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Abstract

Vendors of all types face the problem of selecting a slate of product offerings—their assortment
or catalog—that will maximize their profits. The profitability of a catalog is determined by
both customer preferences and the offerings of their competitors. We develop a game-theoretic
model for analyzing the vendor catalog optimization problem in the face of competing ven-
dors. We show that computing a best response is intractable in general, but can be solved by
dynamic programming given certain informational or structural assumptions about consumer
preferences. We also analyze conditions under which pure Nash equilibria exist and provide
several price of anarchy/stability results

1 Introduction
Vendors of retail products and services typically plan their offerings to maximize the revenue/profits
obtainable from a (predicted or actual) customer population. In many cases, the prices of these items
are fixed or strongly suggested exogenously (e.g., a vendor opening a new branch of a retail chain
in a mall). The problem of optimizing the collection of products offered or presented to customers
is often subtle: highly profitable products may appeal only to a small subset of customers, while
offering lower-value products that appeal to a larger market may undercut both profits and sales of
the higher-value offerings. This problem is known as optimization of assortment (deciding which
products to stock), or catalogs (which products to promote in a catalog, web site, etc.) and is faced
by traditional (offline and online) retailers as well as multi-seller platforms like Amazon or Ebay.

Complicating the picture is the presence of competing vendors. A target customer may choose
to purchase from a vendor’s competitor if the competitor offers a more preferred product. Thus the
selection of the revenue maximizing catalog also depends on the offerings of one’s competitors. This
is naturally formulated as a game, the competitive catalog selection game. In this paper, we formulate
and analyze various aspects of this game. Roughly speaking, the model assumes a collection of
strategic vendors, each of whom can select a catalog, i.e., a subset of some underlying collection of
products within a specific category, for sale to a target audience or market of unit-demand customers.
All prices are fixed exogenously and are beyond the control of the vendors. Each customer has
preferences over products (which can depend on the prices), and purchases her most preferred from
the set of all offered products.

We analyze several key properties of this game under a variety of conditions w.r.t. the struc-
ture of, and vendor information about, consumer preferences. We consider two conceptually distinct
models of information. In the complete information model, vendors know the true consumer prefer-
ence profile, i.e., the precise ranking of each consumer for all products. In the partial information
model, vendors have (common, prior) probabilistic beliefs over profiles and must maximize ex-
pected revenue. We first consider the algorithmic task of computing a vendor’s best response, i.e.,
the optimal catalog given the catalogs of her competitors. We show that this is hard to compute
and to approximate in the complete information model. However, we provide an efficient dynamic
programming (DP) method for the partial information model when preferences are drawn i.i.d. from
the (widely used) Mallows model (and mixtures thereof). In the special case of uniformly random
preferences, or impartial culture, DP reduces to a simple greedy algorithm. We also briefly describe
a special case of single-peaked truncated preferences that admits a DP algorithm under full infor-
mation.

We then analyze the stability of the game. We describe (straightforward) instances of the com-
plete information catalog game where no pure Nash equilibrium exists, and show this instability



persists even if vendors are restricted to small sets of items (even singletons). In contrast, under im-
partial culture, we show that pure equilibra exists using simple best-response dynamics (and can be
computed efficiently). Finally, we provide several Price of Anarchy/Stability results, showing that
vendor welfare in the best/worst pure equilibrium in a partial information game may be linear the
total number of products, and provide additional analysis of special cases in which all vendors have
identical product sets.

2 Preliminaries
We consider a game with k strategic vendors, each vendor j having access to a set Cj =
{cj1, . . . , cjmj

} of mj items. We do not require disjointness of these sets, though we sometimes
assume this in some of the exposition below (w.l.o.g.). Let C =

⋃
j=1,...,k C

j , and m =
∑k
j=1mj .

Let Lm denote the set of all possible ordinal preference rankings over (or permutations of) C. We
assume that each item c ∈ C has an exogenously fixed, bounded price p(c) ≥ 0. Let p denote the
price vector over C. W.l.o.g., we assume p ∈ [0, 1]m. Each vendor offers a catalog Rj ⊆ Cj from
which consumers can purchase items. Let R = (R1, . . . , Rk).

We assume a set of unit-demand consumers N = {1, . . . , n}. Each consumer i has a strict
preference ordering σi ∈ Lm, representing her preferences over items C. If σi(c) < σi(c

′), then i
prefers c to c′ (given their fixed prices); i.e. i ranks c above c′. While we focus on ordinal pref-
erences, σi can be a ranking induced from i’s intrinsic valuation for items and the prices. Let
σ = (σ1, . . . , σn) be the preference profile. We could generalize the model to allow consumers
to “truncate” their preferences (e.g., consider certain products unacceptable or too expensive) and to
allow ties/indifference; we do not do so for ease of exposition, but our results here can be generalized
as appropriate.

