The Weak Axiom of Revealed Preference for
Collective Households

Bart Smeulders, Laurens Cherchye, Bram De Rock, Frits C.R. Spieksma,
Fabrice Talla Nobibon

Abstract

The purpose of this paper is to derive extensions of the weak axiom of revealed
preference (WARP) to collective households. We consider three different settings: the
general setting, where no information on the characteristics of goods is available;
the private setting, where all goods are consumed privately without externalities,
and finally, the dictator setting, where each observation is fully assigned to a single
member of the household. For each of the above settings, we propose an extension
of WARP and we establish the complexity of testing that extension.

1. Introduction

Modeling and analyzing household consumption behavior is a fundamental research topic
in microeconomics since its introduction by Samuelson [14] for wunitary households, i.e.,
households consisting of a single member. During the last decades, there has been an
increasing interest in analyzing consumption behavior of collective households (households
consisting of more than one member); and researchers have been focussing on extending well-
known revealed preference axioms that were initially developed for unitary households [1,
7, 4, 3]. To date, extensions of the generalized aziom of revealed preference (GARP) and
of the strong axiom of revealed preference (SARP) have received extensive analysis. Results
concerning the complexity of testing these axioms indicate that although testing GARP and
SARP on data sets of unitary households can be done in polynomial time [20, 12, 18], testing
their extensions to collective households is NP-complete [16, 9, 19], even for households with
two members.

It is our goal here to consider different extensions of WARP, and to establish the compu-
tational complexity of these particular extensions. We aim to complete the picture of testing
the collective generalizations of well-known axioms of revealed preference. One observation
from practice is that most data that satisfy WARP also satisfy SARP; in other words, transi-
tivity plays little role in the rejection of revealed preference axioms. Therefore, extensions
of WARP to collective households provide good alternatives to current procedures for testing
collective models that are time-consuming.

We consider collective households that operate in an economy with m commodities or
goods that can be consumed either privately without externalities or publicly. Private
consumption of a good means that its consumption by one household member affects the
supply available for other members; as an example, drinking water can only be consumed
privately. Consumption externalities refer to the fact that one member gets utility from
another member’s consumption; as an illustration, consider a wife enjoying her husbands
nice clothes. Public consumption of a good means that consumption of that good by one
member does not affect the supply available for other members, and no one can be excluded
from consuming it; as example, a movie watched by all members of the household is a public
good.

We suppose that we have observed n household consumption quantity bun-
dles ¢ = (qt1,---,q,m) € RT (non-negative) with corresponding positive prices



pe = (Pe,1s--->Pem) ERTL, t = 1,...,n. The component ¢ ; (respectively p;;), for
it =1,...,m, corresponds to the quantity of good i bought by the household (respectively,
the unit price of good i) at the time of observation t. Note that the scalar product p’q
represents the total price of bundle ¢ € R at the prices p € R, . We denote the set of
observations by S := {(pt,¢:) : t € N}, where N := {1,...,n} and we refer to S as the data
set. For ease of exposition, throughout this paper, we use t € N to refer to the observation
(Pts qt)-

We now introduce well-known terminology from revealed preference theory for unitary
(single decision maker) households. Throughout this work, we assume that the data set
S:={(pt,q): t € N} represents the consumption of the household. We have the following
definitions of preferences [20, 21].

Definition 1 The decision maker reveals that he or she directly prefers bundle g5 over
bundle q; if and only if plqs > plgs.

In words, the decision maker reveals that he or she directly prefers bundle gs over bundle
g¢ if he or she has chosen bundle ¢, while bundle ¢; was affordable and could have been
chosen. When this happens, we simply say that the decision maker directly prefers s over
t. Considering the transitive closure of the direct preference relation leads to the next
definition.

Definition 2 The decision maker prefers s over t if there exists a sequence $1, S, ...,Sk €
N, with s = s1 and t = sy, such that he or she directly prefers s; over s;11, for i =
1,2,...,k—1.

These notions are used in the definition of the following well-known axioms of revealed
preference, for households with a single decision maker (see, e.g., Varian [20]).

Definition 3 (GARP) A consumption data set S := {(pt,q:) : t € N} satisfies the Gener-
alized Axiom of Revealed Preference (GARP) if and only if, for all observations s and t,
when the decision maker prefers s over t, then piq: < pjqs.

