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Abstract

We study the Shapley value in weighted voting games. The Shapley value has been used as an index for
measuring the power of individual agents in decision-making bodies or political organizations, in which
decisions are made by a voting process. Previous studies assume that agent weights (corresponding to the
size of a caucus or a political party) are fixed; we analyze new domains in which the weights are generated
according to a certain probability distribution, modeling, for example, the effect of elections.
We study how the parameters of the weight generating process affect the power disparity in the resulting
game, by showing how different prior beliefs regarding the weight distribution affect the expected Shapley
values of the agents.
We examine several natural weight generation processes: the binomial distribution; the Balls and Bins
model, with uniform as well as exponentially-decaying probabilities; and i.i.d. weights drawn from a known
distribution. In particular, we draw a novel connection between the case of i.i.d. weights and renewal
theory. We also analyze weights that admit a super-increasing sequence, answering several open questions
pertaining to the Shapley value in such games.

1 Introduction
Consider a large organization with multiple sections given a substantial endowment, e.g., a state that receives
annual grants from the federal government, or a university that needs to disburse funds to its various departments.
How should funds be distributed?

Similarly, in a parliamentary system, each party receives a number of seats proportional to the number of votes
it received in an election. We wish to reason about the effective leverage each party has, in key processes such as
forming a coalition, legislation, and budget division.

In all of the examples above, the “size” of participating players (i.e., the sizes of states, or the number of seats
a party holds) can be thought of as the result of a generative process. In the example of a federal grant, state
population can be thought of as the outcome of migration and natural growth; indeed, the stochastic modeling
approach to population dynamics has been studied by statisticians and economists (e.g., [6, 18, 7]). The sizes
of parties in the parliament can also be naturally modeled via stochastic means; the number of seats each party
obtains is determined by an election, in which the votes are cast in a probabilistic manner. For example, one could
imagine a scenario where each voter chooses a party to vote for uniformly at random. To conclude, in all of the
above scenarios, the weight of each agent can be naturally thought of as the result of a randomized process.

The second common thread is that, once resources are allocated to the agents, they determine the relative
influence or power of those agents. In other words, the agents are rewarded in a way that reflects their individual
contributions, which may or may not be proportional to their actual size.

A well-studied model for analyzing the relative power of weighted agents in cooperative domains is that of
weighted voting games (WVGs) [15]; WVGs capture agent interactions, where every agent has a non-negative
resource (its weight). Resources must be pooled together to achieve a certain goal; a subset of agents (also
referred to as a coalition) is said to be winning if its total weight exceeds some given quota (also referred to as a
threshold). That is, winning sets are those that can achieve the goal, without the use of agents outside the set.

Agent influence is not always proportional to weight; thus, most works on WVGs employ “power indices”
that measure an agent’s actual power in such settings [15]. The most prominent such power index is the Shapley
value [19], which measures the average marginal contribution of an agent across all possible orderings (permuta-
tions) of the agents, and satisfies important desired axioms. Earlier work has examined many domains, including
many political and decision-making bodies, and used the Shapley value to examine the relative power of agents [4].

Our main question is then the following: given the distribution of the weights, what is the expected power
disparity between the agents? In the neutral voting example, do we expect large differences in power between the
agents? What happens in the case of a more biased process?

From a practical perspective, the advantage of taking a stochastic approach is twofold. First, it allows a system
designer to act as a decision maker of sorts; by judiciously choosing a quota, it is possible to obtain a certain
power distribution with high probability (given the belief about the distribution of weights). Second, by assuming
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the existence of a stochastic generative processe, we are able to provide strong characterization results, solving
several open problems in [22, 23, 24].

We consider several stochastic processes for generating weights and examine the expected power relations
between the agents under these processes. We also characterize the properties of the Shapley value given with the
following prior distributions: binomially distributed weights, Balls and Bins processes (both the classical uniform
case, and the non-uniform case with exponentially decaying probabilities), and i.i.d. samples from reasonably
bounded distributions (e.g., the uniform distribution on the unit interval). We focus on the expected differences
in power between the weakest agent (of smallest weight) and the strongest agent (of highest weight), i.e. the
maximum possible power disparity among agents.

