that maximize

∑
V ∈P ~s(V, c), where P is viewed as a multi-set of votes.

The resolute version of a positional scoring rule chooses a single alternative by further applying a
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Figure 1: Voting rules as statistical estimators.

tie-breaking mechanism, and the preference function version ranks the alternatives w.r.t. their scores,
and sometimes uses a mechanism to break ties.

As another example, the single transferable vote (STV) rule is naturally defined as a preference
function that outputs a ranking in the following m − 1 steps: in each step, the alternative ranked in
the top positions least often is eliminated from the profile;1 the outcome ranking is the inverse of
the elimination order. The resolute version of STV simply outputs the top-ranked alternative in the
winning ranking, and an irresolute version contains all alternatives that can be made the winner for
some tie-breaking mechanisms (c.f. the parallel-universes tiebreaking [14]).

In the statistical approach towards social choice, we assume that agents’ preferences are
i.i.d. generated from a statistical model. Given the set of alternatives C and the number of agents
n, a parametric ranking model MC = (O, ~π) has two parts: a parameter space O, and a set of
distributions over L(C), denoted by ~π = {πo : o ∈ O}. Throughout the paper, we let Pn denote an
i.i.d.-generated profile of n votes from a distribution πo that will be clear from the context.

In this paper, we focus on cases where the parameter space is exactly the same as the outcome
space, and require that πo(V ) > 0 for all V ∈ L(C) and all o ∈ O. When the parameter space is
different from the outcome space, one can use statistical decision theory with a decision function
to select an outcome as social choice [4]. Given MC = (O, ~π), a deterministic estimator T is a
function that maps each profile to a parameter (outcome) inO; a randomized estimator T maps each
profile to a distribution over O. The statistical approach is illustrated in Figure 1.

Given a statistical model Mc = (O, ~π), the maximum likelihood estimator (MLE) is a statis-
tical estimator that outputs an outcome o with the maximum likelihood, that is, for any profile P ,
MLE(P ) ∈ arg maxo

∏
V ∈P πo(V ). The uniformly randomized MLE chooses all outcomes in

arg maxo
∏
V ∈P πo(V ) uniformly at random.

We recall two classes of parametric ranking models: the first is a variant of the Mallows
model [21] and the second was introduced by [13] whose MLEs are positional scoring rules.

For any pair of linear orders V,W in L(C), let Kendall(V,W ) denote the Kendall-tau distance
between V and W , which is the total number of different pairwise comparisons in V and W .

Definition 1 Given 0 < ϕ < 1, the Mallows model with fixed dispersion parameter ϕ is denoted by
Mϕ = (O, ~π), where O = L(C), and for any V,W ∈ L(C), πW (V ) = 1

Zϕ
Kendall(V,W ), where Z is

the normalization factor with Z =
∑
V ∈L(C) ϕ

Kendall(V,W ).

Definition 2 ([13]) For any ~s = (s1, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm, letM~s = (O, ~π) be the
parametric ranking model whereO = C, and for any V ∈ L(C) and any c ∈ C, πc(V ) = 1

Z ·2
~s(V,c),

where Z is the normalization factor with Z =
∑
V ∈L(C) 2~s(V,c).

Given a parameter space O, a loss function L(o, o′) takes two elements in O as inputs, and
outputs a real number representing the loss of mispredicting o as o′. A popular loss function is the
0-1 loss function L0-1, where L0-1(o, o′) = 0 if and only if o = o′; otherwise L0-1(o, o′) = 1.
The loss function can be naturally generalized to evalute the loss of a distribution over O w.r.t. a
fixed o. There are mainly two ways to evaluate the expected loss of a (deterministic or randomized)
estimator.

1In case there is a tie, we use some tie-breaking mechanism.



Definition 3 Given a parametric ranking model MC , a loss function L, and n, the frequentist
expected loss RnF (o, T ) is a function of o ∈ O and an estimator T , such that RnF (o, T ) =∑
P πo(P )L(o, T (P )), where the summation is taken for all profiles P with n votes.
Given a prior distribution over O, the Bayesian expected loss RB(P, T (P )) takes a profile P

and T (P ) ∈ O as inputs, and RB(P, T (P )) =
∑
o∈O Pr(o|P )L(o, T (P )).

In words, the frequentist expected loss is calculated for a fixed parameter o ∈ O, such that we first
generate the data (profile) from πo, and then evaluate the expected loss of output of the estimator
T w.r.t. o. The Bayesian expected loss is calculated for a fixed profile P , and is evaluated by the
expected loss of the output T (P ) w.r.t. a random ground truth o drawn from the posterior distribution.