We assume a simplified supply/demand model: each vendor has unlimited inventory of any prod-
uct she offers and no production cost.1 Given a (non-empty) set of offered items A =

⋃k
j=1R

j ,
each i ∈ N buys their most preferred item in A, i.e., topi(A) = arg minc∈A σi(c). Let topi(R) =

topi(
⋃k
j=1R

j). This determines a (single-shot) game G = (C1, . . . , Ck,p, N,σ), in which vendor
j’s strategies are catalogs Rj ⊆ Cj , and her revenue (payoff) is determined by the strategy profile
R. In models where the Cj are not disjoint, if consumer i selects a c that occurs in catalogs of
several vendors, we assume p(c) is split evenly among them (as if i randomized her purchase). Let
oc(R) = |{j | c ∈ Rj , j ≤ k}| be the number of occurrences of item c across all catalogs. The
revenue/payoff of vendor j is:

rj(R) = rj(R
j ,R−j) =

∑
i∈N :topi(R)∈Rj

p(topi(R))

otopi(R)(R)
.

Vendor j’s best response to R−j is the subset Rj ⊆ Cj that maximizes her revenue, given catalogs
of the other vendors.

Probabilistic preference models. In the full information game, we assume vendors have full
knowledge of the consumer preference profile σ. In the partial information setting, vendors instead
have only a common prior belief, or a distribution over preference profiles. To model this scenario,
we assume that consumer preferences are drawn i.i.d. from a Mallows ϕ-distribution (or a mixture
thereof), a probabilistic model of rankings widely used in statistics, machine learning, econometrics
and social choice [11, 12]. The Mallows model is specified by two parameters, a reference ranking
π̂ ∈ Lm and a dispersion parameter ϕ (controlling variance). The probability of a ranking σ in this

1Prices can also be considered to reflect net revenue, so this is w.l.o.g. if costs are fixed and per-unit.



model is Pr(σ) = ϕτ(σ,π̂)/Tm, where τ is the Kendall-tau (or swap) distance between two rank-
ings, and Tm is a normalization constant. It is well-known that Tm is equal to Tm =

∏m
t=1 Zt, where

Zt =
∑t
d=1 ϕ

d−1. When ϕ = 1, one obtains the uniform distribution over Lm, or the impartial
culture (IC) model, widely used in social choice.

Related Work. Work on assortment optimization is prevalent in management science, and several
models bear tight connection to ours. Some models consider non-strategic optimization on the part
of single vendors (e.g., [15]), where the aim is to select a revenue-maximizing catalog assuming
some consumer preference model. More directly relevant is work addressing the strategic aspects
of this problem in the face of competition, assessing both computation and existence of equilib-
ria. [13] study the efficiency of equilibria of vendors competing for limited shelf space, where key
differences exist from our approach in their consumer preference model (as well as constraints on
shelf space). They address both exogenous and endogenous prices. Li et al. [9] investigate similar
models. Hohnon et al. [7] investigate (non-competitive) variants of the problem using a rank-based
preference model similar to ours.

Our model can be thought of an extension multi-winner social choice (MWCS). In MWSC, the
goal is to select a “slate” of items given a set of agent preferences, and has application to legis-
lature/committee selection [2, 14], facility location, and group (e.g., consumer) decision-making
[8, 10, 16]. In our setting, we have multiple decision makers rather than a single social choice
mechanism, and each of these are strategic. Many of the computational tasks in MWSC can be
implemented as extensions of our model (e.g., imposing different combinatorial restrictions on the
strategies, considering various classes of preference models). Our model is somewhat related to the
task of optimal price-setting mechanisms for auctioning items in unlimited supply to unit-demand
bidders [5].

3 Best Responses under Full Information
We begin with the task of computing a vendor best response to a competitors’ strategy profile, i.e.,
given profile R−j, finding the catalog Rj that optimizes j’s payoff. In the non-competitive version
of this problem, in which no other vendors offer products, j’s optimal catalog is trivial: she should
offer only her product with the maximal price.2 Also notice that if all of her prices are identical,
trivially she should offer her entire set Cj . In general, however, best-response computation is hard
to approximate beyond a constant factor.

Theorem 1. Computing a best response is Max-SNP hard.

Proof. We provide an approximation-preserving reduction from 3SAT-5, which is known to be Max-
SNP hard [4]. Take as input m DNF clauses (ϕ1, . . . , ϕm) over n variables (x1, . . . , xn).

The reduction: Create a set of items Cj with two items for each variable: ai, bi, corresponding
to a True assignment to either xi or its negation, plus one auxiliary item t. Set the price of all items
in {ai, bi}i=1,...,n to 1 and of t to 1.5. Create two sets of consumers:
Set 1: Validity rankings. These consumers encode validity constraints on assignments to
x1, . . . , xn, i.e., that exactly one of {ai, bi} is True. For i ∈ [n] create partial rankings:

σi1 : ai � t, σi2 : bi � t, σi3 : ai � bi, σi4 : ai � bi

(The competitor items are always ranked below the items in Cj in all of the preferences). Taking t
can never hurt, so we assume it is always chosen. If both ai and bi are selected, payoff is 4. If neither
is selected, payoff is 3. If one is chosen, payoff is 4.5.

2This is not the case if preferences are truncated.



Set 2: Clause rankings. For each clause of the form ϕj = `j1 ∨ `j2 ∨ `j3 , create a ranking: σj :
f(`j1) > f(`j2) > f(`j3), where f(`ji) = aji if `ji corresponds to variable xji in its non-negated
form, and bji otherwise. If ϕj is satisfied, at least one item corresponding to `j1 , `j2 , and `j3 is
selected, which gives an extra payoff of 1 from ranking σj .