Contributions We initiate our study by considering the case where the n agent weights are drawn from the bi-
nomial distribution B(m, p) (Section 3). This corresponds to approval voting, in which each of m voters approves
of each of n candidates with probability p each. We show that when the quota is Ω(mp), the expected gap between

any two Shapley values is at most 1
nOp(

√
logn
n ).

Next, we explore the Balls and Bins model – a model that has received considerable recent attention in the
computer science community [12, 11, 17]. Informally, in this iterative process, in each round, a ball is thrown into
one of several bins according to a fixed probability distribution. Each of the bins represents a single agent, and the
load of a bin at the end of the process determines the weight of its respective agent. In the election terminology, the
interpretation is plurality voting: each ball corresponds to a voter, and the bins are the candidates. Furthermore,
each ball will be placed in bin i (corresponding to candidate i) independently with probability pi.

In Section 4, we study the conceptually simplest and most common version of the model, in which each of
the m balls lands in one of the n bins uniformly at random (pi = 1/n for i ∈ [n]). Going back to our motivating
scenario of an election, this means that each voter gives his vote to a candidate that was selected uniformly at
random. We show that even in this setting, where agent weights are likely to be very similar (assuming a large
enough m), the choice of a threshold can be critical. We identify quotas that ensure that power disparity is likely
to be low, as well as quotas for which relatively high power disparity is likely to occur.

To complement our findings for the uniform case, in Section 6 we consider the case in which the probabilities
decay exponentially, with a decay factor no larger than 1/2. That is, assuming that the probabilities are given in
non-increasing order, than pi−1/pi ≤ 1/2. We show that analyzing this case essentially boils down to charac-
terizing the Shapley values in a game in which sorting the weights in ascending order gives a super-increasing
sequence. Our results (Section 6) significantly strengthen previous results obtained for this case by Zuckerman
et al. [24]. We show that when weights are super-increasing, there is a simple, polynomial-time computable
formula for the Shapley value as a function of the quota.

Finally, we explore the case where the weights are drawn i.i.d. from a bounded distribution with a bounded
density function. This generalizes our work in Section 3, in which the distribution in question was B(m, p).
Leveraging a novel connection to renewal theory, we provide estimates for both the highest and lowest expected
Shapley values, whenever the fractional quota (i.e., the fraction of the total weight) is bounded away from zero
and one. We show that in the specified range, these estimates remain stable, up to an exponentially decaying error
factor. A particularly intriguing example of such a prior weight distribution is the uniform distribution U(0, 1). We
demonstrate that whenever the fractional quota is roughly in the range [ 2

n , 1−
2
n ], the highest and lowest Shapley

values are close to 2/n and 2/n2, respectively.

1.1 Related Work
Several works have studied the effects of randomization on weighted voting games from a theoretical, computa-
tional and empirical perspective. The earliest study of randomization and its effects on voting power is due to
Penrose [16], who shows that the Banzhaf power index scales as the square root of players’ weight when weights
are drawn from bounded distributions.1 Lindner [10] shows certain convergence results for power indices, when
players are sampled from some distributions; Tauman and Jelnov [21] show that when weights are sampled from
the uniform distribution, the expected Shapley value of a player is proportional to its weight. Zick [23] considers
a model where the quota is sampled from a uniform distribution, and bounds the variance of the Shapley value in
this setting, both for general weights and for weights sampled from certain distributions.

1The results shown by Penrose predate the work by Banzhaf, but can be applied directly to his work; see Felsenthal and Machover [5] for
details.
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There is also a growing body of work studying the effect of perturbations on WVGs. Elkind et al. [3] focus on
computing solution concepts for WVGs whose weights and quota may change as a function of time. Zuckerman
et al. [24] and Zick et al. [22], on the other hand, study the effects of changes to the quota on voting power
distribution; however, both works do not consider a randomized weight model, but rather assume that the weights
are fixed, while the quota may vary. The effects of changes to the quota have also been studied empirically, mostly
in the context of the EU council of members [9, 8, 20].