Definition 4 (SARP) A consumption data set S := {(p:,q:) : t € N} satisfies the Strong
Axiom of Revealed Preference (SARP) if and only if, for all observations s and t, when
gs 7 q¢ and the decision maker prefers s over t, then piq: < pyqs.

Observe that if S satisfies SARP then it also satisfies GARP. One may consider that the
decision maker has a “rational” consumption behavior if S satisfies one of these axioms.

Definition 5 (WARP) A consumption data set S :={(ps,q:): t € N} satisfies the Weak
Axiom of Revealed Preference (WARP) if and only if, for all observations s and t, when
qs 7 q¢ and the decision maker directly prefers s over t, then p,q: < p}qs.

It is well-known that if S satisfies SARP then it satisfies WARP. Testing whether S satisfies
GARP, SARP, or WARP, can be done in time O(n?) (see [20, 12, 11, 18]); testing whether S
satisfies approximate versions of GARP, SARP, or WARP can become more difficult (see [15]).

Review of nonparametric collective models

Collective consumption models explicitly recognize that in a collective household, each indi-
vidual member has its own preferences. The first such models were introduced by Chiap-
pori [7, 8]. Here, we focus on the nonparametric characterization of the general collective
model as presented by Cherchye et al. [3, 5].



Cherchye et al. [3] propose separate necessary and sufficient conditions for collective
rationalization of household behaviour. In a later work, they show that the necessary
conditions are also sufficient in the case of convex preferences, an observation formalized
in the so-called collective aziom of revealed preference (CARP) [4]. Because the goal is to
identify individual preferences without knowing intra-household consumptions, Cherchye et
al. use the term “hypothetical preference”. CARP imposes that the hypothetical preference
of each individual member satisfies GARP. Talla Nobibon and Spieksma [19] prove that
testing CARP is NP-complete, even for two-member households. Cherchye et al. [2] propose
an exact algorithm for testing CARP based on a mixed-integer programming formulation.
Due to the complexity of the problem, this exact procedure is effective only for small-
and medium-size instances. Heuristics for testing large-size instances of this problem are
proposed and tested by Talla Nobibon et al. [17]. Cherchye et al. [6] present a variant of
the general collective model that applies to the setting where the set of goods is partitioned
into privately consumed goods (without externalities) and publicly consumed goods. Talla
Nobibon et al. [16] prove that testing this variant of the collective model is also an NP-
complete problem. Sabbe [13] present an exact testing procedure based on a mixed-integer
programming formulation of the problem. Cherchye et al. [3] describe the general collective
model in the dictator setting. Deb [10] shows that this variant of the problem is also NP-
complete.

Contributions

The purpose of this paper is to extend WARP to households that consist of two or more
decision makers, i.e., collective households. We consider the following settings: (i) a general
setting, where no information on the characteristics of goods is available (Section 2), (ii)
the private setting where all goods are consumed privately without externalities (Section 3),
and (iii) the dictator setting, where each observation is fully assigned to a single member of
the household (Section 4). The contributions of this paper include:

(1) for each of the above settings, we formulate an extension of WARP, and
(2) we establish the complexity of testing that extension.

It turns out that testing whether a given dataset S admits a collective rationalization
for two members is easy in the general setting, as well as for the dictator setting. It is
NP-complete for the private setting. Interestingly, these results are in contrast with known
results for SARP and GARP, where all two-member generalizations are hard.

2. The general setting

We present an extension of WARP to test the rationality of two-member collective households
under convex preferences, analogue to CARP. In order to describe the rules that define
the extension of WARP to collective households with two members, we use the notion of
hypothetical preference introduced by Cherchye et al. [3, 5]. For member ¢ (¢ = 1,2), we
denote by Hg the hypothetical preference of that member, and the expression “gs Hé q”
means that we hypothesize that member ¢ directly prefers the bundle g over the bundle
q:, for s,t € N. Given this notion of hypothetical preference, the extension of WARP to
2-member households is defined as follows.

Definition 6 (2-WARP) Given is a data set S := {(ps,q) : t € N} of a two-member house-
hold. A collective rationalization of S exists, i.e., the dataset S satisfies 2-WARP, if there
exist hypothetical preferences H}, HZ that satisfy the following rules:



Rule 1: For each pair of distinct observations s,t € N:
if PsQs > Psqs, then qs Hy q; or qs HE q;.