Since 3SAT-5 is Max-SNP hard, there exists a constant ε > 0 s.t. it is NP-hard to distinguish a
satisfiable formula from a formula that is at most (1 − ε)-satisfiable. By definition, each variable is
in exactly five 3CNF clauses, and so m = 5n/3. If ϕ is only (1− ε)-satisfiable, the maximum value
we can obtain is (1− ε)m+4.5n = (1− ε)m+27m/10, hence it is NP-hard to distinguish between
cases with a profit ofm+4.5n from cases in which only a (1−δ) fraction ofm+4.5n profit, where
δ = ε/(1 + 27/10).

The construction uses preferences of length at most 3, and item prices a factor of 1.5 from each
other. Thus, selecting all items gives a 1.5-approximation to the optimal catalog. In general, if there
is a constant β > 1 s.t. for every two distinct items a, b ∈ Cj , p(a)

β
≤ p(b) ≤ β · p(a), then selecting

all items in Cj is a β-approximation to the optimal catalog.
The above hardness result suggests two directions for further investigation. The first is develop-

ing approximations, a topic we leave to future research. The second, is the study of the best-response
problem under various restrictions on items, prices, or preferences. As an example, consider the case
in which the agent preferences are single-peaked [1]. In the following section (Section 4), we show
that with such preferences, and under certain other mild conditions, best-response computation is
amenable to a tractable dynamic programming algorithm.

4 Single-Peaked, Bounded-Length Truncated Preferences
Given the hardness of the problem in the full information setting, we impose the following natural
restriction on the preferences of the consumers, which will allow us to efficiently find the best
response for a given vendor. Assume that the consumers are single-peaked, for which a formal
definition will be given momentarily. The class of single-peaked preference has been heavily studied
in social choice theory [1] as it is well-suited for modeling user preferences, like political preferences
or distance-dependant preferences.

It is well-known that the single-peaked preferences assumption can make computational prob-
lems over preferences tractable even if the problem is intractable over arbitrary preferences (e.g.,
[3]).

In addition to the “single-peakedness” of the preferences, we impose one more restriction on the
parameters of the game. To motivate it, consider a scenario in which many of the vendor sets consist
of very few items. In any reasonable realization of the game, these vendors will resort to selecting
all, or most of their items. If this behavior is sufficiently extensive, most of the consumers will have
at least one product, that belong to one such “weak” vendor, ranked relatively high in her ranking.
We are therefore interested in cases where this behavior results in consumers with effectively short
truncated preferences; i.e., preferences that tend to have a high-ranking offered competitor item.3

We now formally define the notion of truncated, single-peaked preference profiles (we combine
the above two assumptions in the definition, for succinctness)..

Definition 2. For a vendor j ∈ [k], and the set of strategies of the remaining vendors R−j, the
preferences (π1, . . . , πn) are said to be single-peaked, L-truncated if:

1. Bounded number of relevant items per consumer: For every consumer i ∈ N , letting, ti =
arg minc∈

⋃
j′ 6=j R

j′ πi(c), we have that ti ≤ L + 1. For convenience, we let Si = {c ∈ Cj :

πi(c) < ti}; i.e., the items in Cj that are relevant to consumer i.

3Note that the proof of Theorem 1 already made use of preferences of length at most 3.



2. Single-peaked preferences: There exists an ordering π̂ ∈ Lm, of the items in C (the axis),
such that the following holds for each consumer i ∈ N . There exists a distinct item c ∈ C (the
peak), for which every two distinct candidates c′, c′′ ∈ Si \{c}, having π̂(c) > π̂(c′) > π(c′′)
or π̂(c) < π̂(c′) < π̂(c′′) implies πi(c′) < πi(c

′′).

Note that we are only imposing the single-peaked structure over the preference prefixes that are
relevant to vendor j, instead of on the entire preference profile.

We assume that for vendor j, his items are labeled according to their order along the axis: for
two distinct items cjt, cj` ∈ Cj , t < ` iff π̂(cjt) < π̂(cj`). Also, recall that we can assume w.l.o.g.
that no items in Cj are also offered by a competitor, as this would impose vendor j to include it as
well in his strategy.

The following theorem argues that optimizing the best-response of a vendor is tractable, under
our two assumptions.

Theorem 3. Let R−j be the strategy profile of all vendors expect vendor j. Then in the case where
the preference are single-peaked, L-truncated, there exists a polynomial-time algorithm that finds
the best response for jth vendor, Rj , in O(2Lm · n) time.

The following claim will be instrumental for efficiently finding a best response for the given
vendor.

Claim 4. Consider a consumer i ∈ N with a single-peaked L-truncated preference πi over items
Si ⊆ Cj . Then maxc,c′∈Cj |π̂(c)− π̂(c′)| < L.

Proof. Suppose that there exists such a consumer i ∈ N with an L-truncated preference σi over the
subset Si ⊆ Cj that contains two items c′, c′′ such that |π̂(c′)− π̂(c′′)| > L.

Then by the pigeonhole principle there has to exist an item c∗ ∈ C\Si such that c∗ lies between c′

and c′′ in the axis π̂, which contradicts the fact that all the consumers have single-peaked preferences.