Both theoretical and empirical works on quota manipulation indicate that even small changes to the quota can
have dramatic effects on power distribution; the current paper explores several aspects of this phenomenon.

Acknowledgments: Part of the research was done while the first and the third authors were hosted by the fourth
author. The third author was partially sponsored by the SINGA graduate fellowship (A*STAR).

This material is based upon work supported by the National Science Foundation under agreement No. DMS-
1128155. Any opinions, findings and conclusions or recommendations expressed in this material are those of the
authors, and do not necessarily reflect the views of the National Science Foundation.

2 Preliminaries
General notation Given a vector x ∈ Rn and a set S ⊆ {1, . . . , n}, let x(S) =

∑
i∈S xi. For a random variable

X , we let E[X] be its expectation, and Var[X] be its variance. For a set S, we denote by
[
S
k

]
the collection of

subsets of S of cardinality k. The notation T ∈R
[
S
k

]
means that the set T is chosen uniformly at random from[

S
k

]
. We let B(n, p) denote the binomial distribution with n trials and success probability p. We let N (µ, σ2)

denote the normal distribution with mean µ and variance σ2. We let U(a, b) denote the uniform distribution on
the interval [a, b].

We let Op(·) denote the usual big-O notation, conditioned on a fixed value of p. In other words, having
f(n) = Op(g(n)) means that there exist functions K(·), and N(·), such that for n ≥ N(p), f(n) ≤ K(p) · g(n).

Finally, for a distribution D over R, and some event E , we simplify our notation by letting Pr[E(D)] =
Prx∼D[E(x)]. For example, for a > 0, we can write Pr[B(n, p) ≤ a] = Prx∼B(n,p)[x ≤ a].

Weighted voting games A weighted voting game (WVG) is given by a set of agents N = {1, . . . , n}, where
each agent i ∈ N has a positive weight wi, and a quota (or threshold) q. Unless otherwise specified, we assume
that the weights are arranged in non-decreasing order, w1 ≤ · · · ≤ wn. For a subset of agents S ⊆ N , we define
w(S) =

∑
i∈S wi.

A subset of agents S ⊆ N is called winning (has value 1) if w(S) ≥ q and is called losing (has value 0)
otherwise. WVGs are a subclass of cooperative games; a cooperative game G = 〈N, v〉 is given by a set of agents
N , and v : 2N → R assigns a value v(S) to each subset S ⊆ N . In the case of WVGs, v(S) = 1 if w(S) ≥ q,
and is 0 otherwise.

The Shapley value Let Symn be the set of all permutations of N . Given some permutation σ ∈ Symn and an
agent i ∈ N , we let Pi(σ) = {j ∈ N : σ(j) < σ(i)}; Pi(σ) is called the set of i’s predecessors in σ. Let us
write mi(S) to be v(S ∪ {i}) − v(S); in other words, mi(S) = 1 if and only if v(S) = 0 but v(S ∪ {i}) = 1.
If mi(S) = 1, we say that i is pivotal for S; similarly, we write mi(σ) = mi(Pi(σ)), and say that i is pivotal
for σ ∈ Symn if i is pivotal for Pi(σ). The Shapley power index (often referred to as as the Shapley value in the
context of WVG’s) is simply the probability that i is pivotal for a permutation σ ∈ Symn selected uniformly at
random. More explicitly,

ϕi =
1

n!

∑
σ∈Symn

mi(σ).

Since σ−1(i) is distributed uniformly when σ is chosen at random from Symn, we also have the alternative
formula

ϕi =
1

n

n−1∑
`=0

E
S∈R[N\{i}` ]

mi(S). (1)
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Properties of the Shapley value For weighted voting games, it is not hard to show that wi ≤ wj implies
ϕi ≤ ϕj , and so if the weights are arranged in non-decreasing order, the minimal Shapley value is ϕ1 and the
maximal one is ϕn. Another useful property that follows immediately from the definitions is that

∑
i∈N ϕi = 1,

assuming 0 < q ≤
∑
i∈N wi. When we want to emphasize the role of the quota q, we will think of the Shapley

values as functions of q: ϕi(q).