Rule 2: For each pair of distinct observations s,t € N:
if Psqs > Psqr and q; Hg qs with ¢ € {1,2}, then — (qs Hg qt).

Rule 3: For each three distinct observations s,t,u € N:
if psqs > ps (g + qu) and g HY qs, then qs H§ q,, with £,r € {1,2} and £ # r.

Rule 1 states that if bundle g5 was chosen by the household, while bundle ¢; was equally
attainable (under the prices py), then it must be that at least one member prefers bundle
qs over bundle ¢;. Rule 2 enforces that the hypothetical preference of each member satisfies
WARP. Finally, Rule 3 states that, if the summed bundle ¢; 4+ ¢, was attainable when ¢,
was chosen, and one member (say member r) prefers bundle ¢; over bundle g5 then it must
be the case that the other member prefers gs over g,. The problem of testing whether a
collective rationalization of S exists is formulated as the following decision problem:

Problem 2-wWARP
Instance: A data set S := {(pt,q): t € N}.
Question: Do there exist hypothetical preferences H¢, H3, such that Rules 1-3 hold?

If the data set S contains only three observations, let us say s, t, and u, then the
answer to the decision problem is No if and only if the following three inequalities hold:
Psqs > Ps(qt +qu), PeGr > Pt(qs +qu), and puqu > pu(qs +¢z). For data sets containing more
than three observations, however, the presence of these three inequalities is not necessary
to have a No answer. Indeed, the reader can check that the following inequalities involving
four observations, let us say s, t, u, and v, also leads to a No answer to 2-WARP: psqs > DsGs,
Peqe = Pe(gs + qu)s Pear = pe(ds + @)s Pudu = Pul@e + ¢v), and pugu > po(qe + qu). Further,
we mention that if there is no inequality of the form psqs > ps(g: + gu) for all triple s, ¢,
and v in N then we have a Yes instance of 2-WARP.

2.1 A graph interpretation of 2-wArP

We translate Rules 1-3 into a directed graph setting (see Talla Nobibon et al. [17]
for a related contruction). We build a directed graph G = (V,A) from the data set
S :={(pt,q) : t € N} as follows. A pair of distinct observations (s,t) with s,t € N repre-
sents a vertex in V' if and only if both psqs > psq: and p:rg; > p;qs. Notice that V' contains
O(n?) vertices and if the vertex (s,t) exists then the vertex (¢, s) also exists. The set of arcs
A is defined in two steps as follows:

1: First, there is an arc from a vertex (s,t) to a vertex (u,v) whenever t = u.

2: Second, for any three distinct observations s,¢,u € N satisfying psqs > ps(q: + qu),
Diqt > Pids, Pudu > Puls, We have an arc from (s,u) to (¢, s), and from (s,t) to (u,s).

Notice that Step 1 ensures that there is an arc from node (s,t) to node (¢, s) and vice versa.
This graph construction differs from the one used when checking whether a data set of a
unitary household satisfies WARP: in that case, a directed graph is built where a vertex
corresponds with an observation and there is an arc from s to t if and only if psqs > psq:.
That approach is not considered because it is not quite clear how to deal with inequalities
of the form psqs > ps(q: + qu)-

Given the directed graph G = (V, A) built above, we define the 2-undirected graph
Gy = (V, E) associated with G as the undirected graph obtained from G by transforming



(a) Existing vertices (b) First set of arcs

(c¢) Final graph G (d) 2-undirected graph Ga

Figure 1: Illustration of the construction of G and the associated 2-undirected graph G2

any pair of arcs forming a cycle of length 2 into a single edge (undirected arc); more precisely,
{v1,v2} € E if and only if v1v € A and vyv € A.

As an illustration of the graph construction, consider a data set with three observations
satisfying: piq1 > pi1(q2 + ¢3), p2q2 > p2(q1 + q3), P33 > p3(q1 + q2), P2g2 > p2qi1, and
p3qs > p3q1.- This implies the existence of the vertices depicted in Figure 1(a). The arcs
stemming from Step 1 appear in Figure 1(b), and the final graph is depicted in Figure 1(c),
where the dashed arcs are derived from Step 2. Finally, the 2-undirected graph G5 associated
with G is depicted in Figure 1(d). We have the following result.

Theorem 1 S is a Yes instance of 2-WARP if and only if the 2-undirected graph Gs asso-
ciated with G is bipartite.