We now recall two well-known properties for statistical estimators.

Definition 4 ([16]) An estimator T is consistent w.r.t. a parametric ranking model MC if for all
o ∈ O, limn→∞ Pr(T (Pn) = o)→ 1, where votes in Pn are generated i.i.d. from πo.

That is, a consistent estimator correctly reveals the ground truth as the number of i.i.d. generated
votes goes to infinity.

Definition 5 ([6]) Given a parametric ranking modelMC = (O, ~π), a loss function L, and n, an
estimator T is minimax, if T ∈ arg minT∗ maxo∈O R

n
F (o, T ∗).

That is, a minimax estimator minimizes the maximum frequentist expected loss for o ∈ O. In the
above definition, we distinguish the minimaxity where T ∗ must be deterministic and the minimaxity
where T ∗ can be any deterministic or randomized estimstor. For the Bayesian expected loss, the
optimality is achieved by Bayesian estimators. That is, given a statistical model, a loss function, and
a prior distribution over the parameters, T is a Bayesian estimator if and only if for all profile P ,
RB(P, T (P )) = mino′∈O RB(P, o′).

Example 1 For any parametric ranking model, the MLE is the Bayesian estimator for the 0-1 loss
function and the uniform prior.

3 Generalized Outcome Scoring Rules
To define generalized outcome scoring rules as a natural extension of generalized scoring rules [26],
we need some notation. For any K ∈ N, let BK = {b1, . . . , bK}. A total preorder (preorder for
short) is a reflexive, transitive, and total relation. Let Pre(BK) denote the set of all preorders over
BK . For any ~p ∈ RK , we let Order(~p) denote the preorder D over BK where bk1 D bk2 if and only
if pk1 ≥ pk2 . That is, the k1-th component of ~p is at least as large as the k2-th component of ~p. For
any preorder D, if b D b′ and b′ D b, then we write b =D b′. Each preorder D naturally induces a
(partial) strict order B, where b B b′ if and only if b D b′ and b′ 4 b.

Definition 6 (Generalized outcome scoring rules) Given an outcome space O, K ∈ N, f :
L(C) → RK and g : Pre(BK) → O, we define a generalized outcome scoring rule (GOSR),
denoted by GOS(f,g), to be a mapping such that for any profile P , GOS(f,g)(P ) = g(Order(f(P ))),
where f(P ) =

∑n
V ∈P f(V ).

In words, a GOSR first uses the f function to transform the input profile P to a vector f(P ) =∑
V ∈P f(V ) in RK , then use g to select the winner based on the order of the components in f(P ).
For any V ∈ L(C), f(V ) is called a generalized scoring vector, f(P ) is called a total generalized

score vector. To simplify notation, we let Orderf (P ) = Order(f(P )). We note that Orderf (P ) is a
preorder over BK , which means that it may not be a linear order. For any distribution π over L(C),
we define f(π) =

∑
V ∈L(C) π(V )f(V ) and Orderf (π) = Order(f(π)). In this paper, we assume

that no component in generalized scoring vectors is redundant for better presentation. That is, for



all k1 6= k2 ≤ K, there exists V ∈ L(C) such that [f(V )]k1 6= [f(V )]k2 . This is without loss of
generality because we can always remove the redundant component without changing the definition
of the rule.

The next proposition shows that GOS(f,g) is a general class of voting rules, whose proof is by
construction and resembles the proof for GSRs [26].

Proposition 1 Generalized scoring rules are GOSRs with O = C. The irresolute versions and the
ranking versions of positional scoring rules, Bucklin, Copeland, maximin, ranked pairs, STV are
GOSRs, with O = (2C \ ∅) and O = L(C), respectively.2

We now introduce more notation to present the results.

Definition 7 (Extension of a preorder) We say thatD′∈ Pre(BK) is an extension ofD∈ Pre(BK),
if for all b, b′ ∈ BK , we have (b B b′)⇒ (b B′ b′). For anyD,D′∈ Pre(BK), we letD ⊕ D′ denote
the preorder in Pre(BK) obtained from D by using D′ to break ties. That is, bi is strictly preferred
to bj in (D ⊕ D′) if and only if (1) bi B bj , or (2) bi =D bj and bi B′ bj .

Definition 8 (Possible linear orders) Give a generalized scoring function f , we define the set of
possible linear orders over BK , denoted by PL(f), to be the linear orders over BK that are the orders
of the total score vector of some profile. Formally, PL(f) = {Orderf (P ) : P ∈ L(C)∗)} ∩ L(BK).