Disparity One useful measure in the study of randomized weighted voting games is the expected disparity, or
difference in voting power, between two agents (either additive or multiplicative, i.e., the ratio). Games in which
this difference is high are games that exhibit rather high power imbalance, whereas games with low disparity
ensure that in expectation, all agents have an equal share of voting power. We will be interested mostly in the ratio
between the largest and smallest Shapley values.

3 Warmup: Power Distribution under the Binomial Distribution
We begin our study by considering the probabilistic model in which the agent weights w1, . . . , wn are sampled
from the binomial distribution B(m, p). In the election terminology, this corresponds to the setting of approval
voting, in which each of the m voters approve each of the n candidates with probability p, independently. In order
to keep the independence between the different weights, in this section we do not assume that the weights are
arranged in non-decreasing order.

Our analysis aims to bound the maximum additive disparity between Shapley values, maxi∈N ϕi−mini∈N ϕi.
To that end, we prove the following theorem.

Theorem 3.1. Suppose that m = Ωp(n log n) and q ≥ 3mp. For all agents i, j ∈ N ,

E[|ϕi − ϕj |] =
1

n
Op

(√
m log n

q

)
.

The theorem shows that we expect the gaps to decrease as q gets larger, reaching order 1
n ·
√

logn
n for q =

Ω(nmp). This is demonstrated in Figure 1. Note that Theorem 3.1 only bounds the difference between typical
Shapley values, rather than the difference between the maximal and minimal ones. This follows from the methods
used: we do not argue about the specific order statistics mini∈N ϕi and maxi∈N ϕi. In the subsequent sections
we will provide more refined bounds that are based on the analysis of order statistics.

We begin by presenting a formula for the difference ϕj − ϕi.

Lemma 3.1. For all agents i, j ∈ N ,

|ϕj − ϕi| =
1

n− 1

n−2∑
`=0

Pr
S∈R[N\{i,j}` ]

[q −max(wi, wj) ≤ w(S) < q −min(wi, wj)].

Proof. Assume without loss of generality that wj ≥ wi, and so ϕj ≥ ϕi. For σ ∈ Symn, let Tij(σ) be the
permutation obtained by exchanging agents i and j. Then by the definition of the Shapley value and by linearity
of expectations:

ϕj − ϕi = E
σ∈Symn

(mj(σ)−mi(σ))

= E
σ∈Symn

mj(σ)− E
σ∈Symn

mi(σ) = E
σ∈Symn

(mj(Tij(σ))−mi(σ)).

We proceed to evaluate mj(Tij(σ)) − mi(σ). Suppose first that agent i precedes agent j in σ, so that σ =
S i R j U and Tij(σ) = S j R i U (where S,R, and U form a partition of N \ {i, j}). In this case mj(Tij(σ))−
mi(σ) 6= 0 precisely when w(S)+wi < q ≤ w(S)+wj , in which casemj(Tij(σ))−mi(σ) = 1; we can rewrite
the condition as w(S) ∈ [q − wj , q − wi).

When agent j precedes agent i in σ, we can write σ = S j R i U and Tij(σ) = S i R j U . In this
case mj(Tij(σ)) −mi(σ) 6= 0 precisely when w(S) + wi + w(R) < q ≤ w(S) + wj + w(R), in which case
mj(Tij(σ))−mi(σ) = 1; we can rewrite the condition as w(S ∪R) ∈ [q − wj , q − wi).
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Figure 1: Average values obtained for the binomial process with n = 10,m = 150, p = 1/2. 250 populations
were generated.