Proof: <) Suppose that G is bipartite. Thus, the set of vertices V' can be partitioned into
two subsets V7 and V5 such that each subset induces an independent set. In other words,
V =ViUV,, V1 NV, = 0, and there is no edge between two vertices of V; and no edge
between two vertices of Vo. We build the hypothetical preferences Hj and Hg as follows:
for every vertex (s,t) € V; (respectively (s,t) € V2) we have g H} g, (respectively g, HS q;).
Furthermore, for two distinct observations s and t such that psqs > psq: and (s,t) ¢ V, we
set qs Hi q; and qs HZ q;. This completes the definition of H} and HZ. Notice that there is
no distinct pair of observations s, ¢ for which we set qsH§q; and q; Hiq, for some ¢ € {1,2}.
We now argue that H} and Hg satisfy Rules 1-3.



Rule 1: Let s,t € N be two distinct observations such that p,qs > psq;. On the one
hand, if (s,t) ¢ V then, by construction, ¢s Hi ¢; and gs Hg ¢;. On the other hand, if
(s,t) € V. =V1UV; then (s,t) € V; or (s,t) € Vo, and hence g5 H¢ q; or qs H3 ¢;. Thus Rule
1 is satisfied.

Rule 2: As described above, there is no distinct pair of observations s,t € N for which
we set g, HSq; and g HEqs for some ¢ € {1,2}. Thus Rule 2 is satisfied.

Rule 3: Let s,t,u € N be three distinct observations such that psqs > ps(q: + q) and
q: H} gs. There are two cases: (1) if puqu < pugs then (s,u) ¢ V and, since psqs > psqu,
we have by construction of Hg, qs H} ¢, and qs H3 q,,, and we are done; (2) if puqu > puds
then (s,u) € V. Let us now argue by contradiction that (¢,s) € V. Indeed, if (¢,s) ¢ V,
then (s,t) ¢ V. That however, is impossible since psqs > psq:, and we would have had by
construction g5 H} ¢; and g, H g;, which cannot be reconciled with ¢; H g5. Thus (¢,5) € V,
and in fact, since q; H¢ gs, (t, ) € V1. Following the construction of G, we have an arc from
(t,s) to (s,u) and an arc from (s,u) to (¢, s) (because psqs > ps(qr + qu), Peqt > Prds, Pulu >
puqs). Therefore, there is an edge between the vertices (t,s) and (s,u) in G2, and we
conclude that (s,u) € Vo, which implies that gs HZ ¢,. This completes the verification of
Rule 3.

=) Now, we suppose that S is a Yes instance of 2-WARP; there exist H} and H? satisfying
Rules 1-3. We want to show that the 2-undirected graph G5 is bipartite. In other words,
we want to partition V into two subsets V7 and Vs such that there is no edge between two
vertices of V; and no edge between two vertices of V5.

Given H} and HZ we set the vertices in V; (respectively in Va) as follows: a vertex
(s,t) € V belongs to Vi (respectively to Va) if ¢s HE ¢4 (respectively qs H? qt). It is not
difficult to see that V3 N V5 = () and that any vertex in V is either in V4 or in V5. Hence,
V1 and V4 constitute a valid partition of V. We argue, by contradiction, that V; and V;
induce independent sets. Without loss of generality, suppose V7 is not an independent set.
There exist two vertices (s,t) and (u,v) in Vi with an edge between them in G5. Thus,
in the graph G there is an arc from (s,t) to (u,v), and from (u,v) to (s,t). If both arcs
originate from Step 1, we have u = ¢t and v = s, which implies (s,t) € V;, and (¢,8) € 1}
which can only happen if g5 Hi ¢; and q; H} gs; this, however, contradicts Rule 2 for Hj.
If both arcs originate from Step 2, we also have u = ¢t and v = s, and the same argument
applies. Hence, one arc originates from Step 1 and one arc originates from Step 2. Without
loss of generality, we can assume that the arc from (s,t) to (u,v) comes from Step 1, while
the arc from (u,v) to (s,t) comes from Step 2. This implies that u = ¢, and apparently
peq: > pi(gs + qu). Since gs HE ¢, Rule 3 implies that ¢, HZ ¢,. By hypothesis, we have
Qs H& ¢y and pyq, > pyqr (because (t,v) € Vi). From Rule 1 we know that g, H& q: or
¢y HZ q;. This, together with ¢; H{ q, and q; H? q,, implies that either ¢, H} g, and q, H} ¢
or ¢ H2 q, and q, HZ g;. In the first case, H¢ violates Rule 2 whereas in the second case
HE violates Rule 2. In both cases, we have a contradiction with Rule 2. This concludes the
proof of Theorem 1.