Intuitively, Claim 4 implies that the decision of whether or not to take an item c cannot affect
consumers with truncated preferences over sets of items that contain items at distance greater than
L from c, w.r.t. π̂.

We now describe the dynamic programming algorithm for optimizing the best-response (Al-
gorithm 1. Letting L ≤ t ≤ m, suppose that for each subset S′ of items in {π̂−1(t −
L), . . . , π̂−1(t − 1)} we computed the optimal slate that includes all of items in S′ and some sub-
set of {π̂−1(1), . . . , π̂−1(t − L − 1)}. To compute an optimal value for analogous S, such that
S ⊆ {π̂−1(t − L + 1), . . . , π̂−1(t)} we only need to consider at most two subsets: S \ {π̂−1(t)},
and S \ {π−1(t)} ∪ {π̂−1(t− L)} .

Note that the correctness of Algorithm 1 follows immediately from Claim 4. Indeed, the decision
of whether or not to take item cjt does not affect the revenue due to consumers with peaks at distance
greater than L from cjt on the axis π̂, thus implying the appropriate optimal substructure property.
We defer the full proof of correctness to a full version of the paper. Note that the running time of the
algorithm is O(2L · n ·m2), which is polynomial in n and m if L = O(logm).

5 Best Responses under Partial Information
The full information model in which vendors know consumer preferences precisely is unrealistic in
many settings. We now address best response computation in the partial information game, under
several distinct forms of beliefs.

We consider a different model of the vendors’ beliefs about the consumer preferences. We as-
sume that the preference profiles are drawn from a probability distribution D that is fully known to



Algorithm 1: The dynamic programming algorithm for finding the optimal unconstrained slate
for an single-peaked, L-truncated preference profile.

Input: A single-peaked, L-truncated preference profile (π1, . . . , πn) ∈ Lnm. An underlying
axis π̂ ∈ Lm, The preferences profile R−j, composed of strategies of all vendors
j′ 6= j.

1 Notation: For a binary vector v ∈ {0, 1}L, we let B(v) denote the decimal representation of
v: B(v) =

∑k
t=1 2t−1.

2 For a subset S ⊆ {cj(t−L+1), . . . , cjt} we let 1S,t denote the length-L characteristic vector
of S w.r.t. {cj(t−L+1), . . . , cjt}. That is, 1S,t(d) = 1 iff cj(t−L+d) ∈ S and 0 otherwise, for
d = 1, . . . , L.

3 Let M be an mj by 2L table.
4 For t ∈ {1, . . . ,mj} and S ⊆ {cj(t−L+1), . . . , cjt}, M [t, B(1S,t)] contains the optimal

solution for the problem of optimizing the slate using items from {cj1, . . . , cjt}, such that
M [t, B(1S,t)] \ {cj1, . . . , cj(t−L)} = S.

5 for t→ 1 to L do
6 foreach S ⊆ {cj1, . . . , cjt} do
7 M [t, B(1S,t)]← S

8 for t← L+ 1 to mj do
9 foreach S ⊆ {cj(t−L+1), . . . , cjt} do

10 S1 ←M [t− 1, B(1S\{cjt},t−1)]

11 S2 ←M [i− 1, B(1S\{cjt}∪{cj(t−L)},t−1)]

12 if rj(S1 ∪ S,R−j) ≥ rj(S2 ∪ S,R−j) then
13 M [t, B(1S,t)]← S1 ∪ S
14 else
15 M [t, B(1S,t)]← S2 ∪ S
16 return arg maxS⊆{cj(mj−L+1),...,cjmj

}M [m,B(1S,mj
)]

all of the vendors. In the induced game G = (C1, . . . , Ck,p, N,D), player i’s revenue for a strat-
egy profile (R1, . . . , Rk) is defined to be his expected revenue, when taking the expectation over
the instantiation of the preference profile. In this section, we pursue three types of distributions: the
Impartial Culture, the Mallows distribution, and a mixture of Mallows. Note that each distribution
generalizes its preceding generalization.

While we do not require disjointness of vendor item sets, it is not hard to see that, for the pur-
pose of selecting a best response, if a vendor’s set contains an item that is currently offered by a
competitor, that item must be included in the vendor’s best response. Hence, for ease of exposition,
in this section we assume that C1, . . . , Ck are all disjoint.

Impartial culture. We begin with the case where consumer preferences are (believed to be) dis-
tributed according to IC, i.e., each consumer’s preference is drawn i.i.d. from Lm. Computing a
best response for vendor j under IC is straightforward: assume competitor profile R−j, and let
`j =

∑
j′ 6=j |Rj

′ |. We relabel the items in Cj so that p(cj1) ≥ · · · ≥ p(cjmj ), and define the length
t prefix of this item vector: Tt = {cj1, . . . , cjt} and T0 = ∅.

For any catalog R ⊆ Cj , j’s expected profit is rj(R,R−j) =
∑
c∈R p(c)/(`

j + |R|). Let t∗ =

arg max1<t≤mj{rj(Tt,R
−j) > rj(Tt−1,R

−j)}. The best response is then Tt∗ , i.e., we greedily add
items in decreasing order of price as long as the expected revenue is increased by these additions.
The addition of any items beyond that point cannot contribute to j’s expected profit. The optimality
of the greedy algorithm can be proven using an elementary exchange argument.