Definition 9 (Neighborhood) For any D∈ Order(BK), we define the neighborhood of D w.r.t. f ,
denoted by Nbrf (D), to be all linear orders over BK that can be obtained from D by using a
linear order in PL(f) to break ties. That is, Nbrf (D) = {D ⊕ B∗:B∗∈ PL(f)}. Given f , the
neighborhood of a distribution π, denoted by Nbrf (π), is the neighborhood of f(π) w.r.t. f , that is,
Nbrf (π) = Nbrf (Orderf (π)).

We note that the definition of neighborhood does not involve the g function.
The next lemma characterizes the asymptotic behavior of Orderf (Pn) and will be frequently

used in the proof of the next section. It states that for any distribution π over L(C), if we generate
votes in Pn i.i.d. from π, then Orderf (Pn) asymptotically almost surely (a.a.s.) falls in the neigh-
borhood of π w.r.t. f . As a corollary, Orderf (Pn) is a linear order over BK a.a.s. We recall that it is
assumed that the generalized scoring vectors have no redundant components, which means that no
components in the total generalized score vector are always equal.

Lemma 1 Given a generalized scoring function f , for any distribution π that is positive everywhere
on L(C), we have:

(1) for any B∈ Nbrf (π), there exists a constant δB > 0 so that for sufficiently large n,
Pr(Orderf (Pn) =B) > δB.

(2) for any D 6∈ Nbrf (π), limn→∞ Pr(Orderf (Pn) =D) = 0.

Proof: We first illustrate the idea behind the proof in a very special case where Orderf (π) is a linear
order. In this case Nbrf (π) = {Orderf (π)}. Then, the Central Limit Theorem tells us that for each
linear order V , the frequency of V in Pn goes to π(V ) as n → ∞, and the noise is o(n−1). That
is, with probability that goes to 1, votes in Pn are distributed as π+ o(n−1)πnoise. Then, when n is
sufficiently large, the πnoise part cannot affect Orderf (π). Hence we have that with probability that
goes to 1, Orderf (Pn) = Orderf (π) ∈ Nbrf (π).

The proof for the general case is more involved, because if Orderf (Pπ) is not a linear order,
then the noise part πnoise acts as a tie-breaker and thus cannot be overlooked even for large n.
Our main tool is to estimate the distribution of πnoise by the Multivariate Lindeberg-Lévy Central
Limit Theorem (CLT) [16, Theorem D.18A], which states that for i.i.d. generated vector-valued
random variables Xi, if the covariance matrix Σ for the components of Xi is nonsingular, then

2The definition of these rules can be found in [22].



(
∑n
i=1Xi − nE(Xi))/

√
n converges in probability to a multivariate normal distribution N (0,Σ).

However, this theorem cannot be directly applied to analyze the asymptotic frequencies of the linear
orders because the resulting covariance matrix is singular, since for any given n, the number of
occurrences of all m! linear orders must sum up to n, which means that they are linearly correlated.

Let L(C) = {l1, . . . , lm!} denote the set of all m! linear orders. To avoid the singularity, our
analysis will focus on l1, . . . , lm!−1. For any j ≤ m! − 1, let ~vj denote the vector in {0, 1}m!−1

where the j-th component is 1 and all other components are zeros. We then define i.i.d. multivariate
random variables X1, . . . , Xn, where each Xi takes ~vj with probability π(lj), and takes ~0 with
probability π(lm!). It is not hard to verify that the mean of X1 is E(X1) = (π(l1), . . . , π(m!− 1))
and the covariance matrix is the following.

Σπ =


π(l1)− π(l1)

2 −π(l1)π(l2) · · · −π(l1)π(lm!−1)
−π(l2)π(l1) π(l2)− π(l2)

2 · · · −π(l2)π(lm!−1)
...

...
−π(lm!−1)π(l1) −π(lm!−1)π(l2)· · ·π(lm!−1)− π(lm!−1)

2


Since each diagonal element is strictly larger than the sum of the absolute values of other ele-

ments in the same row, Σπ is non-singular according to the Levy-Desplanques Theorem [18]. Let
Yn = X1 + . . . + Xn. Each Yn naturally corresponds to a profile Pn of n votes, where for all
j ≤ m! − 1, [Yn]j is the number of occurrences of lj , and n −