2.2 Algorithm for 2-wARrp

We present an algorithm for 2-wARP that is based on Theorem 1. The pseudocode is
described by Algorithm 1.

It is clear that each of the three steps of Algorithm 1 can be done in polynomial time.
Thus, we have the following result:



Algorithm 1 Algorithm for 2-WARP

1: build the directed graph G from the data set S
2: build the 2-undirected graph G associated with G
3: if G5 is bipartite then return Yes, else return No

Theorem 2 Algorithm 1 solves 2-WARP in polynomial time.

3. The private setting

We consider a household with 2 members acting in an economy with m goods that can
only be consumed privately without externalities. The extension to a household with k£ > 2
members is immediate. For each observation ¢t € N, a feasible personalized quantity vector
is a pair (¢}, q?); this pair can be seen as one of the infinitely many feasible split ups of the
observed quantity vector q;. More concrete, ¢; = qf + g7 for each t € N. The true split up
of ¢ is unobserved. For each member ¢ (¢ = 1,2) we define the personalized consumption
data set by Sy = {(pt,qf) : te N}

Definition 7 (private 2-WARP) Given is a data set S = {(pt,qt) : t € N} of a two-member
household. We say that S is consistent with the 2-member egoistic collective consumption
model, i.e., S satisfies private 2-WARP, if and only if:

Condition 1: For each t € N there exist q}, ¢ € R such that q; = qt +q?2, and

Condition 2: For each member € € {1,2}, the set S¢ = {(pt,qf) : t € N} satisfies WARP.

This problem can be phrased as the following decision problem:

Problem: private 2-WARP

Instance: A data set S = {(pt,q): t € N}.

Question: Do there exist g}, ¢7 € R’ satisfying q; = qf + q? for each t € N such that for
£=1,2, the set Sy = {(pt,qf) : t € N} satisfies WARP?

It turns out that answering this question is NP-complete even for two members in the
household.

Theorem 3 Testing private 2-WARP is NP-complete.

Proof: We use a reduction from MONOTONE NOT-ALL-EQUAL 3-SAT (which is known to
be NP-complete).

Instance: A set of variables X = {z1,29,...,2,} and a set of clauses C' = {c1,¢c2,...,¢m}
with each clause consisting of 3 positive literals.

Question: Does there exist a truth-assignment so that for each clause, either one or two
of the literals are TRUE?

It is not difficult to see that private 2-WARP belongs to the class NP. The rest of
this proof is structured as follows: given an arbitrary instance of MNAE 3-SAT, we
first build an instance of private 2-WARP and next, we prove that we have a Yes instance
of MNAE 3-SAT if and only if the constructed instance of private 2-WARP is a Yes instance.

Consider an arbitrary instance X = {z1,22,...,z,} and C = {c1,¢a,...,¢n} of MNAE
3-SAT. We build an instance of private 2-wWARP using 3n + 4 goods and 2n + 2m + 3
observations. We next describe the quantity and the price of goods for each observation.



We use € = % and M = n + 1. The first block of 2n observations corresponds to the

variables and is given by:

@ =(0,0,]0,0,[0,...,0,[1,0,...,0,]0,...,0);  p1= (MMM M€Ile....6|[1,M,...,M/|eM,..., M)
% =(0,0,10,0,10,...,0,]0,1,...,0,]0,...,0); pa = (M, M,|M,M,|e,1,...,e,|M,1,...,M,|M,e,..., M)
@ =(0,0,]0,0,]0,...,0,]0,0,...,1,]0,...,0);  pn=(M,MIMM,lee...,1,|[M,M,... 1|MM,....c
Gne1 = (0,0,10,0,10,...,0,]0,...,0,]1,0,...,0)5 pns1 = (M, M,|M,M,|M,...,M,|e,M,...,M,|1,M,..., M)
@20 =1(0,0,10,0,]0,...,0,]0,...,0,]0,...,0,1);  pan = (M, M, |M,M,|M,...,M,|M,M,... ¢|MM,... 1)

The second block of 2m observations corresponds to the clauses. For each clause ¢, =