Mallows models. We now address the broader class of distributions, where preferences are drawn
i.i.d. from a Mallows model (note that impartial culture is a special case). Best responses can be
computed using a dynamic programming method. Let R−j be a competitor strategy profile for ven-
dor j, and beliefs given by Mallows model (π̂, ϕ). For convenience, we assume that π̂ is restricted to
elements of R−j. As above, let `j =

∑
j′ 6=j |Rj

′ |. We assume w.l.o.g. that items in Cj are ordered
based on their ranks in π̂.

For integer s ≤ mj and index t = s, . . . ,mj , Algorithm 2) recursively computes the optimal
catalog of size s consisting of items from subset {cj1, . . . , cjt}. Given Rj ⊆ Cj and c ∈ Rj , let
π̂Rj (c) be the rank of c in the reduced ranking π̂Rj , obtained by deleting all items in Cj \Rj . Using
the recursive nature of the Mallows distribution to compute the revenue of vendor j. For cjt ∈ Cj ,
and a set of previously selected items S ⊆ {cj1, . . . , cj(t−1)}, s.t. |S| = s−1, the probability that cjt
is selected (i.e., ranked first) can be shown to be ϕπ̂S(cjt)−1/Z`j+s, where Z`j+s is the normalizing
term. Thus, if the expected revenue of selecting S is rj(S,R−j), the expected revenue of adding cjt
to S is: rj(S ∪ {cjt},R−j) = (rj(S,R

−j) · Z`j+s−1 + ϕ
π̂S∪{cjt}−1 · p(cjt))/Z`j+s.

Algorithm 2: Dynamic programming algorithm for best-response given a Mallows distribu-
tion.

1 Assume `j =
∑
j′ 6=j |Rj

′ |, and for a non-negative integer q, let τq = Z`j+q =
∑`j+q−1
d=0 ϕd.

2 for s← 1 to mj do
3 Let vs, Ss ← OptimizeSlate(s, s)
4 Return Ss with maximal value vs.

5 OptimizeSlate (s, t)
Input: A Mallows distribution with parameters (π̂, ϕ).
Output: Optimal slate Rj ⊆ {cj1, . . . , cjt}, s.t. |Rj | = s.

6 if s = 0 then
7 return 0, ∅
8 if s = t then
9 S ← {cj1, . . . , cjt}

10 V ←
∑s
d=1 p(cjd) · ϕπ̂S(cjd)−1/τs

11 return S, V
12 v0, S0 ← OptimizeSlate(s, t− 1)
13 v1, S1 ← OptimizeSlate(s− 1, t− 1)
14 S1 ← S1 ∪ {cjt}
15 v1 ← (v1 · Zs−1 + p(cjt) · ϕπ̂S1

(cjt)−1)/τs
16 if v0 ≥ v1 then
17 return v0, S0

18 else
19 return v1, S1

Proposition 5. Alg. 2 returns a best response.

The correctness of Prop. 5 follows from the following optimal substructure property, which can
be easily proved using properties of the Mallows distribution.

Claim 6. Let R−j be the strategy profile of all but vendor j. If Sst ⊆ {cj1, . . . , cj} is the revenue
maximizing set of size s consisting of items in {cj1, . . . , cjt}, and furthermore, cjt ∈ Sst then
Sst \ {cjt} is the revenue maximizing set of size s− 1 consisting of items from {cj1, . . . , cj(t−1)}.

Mallows mixtures The modeling power of the Mallows distribution can be extended by consid-
ering mixtures of such models, e.g., reflecting a population with several diverse types of consumers.



A Mallows mixture is given by (a) d Mallows distributions D1(π̂1, ϕ1), . . . , Dd(π̂d, ϕd) and (b) a
vector q = (q1, . . . , qd) (qj ∈ (0, 1), and

∑d
t=1 qt = 1). Each preference σ is sampled i.i.d. from

the mixture distribution by first selecting a distribution Dt with probability qt, and then sampling a
ranking using Dt(π̂t, ϕt).

Alg. 2 can be modified to handle Mallows mixtures as follows. We first sort the items in
Cj = {cj1, . . . , cjmj

} based on their weighted ranks, where the weighted rank of c ∈ Cj is
π(c) =

∑d
d=1 qt · π̂t(c). Similarly, vendor j’s revenue w.r.t. catalog S ⊆ Cj is defined using a

linear combination of the revenues for each Mallows component:

rj(S,R
−j) =

d∑
t=1

rtj(S,R
−j) =

d∑
t=1

qt
∑
c∈S

ϕ
`j+|S|−1
t

Zt`j+|S|
,

where the normalizing term is Ztm =
∑m
q=1 ϕ

q−1
t .

6 Equilibria and Stability
We have seen that (deterministic) best response computation is difficult in some cases, and easy in
others. We now turn our attention to the existence pure Nash equilibria and analyze their welfare
properties. We first consider games with disjoint vendor sets, then examine the special case where
all vendors have identical products from which to choose.