∑m!−1
j=1 [Yn]j is the number of oc-

currences of lm!. By the multivariate Central Limit Theorem, Ynoise = Yn−nE(X1)√
n

converges in
distribution to the multivariate normal distribution N (0,Σπ).
Part (1) of the lemma. For any B∈ Nbrf (π), there exists a profile P such that (1) Orderf (P ) ∈
L(C), and (2) Orderf (π) ⊕ Orderf (P ) =B. We define ~p ∈ Rm! such that for all j ≤ m!, [~p]j =
P (lj)/|P | − 1/m!, where P (lj) is the number of occurrences of lj in P . That is,

∑
j [~p]j = 0 and

for all j, |[~p]j | ≤ 1. Since Order(~p) = Orderf (P ) and is a strict order, there exist positive numbers
δ1, . . . , δm!−1 such that for any vector ~q ∈ Rm! with (1)

∑
j [~q]j = 0 and (2) for all j ≤ m! − 1,

|[~p]j − [~q]j | < δj , we have Orderf (~q) = Orderf (~p).
Let S =

∏m!−1
j=1 [π(lj) − 1

m! − δj , π(lj) − 1
m! + δj ] denote a hypercube in Rm!−1. When ~x is

generated from N(0,Σπ), the probability that ~x ∈ S is strictly positive because N(0,Σπ) has full
support. It is not hard to prove that for any Yn, if Ynoise ∈ S, then for the corresponding profile Pn
we have Orderf (Pn) = Orderf (π)⊕ Orderf (~p) =B. Hence the probability for Orderf (Pn) =B is
at least Pr(Ynoise ∈ S), which converges to Pr(~x ∈ S) when ~x is generated from N (0,Σπ). This
proves part (1).
Part (2) of the lemma. For any D 6∈ Nbrf (π), we prove the lemma in the following three cases.

Case 1: D does not extend Orderf (π). Following a similar argument with the case where
Orderf (π) is a linear order, if bi is strictly preferred to bj in Orderf (π), then with probability that
goes to 1, bi is strictly preferred to bj in Orderf (Pn). So the probability of Orderf (Pn) =D goes to
0.

Case 2: D is not a linear order. We recall that for any pair of k1, k2 ≤ K with k1 6= k2,
there exists a linear order l such that [f(l)]k1 6= [f(l)]k2 . Therefore, following the Berry-Esseen
theorem, the probability of seeing a tie between the k1-th component and k2-th component of f(Pn)
for i.i.d. generated Pn is O(n−0.5), which goes to 0 as n goes to infinity.

Case 3: D is a linear order and extends Orderf (π), but there is no profile B∈ PL(f) such
that D= Orderf (π)⊕ B. It follows that D 6∈ PL(f), otherwise D= Orderf (π)⊕ D, which is a
contradiction. Hence for any profile Pn, f(Pn) 6=D. �

Corollary 1 For any π over L(C), if Orderf (π) is a linear order B, then Nbrf (π) = {B} and
limn→∞ Pr(Orderf (Pn) =B) = 1.



4 GOSRs as Consistent Estimators
Theorem 1 GivenMC = (O, ~π), f , and g, GOS(f,g) is consistent w.r.t.MC if and only if for all
o ∈ O and all B∈ Nbrf (πo), we have g(B) = o.

Proof: The “if” direction follows after Lemma 1. To prove the “only if” direction, if there exists
o and B∈ Nbrf (πo) with g(B) 6= o, then by Lemma 1, as n → ∞, the probability for the order
over the components of the total generalized score vector to be B is non-negligible. Hence, with
non-negligible probability GOS(f,g) will not output o when Pn is generated i.i.d. from πo, which
means that GOS(f,g) is not consistent. �

The condition in Theorem 1 might be hard to check since it might be hard to enumerate elements
in Nbrf (πo). In fact, it suffices to prove that for all extensions B of Nbrf (πo), g(B) = o, then the
condition in Theorem 1 automatically holds. This leads to the following corollary.

Corollary 2 Given a parametric ranking modelMC = (O, ~π), if for all o ∈ O and all extensions
B∈ L(BK) of Orderf (πo) we have g(B) = o, then GOS(f,g) is a consistent estimator forMC .

We now give an example of applying Corollary 2 to STV.

Proposition 2 STV (preference function) is a consistent estimator forMϕ for all ϕ. STV (resolute
rule) is a consistent estimator forM~s for all scoring vector ~s.