In order to unify both conditions together, define P ′i (σ) = Pi(σ) \ {j}. Using this definition, we see that
mj(Tij(σ)) − mi(σ) is the indicator of the event w(P ′i (σ)) ∈ [q − wj , q − wi). The cardinality |P ′i (σ)| is
exactly the position of agent i in the permutation σ′ obtained by removing agent j from σ, minus one. Since σ
is a uniformly random permutation of N , σ′ is a uniformly random permutation of N \ {j}, and so |P ′i (σ)| is
distributed randomly among {0, . . . , n − 2}. Given |P ′i (σ)|, the set Pi(σ) is chosen randomly among all subsets
of N \ {i, j} of the specified size, yielding our formula.

In our case, the distribution of each individual w(S) is binomial, and so we get the following simple formula
for E[|ϕj − ϕi|].

Lemma 3.2. Fix the values of wi, wj for some agents i, j ∈ N , and let all other weights be i.i.d. samples of
B(m, p). Then

E[|ϕj − ϕi|] =
1

n− 1

n−2∑
`=0

Pr[q −max(wi, wj) ≤ B(`m, p) < q −min(wi, wj)].

(Here Pr[q − max(wi, wj) ≤ B(`m, p) < q − min(wi, wj)] = PrX∼B(`m,p)[q − max(wi, wj) ≤ X < q −
min(wi, wj)].)

Proof. For S ⊆ N \ {i, j}, let IS be the indicator for the event q −max(wi, wj) ≤ w(S) < q −min(wi, wj).
Using linearity of expectation, Lemma 3.1 implies that

E[|ϕj − ϕi|] =
1

n− 1

n−2∑
`=0

1(
n−2
`

) ∑
S∈[N\{i,j}` ]

E[IS ].

It is easy to see that E[IS ] depends only on |S| and is equal to Pr[q − max(wi, wj) ≤ B(|S|m, p) < q −
min(wi, wj)], which implies the lemma.

The idea behind the proof of Theorem 3.1 is as follows. A simple concentration argument shows that all
weights are roughly mp, and furthermore maxi,j |wi − wj | = O(

√
mp log n) with high probability. Since

B(`m, p) ≈ `mpwhile q−wi ≈ q−mp, we see that unless (`+1)mp ≈ q, the probability Pr[q−max(wi, wj) ≤
B(`m, p) < q −min(wi, wj)] is very small. For the critical values of `, we can bound this probability in terms of
|wi − wj |.
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We proceed with the full proof. Recall that we are not assuming that the weights are ordered. We start with a
concentration bound on the weights.

Lemma 3.3. Suppose that mp ≥ 9 log n. With probability 1 − 2/n2, all agents i ∈ N satisfy |wi − mp| ≤√
9mp log n ≤ mp.

Proof. Chernoff’s bound shows that

Pr[|B(m, p)−mp| ≥ δ] ≤ 2e−
δ2

3mp .

Choosing δ =
√

9mp log n ≤ mp (since mp ≥ 9 log n), this probability is at most 2/n3. The lemma follows by
applying a union bound.

This bound allows us to show that most terms in Lemma 3.2 are very small.

Lemma 3.4. Let i, j ∈ N be agents, and suppose that |wi −mp|, |wj −mp| ≤ mp. Suppose that ` ≤ n satisfies
` ≥ q

mp + 1 or ` ≤ q
mp − 2. For mp ≥ 9n log n,

Pr[q −max(wi, wj) ≤ B(`m, p) < q −min(wi, wj)] ≤
1

n3
.

Proof. The assumption on wi, wj implies that

Pr[q −max(wi, wj) ≤ B(`m, p) < q −min(wi, wj)] ≤ Pr[q −mp ≤ B(`m, p) ≤ q].

Suppose first that ` ≥ q
mp + 1. Then `mp ≥ q +mp and so

Pr[q −mp ≤ B(`m, p) ≤ q] ≤ Pr[B(`m, p) ≤ `mp−mp] ≤ e−
(mp)2

3`mp = e−
mp
3` ≤ 1

n3
.

Similarly, if ` ≤ q
mp − 2 then `mp ≤ (q −mp)−mp, and so

Pr[q −mp ≤ B(`m, p) ≤ q] ≤ Pr[B(`m, p) ≥ `mp+mp] ≤ e−
(mp)2

3`mp = e−
mp
3` ≤ 1

n3
.