6.1 Disjoint Vendor Sets
In this section we assume all vendor sets Cj are disjoint. We assume familiarity with Nash
equilibria, but briefly, a pure Nash equilibrium (PNE) in our setting is a vendor strategy profile
R = (R1, . . . , Rk) s.t. Rj is a best response to R−j, for each j ≤ k. A PNE is a stable solution
in which each vendor offers a catalog that maximizes her revenue given the catalogs of all other
vendors. While in any finite normal form game such as ours, Nash equilibria are guaranteed to exist
in mixed strategies (i.e., where vendors may randomize their choice of catalog), it is not a priori
clear that our catalog selection games always admits pure equilibria.

In the full information case, there are games where all best response paths are cyclic, hence there
is no PNE:

Claim 7. There are instances of full-information catalog selection games which admit no pure Nash
equilibrium.

Proof. A simple counterexample suffices: consider two vendors 1 and 2, with C1 = {a1, a2}, C2 =
{b1, b2}. Let p(a1) = 2x, p(a2) = x + ε, for some x > 0, and 0 < ε < x. Similarly, let p(b1) =
2y, p(b2) = y + ε′, for y > 0 and 0 < ε′ < y. Assume three consumers with preferences:

a2 �1 b2 �1 a1 �1 b1

b2 �2 b1 �2 a2 �2 a1

a2 �3 a1 �3 b1 �3 b2

Vendor 1’s best response includes a2 in R1 iff 2 includes b2 in R2. On the other hand, 2’s best
response includes b2 iff 1 does not include a2. This shows the game has no PNE.

Lack of PNE can occur even when one restricts vendor strategies. For instance, if vendors are
limited to catalogs of size 1, one can construct games where no PNE exist.



Special case: single-unit strategies When imposing single unit strategies (|Ri| = 1), there may
not be a Nash equilibrium. Consider the scenario where there are 2 players, 1 and 2 with sets C1 =
{a, a′}, C2 = {b, b′}, where all of the prices are 1. Now, consider consumers with the following
preferences over C1 ∪ C2 (the valuations can be set so as to induce such rankings):

σ(1) = a � b � a′ � b′

σ(2) = b′ � a � b � a′

σ(3) = a′ � b′ � a � b
σ(4) = b � a′ � b′ � a

It can be verified that there is no stable (pure) strategy profile in this case.
The counterexamples to PNE above rely on precise vendor knowledge of the preference profile.

We now anlayze the partial information game, assuming consumer preferences are drawn i.i.d. from
a Mallows model (π, ϕ).

If ϕ = 0 (i.e., all consumers have the same preference σ), the game clearly admits a single (type
of) PNE: Let π−1(1), . . . , π−1(t) be the longest prefix of π whose items belong to a single vendor
j; j’s dominant strategy is to select only items in this set with maximal price. The revenue of any
other vendor is 0, regardless of her strategy.

Now consider the impartial culture model, where ϕ = 1. W.l.o.g., we relabel each Cj so they
are ordered in non-increasing order of price: p(cj1) ≥ p(cj2) · · · ≥ p(cjmj

). Using simple best-
response dynamics, we will show that a PNE exists. First, by properties of IC, we have:

Observation 8. Given R−j, vendor j’ (expected) revenue maximizing catalog of size t is
{cj1, . . . , cjt}.

This can be shown by noticing that if j selects another catalog Rj of size t, replacing any item
c ∈ Rj \ {cj1, . . . , cjt} with an item c′ ∈ {cj1, . . . , cjt} \ Rj only (non-strictly) increases j’s
expected revenue (with no change only if both have equal prices). Obs. 8 implies that specifying the
size of a vendor’s best response immediately determines the maximal profit achievable by a catalog
of this size. While best-response computation need not be tractable to prove the existence of a PNE,
Obs. 8 implies that we can use best-response dynamics (Alg. 3) to efficiently compute a PNE.

Claim 9. Let R and T be strategy profiles s.t. (a) Rj and T j are best responses to R−j and T−j ,
resp., as in Alg. 3,; and (b)

∑
j′ 6=j |Rj

′ | ≤
∑
j′ 6=j |T j

′ |. Then |Rj | ≤ |T j |.

Proof. Consider two profiles R,T, and let d =
∑
j′ 6=j(|T j

′ | − |Rj′ |). Suppose the claim is false,
so |T j | = ` < |Rj |. By Obs. 8 we have:

rj(T
j ,T−j) =

∑
c∈T j p(c)

`+
∑
j′ 6=j |Rj

′ |+ d
=

∑`
t=1 p(cjt)

`+
∑
j′ 6=j |Rj

′ |+ d

≥
∑|Rj |
t=1 p(cjt)

|Rj |+
∑
j′ 6=j |Rj

′ |+ d
= rj(R

j ,T−j)



(the inequality follows by best response). This means:

∑̀
t=1

p(cjt) · (|Rj |+
∑
j′ 6=j

|Rj
′
|) ≥

|Rj |∑
t=1

p(cjt) · (`+
∑
j′ 6=j

|Rj
′
|) + d · (

|Rj |∑
t=1

p(cjt)−
∑̀
t=1

p(cjt))

>

|Rj |∑
t=1

p(cjt) · (`+
∑
j′ 6=j

|Rj
′
|)

where the last inequality follows from |Rj | > `. This implies
∑`

t=1 p(cjt)

`+
∑j′ 6=j |Rj′ |

>
∑|Rj |

t=1 p(cjt)

|Rj |+
∑j′ 6=j |Rj′ |

, a
contradiction.