{x;,xj, 1}, we have the observations 2n +a and 2n+m+a (a=1,...,m).
Gonpa = (1,0,10,0,10,...,0,]0,...,0,10,..,0);  panta =(L,e|M,M,| {1} M, ..., M,|M,..., M)
@2ntm+a = (0,1,]0,0,10,...,0,]0,...,0,[0,...,0); pantmta = (&1,|M,M,|{e1}|M,...,M,|M,..., M)

The prices of the goods corresponding to variables x;, x; and z, equal 1, and the prices of the
goods corresponding to other variables equal €. Finally, we have observations 2n 4+ 2m + 1,
2n+42m+ 2, 2n + 2m + 3.

g2n+2m+1 = (0,0,]1,0,]0,...,0,]0,...,0,10,...,0); p2ntamt1 = (M, M, |1, €6 ..., |M,...,M,|M,..., M)
@2n+2m+2 = (0,0,10,1,10,...,0,(0,...,0,10,...,0); pontamiz = (M,M,|e,1,]e,..., ¢ |M,...,M,|M,..., M)
G2nt2m+3 = (0,0,]0,0,1,...,1,]|0,...,0,]0,...,0); Pantamis = (6,6 [n—1,n—1,]1,...,1,|6...,¢ e ... €)

Before embarking on the proof, let us describe the main idea. Consider the n goods,
5,6,7,...,n+ 4 in observation 2n + 2m + 3. Each of these goods corresponds to a variable
in the instance of MNAE-3SAT. We will argue that each of these n goods is allocated for a
large part (i.e. > %) to some member ¢ € {1,2}. This is akin to setting the corresponding
variable to TRUE (if the good goes for the larger part to member 1), or to FALSE (if the good
goes for the larger part to member 2). Of course it remains to show that this is a satisfying
truth assignment.

According to Definition 1, recall that we say that member ¢ € {1,2} directly prefers obser-
vation a over observation b, when we have p,q’ > paqf with a,b € S.

Claim 1 If poqs > paqy for some a,b € S,a # b, then there exists a member £ € {1,2},
who directly prefers observation a over observation b.

Proof: Consider any split of g, into ¢}, ¢?, and g, into g;,q?, i.e., let ¢l + ¢> = ¢, and
4 + ¢t = qv. Since paga > page, it follows that p, (gl + ¢2) > pa(qi + ¢7). Hence, either
Pads > Pady OF Pady > Pagy (or both). O

Notice that, apart from bundle g2,,42:m+3, all other bundles are unit vectors. We will use
¢ ;(pi,j) to denote the quantity (price) of good j in observation i, 7 =1,...,2n+2m+3,j =
1,...,3n + 4. We now exhibit a trick that we will use throughout the proof. Consider a
hypothetical dataset, containing the observations a and b as follows:

Ga = (170)7 Pa = (176)
qy = (07 1)v Py = (67 1)

We say that the split of a bundle is eztreme if each unit good of that bundle goes to one
(of the two) members with fraction at least 1 — e.



Claim 2 In any feasible solution of some data set containing observations a and b, the split
of bundles q, and qp is extreme.

Proof: Clearly, we have both p,q, > pegs and ppgp > ppqe- So using claim 1, it follows that
one member directly prefers observation a over b, and one member directly prefers b over a.
Thus in any feasible solution these members must be different (otherwise private 2-wARP
is violated). Let us assume, without loss of generality, that member 1 directly prefers a
over b and does not directly prefer b over a. Let « be the fraction of bundle a allocated to
member 1, and S the fraction of bundle b allocated to this member. Since member 1 does
not directly prefer b over a, we find:

poay < pugs = B < e

Since o < 1, we conclude 8 < € = --. Likewise, since member 2 does not directly prefer a

an "
over b, we find:
n —1
Pal: <pPagf > 1—a<e(l-fB)=a>1—e= n4 .
n

Claim 2 follows. O

Clearly, claim 2 is applicable to any pair of observations involving bundles that are unit
vectors, and price vectors that feature price e and price 1.

Let us now establish the validity of the following two inequalities.

Claim 3 In any feasible solution to this instance of private 2-WARP, we have for £ = 1,2:
p2n+2m+3q£n+2m+3 > 1.