Proof: We first present the GOSR formulation of STV (as a resolute rule and as a preference func-
tion), which is similar to the GSR representation of STV in [26]. We will use generalized scoring
vectors with exponentially many components. For every proper subset S of alternatives, for every
alternative c outside of S, there is a component in the vector that contains the number of times that
c is ranked first if all alternatives in S are removed. We define GOS(f,g) as follows.
•K =

∑m−1
i=0

(
m
i

)
(m− i); the elements of BK are indexed by (S, j), where S is a proper subset of

C and j ≤ m, cj /∈ S.
• (f(V ))(S,j) = 1, if after removing S from V , cj is at the top of the modified V ; otherwise, let
(f(V ))(S,j) = 0.
• g mimics the execution of STV to select a winner (for resolute version) or a ranking (for preference
function version).

W.l.o.g. suppose the ground truth parameter o = [c1 � · · · � cm]. By Corollary 2, to show
that STV (preference function) is consistent forMϕ, it suffices to show that for any 2 ≤ k ≤ m,
after removing Ck = {ck+1, . . . , cm}, ck has strictly the lowest expected plurality score, where the
expectation is taken over a randomly generated ranking from Mϕ given o. To this end, for any
i < k, we consider the following one-one mapping. For any rankings V where ci is ranked at the
top after all alternatives in Ck are removed, we switch the positions of ci and ci+1. This will give
us another ranking V ′ where ci+1 is ranked in the top position if alternatives in Ck are removed. It
is easy to check that Kendall(V, o) = Kendall(V ′, o) − 1, which means that the expected plurality
score of ci is higher than the expected plurality score of ci+1 after Ck is removed. This shows that if
Ck is removed, then the expected score of ck is strictly smaller than all other remaining alternatives.
Hence for any B that is an extension of Orderf (πo), g(B) = o. By Corollary 2, STV is consistent
forMϕ.

To prove that STV (resolute rule) is consistent w.r.t. M~s, w.l.o.g. suppose o = c1, it suffices
to show that for any C ⊆ C, after removing C, c1 has the strictly largest expected plurality score.
This can be proved by a similar argument to the proof for Mϕ: for any other alternative c 6= c1,
for any linear order V where c1 is ranked in the top after removing C, we can obtain another linear
order V ′ by switching the positions of c1 and c′. Since the position of c1 in V is strictly higher than
the position of c1 in V ′, we have πo(V ) ≥ πo(V

′), and the inequality is strict for some V . The
proposition follows after a similar argument as forMϕ. �



Given a parametric ranking model MC = (O, ~π) and a consistent GOS(f,g), we next give an
upper bound on the convergence rate of the outcome of GOS(f,g) to the ground truth. We let smax
denote the maximum absolute value of the components in all generalized scoring vectors. That is,
smax = maxV,j |[f(V )]j |. Let smin denote the minimum non-zero absolute value of the compo-
nents in all generalized scoring vectors. Let dmin denote the smallest non-zero difference between
the components in all f(πo). That is, dmin = mini,j≤K,o{|[f(πo)]i − [f(πo)]j | : [f(πo)]i 6=
[f(πo)]j}. Let pmin denote the minimum probability of any linear order under any parameter, that
is, pmin = minV,o πo(V ).

Theorem 2 Suppose GOS(f,g) is a consistent estimator for M = (O, ~π). For any o ∈ O and
n ∈ N, we have:

Pr
(
GOS(f,g)(Pn) 6= o

)
< K · exp

(
−n · dmin

8s2max

)
+

(K(K − 1)smax)3

(2pmin)1.5(smin)3
√
n

= O(n−0.5)

Proof: Let Strict(πo) denote the set of strict pairwise comparisons in Orderf (πo), that is, (bi, bj) ∈
Strict(πo) if and only if bi is strictly preferred to bj in Orderf (πo). For any profile P , if
Orderf (P ) is a linear order that extends Orderf (πo), then Orderf (P ) ∈ Nbrf (πo). By Theorem 1,
GOS(f,g)(P ) = o. Hence, if GOS(f,g)(P ) 6= o, then there are only two possibilities: (1) for some
(bi, bj) ∈ Strict(πo), [f(P )]j ≥ [f(P )]i, or (2) there exist i 6= j with [f(P )]i = [f(P )]j .

For case (1), for any pair of (bi, bj) ∈ Strict(πo), we let X1, . . . , Xn denote i.i.d. variables that
represents [f(l)]i−[f(l)]j for randomly generated l from πo. Let Yn = (X1+· · ·+Xn)/n. We have
E(Xi) ≥ dmin, V ar(Xi) < 2smax, and eachXi takes a value in [−2smax, 2smax]. By Hoeffding’s
inequality [17], we have: Pr(Yn ≤ 0) = Pr(Yn − E(X1) ≤ −E(X1)) ≤ exp

(
− 2n2E(X1)
n(4smax)2

)
≤

exp
(
−n · dmin

8s2max

)
.