Algorithm 3: Best response dynamics under IC

1 Initialize: Rj ← ∅
2 while (R1, . . . , Rk) is not a pure Nash equilibrium do
3 Let j ∈ [k] = {1, . . . , k} with a profitable deviation.
4 Let t = maxR⊆Cj rj(R,R

−j).
5 Set Rj = arg maxR:rj(R,R−j)=t(|R|).

Claim 9 implies that the size of best-response catalogs can only increase during execution of
best response dynamics, leading to a PNE.

Proposition 10. Any catalog selection game in which vendors sets are disjoint and consumer pref-
erences are drawn from an impartial culture admits a pure Nash equilibrium.

Furthermore, the number of iterations of Alg. 3 is at mostO(m). Since a vendor requires at most
O(m) steps to find a best response, a PNE can be computed in O(m2) time.

Given that PNE exist under Mallows distributions when ϕ = 0 and ϕ = 1, we might hope this
holds in the intermediate cases where ϕ ∈ (0, 1). We have yet to resolve this, but conjecture the
following, rather strong monotone-consistency property:

Conjecture 11. Let G1 = (C1, . . . , Ck,p, N,D1) and G2 = (C1, . . . , Ck,p, N,D2) be two cat-
alog selection games that differ only in the dispersion of their underlying Mallows distributions
D1(π, ϕ1), D2(π, ϕ2), with ϕ1 > ϕ2. Then if G1 admits a PNE, so does G2.

If the conjecture is true, it implies the existence of PNE for every value of ϕ.
While games under IC admit PNE, some of these equilibria may be extremely inefficient due

to asymmetries in vendor item sets. As an efficiency metric, we use vendor social welfare, swG(R)
(i.e., expected total vendor revenue given the preference prior under profile R), and both the price
of anarchy and the price of stability:

Definition 12. Let of H be the set of games with k vendors with disjoint item sets, m total items,
and IC priors. The price of anarchy (PoA), and the price of stability (PoS) are:

PoA = max
G∈H

maxR∈2C1×···2Ck swG(R)

min R:
R is a PNE

swG(R)

PoS = max
G∈H

maxR∈2C1×···2Ck swG(R)

max R:
R is a PNE

swG(R)



PoA (PoS) is the worst-case ratio of optimal, non-strategic social welfare realizable by any strat-
egy profile to the worst (best) social welfare in some PNE. Both PoA and PoS can grow linearly with
the number of items:

Claim 13. There are catalog selection games with partial information in which the PoA and PoS
are both Θ(m).

Proof. Consider a game with two vendors, with C1 = {c11} and C2 = {c21, . . . , c2T }, for some
T . Let p(c11) = 1, and p(c21 = . . . = p2T ) = ε = O(1/m). Assume consumer preferences are IC.
Clearly, the only PNE has both vendors select all items. Since each consumer selects item c11 with
probability 1/(T + 1) and some item worth ε with probability T/(T + 1), the claim follows.

While this PNE is highly inefficient from the vendors’ perspective, it is very efficient from the
consumers’ side, since it allows them to choose more desirable items.

6.2 Vendors with identical sets
As shown above, one reason for the inefficiency of some equilibria stems from asymmetry in the
item sets. It is thus interesting to consider the other extreme case, where C1 = . . . = Ck. In both
the full and partial information settings it is easy to see that PNE always exist:

Observation 14. Any instance of the catalog selection game with identical vendor item sets admits
a PNE.

This can be verified by noticing that if each vendor offers the entire set C, no vendor benefits
by deviating. Moreover, as discussed above, if an item c is selected by some vendor, all vendor best
responses must include c.

In the full information case, there are instances in which the only (hence, best) PNE is highly
inefficient:

Claim 15. There are full information games with common item sets in which the PoS is Ω(2m).

Proof. Consider a game with two vendors, C = {c1, . . . , cm}, and prices: p(c1) = 1; p(ci) =
ci−1

2 + ε for i ≥ 2, where ε = e−m/2. Assume a single consumer with preference cm � · · · � c1.
In any PNE, all vendors select item cm. Hence, the revenue in the best PNE is p(cm) = 2−(m−1) +
O(e−m) = Θ(2−m), in contrast to the optimal total revenue of 1.

We also consider the partial information case under IC. Given a strategy profile R, and letting
A =

⋃k
i=1R

i, the revenue of vendor j is rj(Rj ,R−j) = 1
k·|A|

∑
c∈Rj∩T p(c) + 1

|A|
∑
c∈Rj\T p(c).

Theorem 16. Given identical item sets, if preferences are drawn from IC, then PoA is Θ(m).

Proof. Consider a game with 2 vendors, C = {c1, . . . , cm}, and prices: p(c1) = 1, p(ci) = ε, i ≥ 1.
Consider a PNE where all vendors selectC. The revenue in is

∑m
i=1 p(ci)

m = 1
m+ (m−1)ε

m . The optimal
total revenue is 1.

If the number of vendors is assumed to be constant, then PoS is a logarithmic factor smaller than
PoA.