Proof: Observe that claim 2 is applicable to observations 2n + 2m + 1 and 2n + 2m + 3.
Thus the split of the bundles g2, 12m+1 and gaptom2 is extreme. Let us assume, without
loss of generality, that good 2 is allocated to member 1 with fraction at least 1 — €, while
good 4 is allocated to member 2 with fraction 1 — e. Thus:

1 dn—-1 _ 1
P2n+2m+192n42m41 = 1 — €= in > 1= ", e > Pantom+3@2ni2mys. (1)

It follows that member 1 prefers, in any feasible solution, observation 2n 4+ 2m + 1 over
2n + 2m + 3. Then, in order to satisfy private 2-WARP, we must have:

1 1
P2nt2m+392n+42m+3 < P2n+2m+3%2n42m+1 < P2nt2m+392n+2m+1 = (2)

n
Z q%n+2m+3,4+i <n-—1. (3)

i=1

Since, for a € S, ¢> = q, — ¢}, we derive, using (3):

n n
2 1
Z Bntom+3,4+5 = 0~ Z Don+2m+3,44i > 1 4)
i=1 i=1
Finally, since pantom+3,; = 1 for ¢ = 5,6,...,n+4, it follows that (4) can be written as:

2
P2n+2m+3%n42m+3 > 1-

A similar reasoning involving member 2 and observations 2n+ 2m+ 2 and 2n+ 2m+ 3 leads
to:
P2nt2m+39n42m+s > L o



To proceed, let us consider observation i, (1 <4 < n), and observations 2n + 2m + 3.
Using claim 3, we observe:

Pont2m+3@5ntomes > 1 > Pontomtsds for £=1,2,1<i<n. (5)

Thus, no matter the split of ¢; into ¢} and ¢?, both member 1 and member 2 each directly
prefer observation 2n 4+ 2m + 3 over observation ¢ = 1,...,n. Since we have a YES-instance
of 2-WARP, we know that then, for £ =1, 2:

¢ ¢
Diq; < Pidontom+3- (6)

Observe that claim 2 is applicable to observations i and n + i. Thus, the split of ¢; and
Gn+i is extreme. Hence, there is a member ¢ for which:

pigi >1—e. (7)

Inequalities(6) and (7) imply that the split of ga,+2m+3 is such that:

piqgn+2m+3 >1l-e (8)

Consider the vectors p; and ga2pt2m+3, 1 <7 < n. It follows that:

n+4

¢ _ ¢ ¢

Di%on42m+3 = € E G2n4+2m+3,; T ©nt2m+3,44i 9)
=5 A+
Also:
n+4 n+4
¢ _

E Dntom+3,; < E Qont2m+3, =1 — L. (10)

J=5,j#4+i J=5,j#4+i

Rewriting (9), and using inequalities (8) and (10) gives for each i =1,...,n:

n+4

¢ e 0 _ _
Qon+2m+3,4+i — Pidoptom+3 — € E 42n+2m+3,5 >l-e—en—-1)=1--——=—.
J=5,jF4+i

Concluding, each good @ = 5,6,...,n + 4 in observation 2n + 2m + 3 is allocated for
over 3 to some member ¢ € {1,2}.

Finally, we look at the two observations corresponding to each clause j = 1,...,m. It
is clear that each members directly prefers observation 2n + 2m + 3 over both observation
2n + 7 and 2n + m + j. Observe also that claim 2 is applicable to observations 2n + j and
2n 4+ 2m + j. Thus, in order not to have a violation of private 2-wARP, member ¢ should
not prefer 2n + j over 2n + 2m + 3. Thus, for each £ =1, 2:

¢ ¢
D2n+j2n+; < P2n+592n42m+3- (12)



Since (without loss of generality), for member 1, we have pa,+;qa,, +; = 1 —¢, and thus
we have using (12):

p2n+jq%n+2m+3 >1-—e (13)

This means that one of the three goods associated to clause j is allocated over % to member
1. We argue by contradiction. Indeed, in case none of the three goods of clause j are
allocated over % to member 1, then they are allocated for at most i to member 1. Then,

(14)

1 < 1 3 n—-3 4n-3 4n-1

Pontj%nt2m+3 = 31 +(n—3)e= 1 + s <

Thus we would have pan @3, omss3 < 1 — €, contradicting (13). Therefore, at least

one of the goods associated with j is allocated over % to member 1. Clearly, a similar

reasoning involving 2n + 2m + j and member 2 implies that one of these three goods must
be allocated over % to member 2.