For case (2), for any pair of i, j with [f(πo)]i = [f(πo)]j , we define Xi and Yn similarly as in
case (1). The third moment of X1 is no more than s3max and V ar(Xi) ≥ pmins

2
min. By Berry-

Esseen theorem, the probability for Yn = 0 is no more than (smax)
3

(pmin)1.5(smin)3
√
n

.
Combining the above calculations, for (1) we only need to consider adjacent pairs in Strict(πo)

and for (2) we need to consider all pairs of tied components. Hence the probability that either (1) or
(2) holds is at most K · exp

(
−n · dmin

8s2max

)
+ (K(K−1)smax)

3

(2pmin)1.5(smin)3
√
n

, which proves the theorem. �

We next show that the O(n−0.5) bound proved in Theorem 2 is asymptotically tight.

Theorem 3 There exists a parametric ranking modelMC whereO = C and a GOSR r such that (1)
r is consistent w.r.t.MC , and (2) there exists o ∈ O such that for all even numbers n, Pr(r(Pn) 6=
o) = Ω(n−0.5), where votes in Pn are generated i.i.d. from πo.

Proof: Let there be three alternatives {c1, c2, c3} and O = C, that is, we want to select a single
winner. Let the parametric ranking modelMC = (O, ~π) be the following:

Groundtruth = c1 : πc1(c1 � c2 � c3) = 0.5, πc1(c1 � c3 � c2) = 0.5
Groundtruth = c2 : πc2(c2 � c1 � c3) = 0.5, πc2(c2 � c3 � c1) = 0.5
Groundtruth = c3 : πc3(c3 � c1 � c2) = 0.5, πc3(c3 � c2 � c1) = 0.5

Let r be the Borda rule with fixed order tie-breaking c1 � c2 � c3, except in one case: if c1’s total
score is strictly the largest, and the total scores of c2 and c3 are exactly the same, then the winner is
c2 (instead of c1 for Borda). It is not hard to verify that r is a GOSR. By Theorem 1, r is consistent
w.r.t.MC .

Let for any profile P and alternative c, let s(P, c) denote the Borda score of c in P . For any even
n, when the ground truth is c1, the probability that s(Pn, c2) = s(Pn, c3) is

(
n
n/2

)
/2n. By Stirling’s



formula, we have (
n
n/2

)
2n

=
n!

(n2 !)22n
≈

√
2πn(ne )n

(
√
πn( n2e )n/2)22n

=

√
2√
πn

= Ω(n−0.5)

Similar to the proof of Theorem 2, it is not hard to show that the probability for the total score of c1
to be the highest is 1−exp(−Ω(n)) = 1−o(n−0.5). So the probability for s(Pn, c1) > s(Pn, c2) =
s(Pn, c3) is Ω(n−0.5). In all such cases r(Pn) = c2 6= c1, which proves the theorem. �

For specific distributions and GOSRs we may improve the bound as follows.

Proposition 3 Suppose GOS(f,g) is a consistent estimator forMC = (O, ~π). For any o ∈ O and
n ∈ N, if for all extensions D of Orderf (πo), g(D) = o, then:

Pr
(
GOS(f,g)(Pn) 6= o

)
< K · exp

(
−n · dmin

8s2max

)
Example 2 The bound in Proposition 3 can be applied to STV (preference function) w.r.t.Mϕ for
all ϕ and STV (resolute rule) w.r.t.M~s for all ~s, following the proof of Proposition 2.

In the next theorem we fully characterize all GOSRs that are consistent w.r.t. some paramet-
ric ranking models. The theorem states that a GOSR GOS(f,g) is a consistent estimator for some
parametric ranking model if and only if for any outcome o, there exists a profile P such that (1)
GOS(f,g)(P ) = o and (2) Orderf (P ) is a linear order.

Theorem 4 A GOSR is a consistent estimator for some parametric ranking model if and only if for
all o ∈ O, g−1(o) ∩ PL(f) 6= ∅.

Proof: The “if” direction: For any profile P ′ with Orderf (P ′) ∈ g−1(o)∩PL(f), since Orderf (P ′)
is strict, there exists a t ∈ N so that Orderf (tP ′∪L(C)) = Orderf (P ′) =B, where tP ′∪L(C) is the
profile composed of t copies of P ′ plus each linear order in L(C). We note that Po = tP ′ ∪ L(C) is
a profile that contains all types of linear orders. Then, we define a distribution πo such that for any
linear order V , πo(V ) = Po(V )

|Po| , where Po(V ) is the number of occurrences of V in Po. Consistency
follows after Corollary 1.