Theorem 17. Given identical item sets, if preferences are drawn from IC, then PoS is Θ( m·k
logm ).

Let rj(X,Yk−1) be vendor j’s utility when selecting set X in response to competitor profile Y .
Furthermore, let Pi = {c1, . . . , ci}. The following lemma shows that Algorithm 4 always returns a
PNE:

Lemma 18. If the algorithm halts at step i < m, then (Pi, . . . , Pi) is a Nash equilibrium.



Algorithm 4: Finding a Nash equilibrium
Input: k vendors, items C = {c1, . . . , cm}, price vector p such that p(c1) ≥ · · · ≥ p(cm)

1 for i← 2 to m do
2 if r1(Pi−1,P

k−1
i−1 ) ≥ r1(Pi−1 ∪ {ci},Pk−1

i−1 ) then
3 return Pi−1
4 return C

Proof. As the items are ordered in a non-increasing order of price, it suffices to show that no (arbi-
trary, due to symmetry) vendor would deviate by selecting a prefix Pj , for j > i. We show induc-
tively that if a vendor improves by deviating to such Pj , then she can do so by deviating to Pi+1 as
well. W.l.o.g., assume the first vendor deviates. First, we show that if a vendor improves her revenue
by selecting Pj then she can improve it by deviating to Pj−1. Suppose by way of contradiction that
r1(Pj ,P

k−1
i ) > r1(Pi,P

k−1
i ), for j > i, but r1(Pj−1,P

k−1
i ) ≤ r1(Pi,P

k−1
i ). Then by definition∑i

t=1 p(ct)

k · i
≥

∑i
t=1 p(ct)

k · (j − 1)
+

∑j−1
t=i+1 p(ct)

j − 1
,

which implies
∑j−1
t=i+1 p(ct) ≤

j−i−1
i·k

∑i
t=1 p(ct). Then:

r1(Pj ,P
k−1
i ) =

∑i
t=1 p(ct)

k · j
+

∑j−1
t=i+1 p(ct)

j
+
p(cj)

j

≤
∑i
t=1 p(ct)

k · j
+

(j − i− 1)
∑i
t=1 p(ct)

j · k · i
+

∑j−1
t=i+1 p(ct)

j · (j − i− 1)

≤
∑i
t=1 p(ct)

k · j
+

(j − i− 1)
∑i
t=1 p(ct)

j · k · i
+

∑i
t=1 p(ct)

j · k · i

=

∑i
t=1 p(ct)

k · i
= r1(Pi,P

k−1
i )

where the first inequality follows from the bound above and an averaging argument on p(cj). This
is a contradiction. Hence, deviating to Pj−1 also improves vendor revenue. Repeating this process
until i+ 1 contradicts the stopping condition of the for-loop of the algorithm.

Next, we bound the rate of decrease in prices to construct a lower bound on expected social
welfare.

Lemma 19. Suppose Alg. 4 returns set Pi = {c1, . . . , ci}. Then p(cj) ≥ 1
k·(j−1)

+ Θ( 1
k2

), for 2 ≤
j ≤ i.

Proof. The algorithm stops when r1(Pi,P
k−1
i−1 ) ≤ r1(Pi−1,P

k−1
i−1 ). Using the definitions of

r1(Pi,P
k−1
i−1 ) and r1(Pi−1,P

k−1
i−1 ), and rearranging the terms, we get that for every 1 < j ≤ i,∑i

t=1 p(ct)

(k · (j − 1)
<

∑j−1
t=1 p(ct)

k · j
+
p(cj)

j

which implies the recursive inequality: p(cj) >
∑j−1

t=1 p(ct)
k·(j−1) . The statement of the lemma can be then

shown to be the solution of this inequality, using induction.

Proof of Thm. 17. The worst case execution of Alg. 4 occurs when it reaches the last item. By
Lemma 19, expected welfare is bounded below by 1

m (1 +
∑m
i=2

1
k·(i−1) ) = Ω( lnm

m·k ). The fact that
p(c1) = 1 implies the upper bound on PoS. We can construct a matching worst-case price vector
using the bound on the p(ci)’s given in Lemma 19.



7 Conclusions
We have presented a model of competition among vendors who offer slates or catalogs of prod-
ucts to their consumers using rank-based models of preferences that have connections to models in
computational social choice and algorithmic game theory. We studied both best response computa-
tion (and equlibrium finding in some cases) and various equilibrium properties under two different
informational assumptions w.r.t. conumser preferences.

There are a number of interesting directions remaining to be explored. The possibility of approx-
imating best responses in the full information setting remains open. This problem does not appear
to have any of the usual “nice” properties often used for devising efficient optimization algorithms
(e.g., symmetry, monotonicity, submodularity). The study of our model in cases where the strategies
are required to satisfy certain combinatorial constraints (e.g., matroids or knapsack constraints), re-
flecting limits on individual catalogs, would be of interest. Under some such restrictions, our worst
case PoA and PoS ratios might be improved. Connections to other models in game theory also bears
exploration. For instance, allowing for endogenous prices gives a framework where vendors must
post prices in a multi-vendor platform, offering a competitive extension of the well-studied area of
profit-maximizing, envy-free mechanisms (see e.g., [6]).
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