In conclusion, we now know the following about any valid allocation of observation
2n + 2m + 3 which satisfies private 2-wWARP. First, that each good is split up in a large
and a small allocation for the different members. Secondly, that for each clause and each
member, there is at least one of the goods associated with the variables that has a large
allocation. A valid truth assignment for MNAE 3-SAT can now be found as follows. If a
good is largely allocated to member 1, the variable is set to TRUE, if a good is allocated to
member 2, the variable is FALSE.

If we have a Yes-instance of MNAE 3-SAT, an allocation of goods which satisfies private
2-WARP exists. For observation 2n + 2m + 3, fully assign each good associated with a
TRUE variable to member 1, and each good associated with a FALSE variable to member
2. Likewise, fully assign the bundle ¢ to member 1 if z; is TRUE and to member 2 if it is
FALSE. Furthermore, for all j = 1,...,m, fully assign bundles 2n 4+ j to member 1 and all
2n + m + j to member 2. Finally, fully assign 2n 4+ 2m + 1 to member 1 and 2n + 2m + 2
to member 2. It can be easily checked that such an allocation satisfies private 2-WARP. O

4. The dictator setting

In this setting, each member is considered as a dictator in the sense that when he or she
has decided to consume a given bundle (observation), he or she will consume the entire
bundle alone. Notice that in the unitary setting, the decision maker can be seen as the only
dictator of the household. The situation-dependent dictatorship can be interpreted as a
direct collective generalization of the unitary decision model. More precisely, the new model
considers k separate decision makers in the household (k > 2); each is (fully) responsible for
a subset of observations and the subsets associated with two different decision makers are
pairwise disjoint. As a consequence, the sufficiency condition for rationalizing the observed
consumption data set is the existence of a partition of that set into k subsets such that each
subset is consistent with the considered unitary model (in our case WARP). In other words,
each individual dictator must act consistent with the unitary rationality condition for those
quantities for which she or he is (fully) responsible.

Formally, we consider a household with k& members acting in an economy with m goods
and the data set S = {(p,q): t € N}.

Definition 8 (dictator k-WARP) Given is a data set S = {(p,q) : t € N} and an integer
k. We say that S is consistent with k dictators if and only if N can be partitioned into k



pairwise disjoint subsets Ny such that each subset Sp := {(pt,qt) : t € No} (£ =1,...,k)
satisfies WARP.

This problem can be phrased as the following decision problem:

Problem: dictator k-WARP

Instance: A data set S = {(ps,q:) : t € N}, and an integer k.

Question: Can N can be partitioned into k pairwise disjoint subsets N, such that each
subset Sy := {(pt,q:) : t € No} ({ =1,...,k) satisfies WARP?

It turns out that answering this question is NP-complete for three members in the house-
hold, and is solvable in polynomial time for two members in the household. In order to
prove this, we introduce the undirected graph H = (V, E), which is constructed as follows.
Each vertex corresponds with an observation in .S and there is a edge between vertex s and
vertex t if and only if psqs > psq: and prgs > Pigs-

Theorem 4 The graph H can be colored using k colors if and only if S is consistent with
k dictators.

Proof: Given a dataset S, consistent with k dictators, there exist disjoint subsets
S1,852,...,5k, such that for any two observations a,b € S; either pygs < psq: and/or
ptq: < ptqs. The graph can thus be k colored by giving the same color to all vertices
associated with observations in the same subset. Furthermore, given an arbitrary graph
used as instance for graph coloring, it is not difficult to see that, by using a good for each
vertex in the graph, we can choose prices and quantities such that an instance of dictator
k-WARP arises which has psqs > psq: and psqs > psq: whenever nodes s and ¢ are connected.
Such a construction is described in Deb and Pai [10]. Next, it should be clear that a feasible
k-coloring corresponds to a partition of the dataset consistent with k dictators. |

Theorem 4 immediately implies that any algorithm for graph coloring problems can be
used for testing whether a given data set S is consistent with & dictators. The following two
theorems thus follow immediately.

Theorem 5 Testing dictator 2-WARP can be done in polynomial time.

And

Theorem 6 Testing dictator k-WARP is NP-complete for each fized k > 3.

5. Conclusion

We studied three different possible extensions of the weak axiom of revealed preference
(WARP) to households that consist of two members. We proved that for the general setting
setting, testing 2-WARP can be done in polynomial time. This is also true for the dictator
setting; however, for the private setting, the corresponding problem is proven to be NP-
complete.
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