The “only if” direction: Let o denote the outcome with g−1(o) ∩ PL(f) = ∅. We need the
following lemma.

Lemma 2 For any distribution π and generalized scoring function f , Nbrf (π) ⊆ PL(f).

Proof: For any B∈ Nbrf (π), let PB be a profile such that B= Orderf (π) ⊕ Orderf (PB). The
existence of PB is guaranteer by the definition of Nbrf (π) (Definition 9). For any n, we let Qn =
Q1
n ∪Q2

n be a profile composed of the following two parts.

1. The first part Q1
n contains the following votes: for any linear order V ∈ L(C), there are

bπ(V ) · nc copies of V .

2. The first part Q2
n contains b

√
nc copies of PB.

By the Central Limit Theorem, for any i, j such that bi is strictly preferred to bj in Orderf (π), as n
goes to infinity [f(Q1

n)]i − [f(Q1
n)]j = Θ(n); for any i, j such that bi is tied with bj in Orderf (π),

as n goes to infinity |[f(Q1
n)]i − [f(Q1

n)]j | = O(1). Therefore, Q2
n effectively acts as a tie-breaker

for Orderf (π), in the same way as Orderf (PB) does. This shows that there exists n such that
Orderf (Qn) =B and proves the lemma. �

By this lemma, because g−1(o) ∩ PL(f) = ∅, for any distribution π and any B∈ Nbrf (π),
g(B) 6= o. By Therom 1, GOS(f,g) is not consistent w.r.t. any model. �



5 Minimax Estimators for Neutral Parametric Ranking Models
In this section we fully characterize minimax estimators for neutral parametric ranking models,
which will be defined momentarily. We recall that minimaxity is the optimality of an estimator
w.r.t. the frequentist risk. We first define neutral parametric models and loss functions. Intuitively,
it states that if a permutation over C is applied to the data as well as the parameter, then the proba-
bility of the permuted data under the permuted parameter should stay the same. Moreover, the loss
function should also be invariant to any such permutation. However, due to the generality of the
parameter space, a permutation over C may not be directly applied to the parameter space. Hence,
for any permutation M over C we need to define a corresponding permutation over the parameter
space O.

Definition 10 A parametric ranking model M with a loss function L is neutral, if there exists a
permutation SM over O for every permutation M over C that satisfies the following conditions.

1. For any pair of permutationsM1 andM2, SM1◦M2
= SM1

◦SM2
. For any o ∈ O, SI(o) = o,

where I is the identity permutation.
2. For all o ∈ O, V ∈ L(C), and permutation M , we have πo(V ) = πSM (o)(M(V )).
3. For all o, o′ ∈ O, L(o, o′) = L(SM (o), SM (o′)).
4. For any pair o, o′ ∈ O, there exists a permutation M such that SM (o) = o′.

Condition 1 requires that there is a group homomorphism between permutations on O and permu-
tations on L(C). Condition 2 states that when the ground truth is permuted using SM , then its
corresponding distribution over L(C) is also permuted using M . Condition 3 states that the loss
function is invariant to permutations, and Condition 4 requires that every outcome in O can be ob-
tained from another outcome inO by applying some permutation SM . We note that in our definition,
neutrality is a property for a parametric ranking model together with a loss function.

To show the generality of neutral models, we define a natural extension ofMϕ using a different
distance function from the Kendall-tau distance. A distance function d : L(C)× L(C)→ R is neu-
tral, if for any permutationM over C and any V,W ∈ L(C), we have d(V,W ) = d(M(V ),M(W )).
For example, Spearman’s footrule is neutral.

Definition 11 Given 0 < ϕ and a neutral distance d, let Md
ϕ = (O, ~π), where O = L(C),

and for any V,W ∈ L(C), πW (V ) = 1
Zϕ

d(V,W ), where Z is the normalization factor with
Z =

∑
V ∈L(C) ϕ

d(V,W ).

When ϕ < 1,Md
ϕ is a special case of d-Monotonic Noise Models [8].

Example 3 Mϕ with L0-1 is neutral, where SM = M . For any neutral distance function d,Md
ϕ

with L0-1 is neutral, where SM = M . For any scoring vector ~s, M~s with L0-1 is neutral, where
SM = M .

Proposition 4 IfMC is neutral with any loss function L, thenMC is neutral with L0-1.

Proof: Let SM denote the permutation over O for MC and L. It suffices to prove that for any
o1 6= o2 and any M , SM (o1) 6= SM (o2). This is true because otherwise o1 = SM−1 ◦ SM (o1) =
SM−1 ◦ SM (o2) = o2, which is a contradiction. �

Given a parametric ranking model, a loss function, and a fixed n, we define the uniform Bayesian
estimator, denoted by TU , to be the randomized Bayesian estimator w.r.t. the uniform distribution
over O that outputs uniformly at random a parameter that minimizes the Bayesian expected loss.

Example 4 For any parametric ranking model with the 0-1 loss function L0-1, TU is the uniformly
randomized MLE.

We now present the main theorem of this section.



Theorem 5 For any neutral parametric ranking model M with loss function L and any n, the
uniform Bayesian estimator is minimax.

Proof: We will use the following lemma.

Lemma 3 [6, Section 5.3.2 III] Given a statistical model with loss function L, let Tπ∗ denote a
Bayesian estimator for prior π∗. If RnF (o, Tπ∗) are equal for all o ∈ O, then Tπ∗ is minimax.

By Lemma 3, it suffices to show that for all o ∈ O, RF (o, TU ) are equal. For any pair of different
o1, o2 ∈ O, let M denote any permutation with M(o1) = o2.

We first prove that for any profile P of n votes and any o∗ ∈ O, TU (P )(o∗) > 0 if and only if
TU (M(P ))(SM (o∗)) > 0. The former holds if and only if o∗ minimizes the Bayesian expected loss
at P , which is equivalent to that for all o′,

∑
o L(o, o∗) Pr(o|P ) ≤

∑
o L(o, o′) Pr(o|P ). We have

the following calculation. ∑
o
L(o, o∗) Pr(o|P ) ≤

∑
o
L(o, o′) Pr(o|P )

⇔
∑
o L(o, o∗) Pr(P |o) ≤

∑
o L(o, o′) Pr(P |o) (1)

⇔
∑
o L(SM (o), SM (o∗)) Pr(M(P )|SM (o))
≤
∑
o L(SM (o), SM (o′)) Pr(M(P )|SM (o))

(2)

⇔
∑
o L(o, SM (o∗)) Pr(M(P )|o)
≤
∑
o L(o, SM (o′)) Pr(M(P )|o) (3)

⇔
∑
o L(o, SM (o∗)) Pr(o|M(P ))
≤
∑
o L(o, SM (o′)) Pr(o|M(P ))

(4)

(1) and (4) are due to Bayes’ rule and the uniform prior assumption. (2) is because M and L
are neutral. (3) is a change of variables, which is possible because for any o1 6= o2 and any M ,
SM (o1) 6= SM (o2), otherwise o1 = SM−1 ◦ SM (o1) = SM−1 ◦ SM (o2) = o2, which is a contra-
diction.

It follows that TU (M(P )) = M(TU (P )), which means that L(o1, TU (P )) =
L(SM (o1),M(TU (P ))) = L(o2, TU (M(P )))

Therefore, we have: RnF (o1, TU ) =
∑
P L(o1, TU (P )) Pr(P |o1) =∑

P L(o2, TU (M(P ))) Pr(M(P )|o2) = RnF (o2, TU )
The theorem follows after Lemma 3. �
Combining Theorem 5 and Proposition 4, and recall from Example 4 that the uniformly ran-

domized MLE is the uniform Bayesian estimator for the 0-1 loss function, we have the following
corollary.

Corollary 3 For any neutral parametric ranking modelM with any loss function L, the uniformly
randomized MLE is minimax.

Combining Corollary 3 and Example 3, we obtain the following corollary.

Corollary 4 ForMϕ,Md
ϕ with neutral distance function, andM~s, the uniformly randomized MLE

is a minimax estimator w.r.t. the 0-1 loss function. That is, for each of these models, for any n, any
estimator T ∗, and any outcome o, PrPn∼πo(T (Pn) = o) ≥ PrPn∼πo(T ∗(Pn) = o).

The case for Mϕ in Corollary 4 was proved directly by [8], where the minimax property is
equivalently defined as having the lowest sample complexity. We note that in Appendix A of [8], an
example was shown to illustrate that MLE is not always the minimax rule w.r.t. L0-1. This does not
contradict Theorem 5 since the model there is not neutral with any loss function.



6 Future Work
We plan to refine the upper bound described in Theorem 2. The notion of GOSRs and neutral
parametric ranking models are of independent interest. We also plan to evaluate common voting
rules from a statistical viewpoint for other parametric ranking models, and extend our study to cases
where votes are represented by partial orders.
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