In order to estimate the remaining terms, we need the following technical lemma on the binomial distribution.

Lemma 3.5. For all p there exists a constant Tp such that for all T ≥ Tp and all x,

Pr[B(T, p) = x] ≤ e/π√
Tp(1− p)

.

Proof. We use Stirling’s approximation in the following form:
√

2πn(n/e)n ≤ n! ≤ e
√
n(n/e)n.

Let x = αT . Stirling’s approximation shows that

Pr[B(T, p) = x] = (pα(1− p)1−α)T
T !

(αT )!((1− α)T )!

≤

(( p
α

)α( 1− p
1− α

)1−α
)T

e

2π

1√
α(1− α)T

= e−D(α‖p)T e

2π

1√
α(1− α)T

,

whereD(α‖p) is the Kullback–Leibler distance between two Bernoulli variables. It is well-known thatD(α‖p) ≥
2(α− p)2, and so

Pr[B(T, p) = x] ≤ e−2(α−p)2T e

2π

1√
α(1− α)T

.
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This shows that as T → ∞, the minimum of
√
T Pr[B(T, p) = x] with respect to α is obtained at a point

converging to p. In particular, the minimum tends to e
2π/
√
p(1− p). Therefore for every ε > 0 and T large

enough (depending on p and ε),

Pr[B(T, p) = x] ≤ (1 + ε) · e
2π

1√
p(1− p)T

.

Choosing ε = 1 (arbitrarily), we obtain the desired bound.

This allows us to bound the terms not covered by Lemma 3.4.

Lemma 3.6. Let i, j ∈ N be agents. If mp ≥ Tp, then for any `,

Pr[q −max(wi, wj) ≤ B(`m, p) < q −min(wi, wj)] = Op

(
|wi − wj |√

`m

)
.

Proof. Follows directly from Lemma 3.5.

We can now put everything together.

Proof of Theorem 3.1. Suppose first that all agents i ∈ N satisfy |wi − mp| ≤
√

9mp log n, an event which
happens with probability 1− 2/n2 due to Lemma 3.3. Plugging Lemma 3.4 and Lemma 3.6 into Lemma 3.2, we
obtain that for all agents i, j ∈ N ,

E[|ϕi − ϕj |] ≤
1

n3
+

1

n− 1

∑
`∈( q

mp−2, qmp+1)

Op

(
|wi − wj |√

`m

)

≤ 1

n3
+

1

n− 1
Op

(√
9mp log n√

q/p

)
= Op

(√
m log n

n2q

)
,

since there are at most three values of ` ∈ ( q
mp − 2, q

mp + 1), and all of them are Θ( q
mp ). Taking into account the

failure of Lemma 3.3, we deduce that for all agents i, j ∈ N ,

E[|ϕi − ϕj |] ≤
(

1− 2

n2

)
·Op

(√
m log n

n2q

)
+

2

n2
· 1 = Op

(√
m log n

n2q

)
.

4 The Balls and Bins Distribution: the Uniform Case
We now consider a generative stochastic process called the Balls and Bins process. In its most general form, given
a set of m bins and a categorical distribution represented by a vector p ∈ [0, 1]m such that

∑m
i=1 pi = 1, the

process unfolds in m steps. In every step, a ball is thrown into one of the bins based on the probability vector
p. The resulting weights are then sorted in non-decreasing order w1 ≤ · · · ≤ wn. We can think of the Balls and
Bins setting as a model for the case of a plurality election, where each voter gives her vote to one of the parties
according to the distribution p.

This model has been used extensively in recent years in the computer science community, as it provides
powerful theoretical tools for many models in areas such as scheduling and load balancing [12, 1], efficient vote
elicitation [14] and online matching [13].

We begin our study of the balls and bins process by considering the most commonly studied version of the
balls and bins model, in which each ball is thrown into one of the bins with equal probability, i.e., pi = 1/n, for
all i ∈ N .

As Figure 2 shows for the case of n = 10, the behavior of the Shapley values demonstrates an almost perfect
cyclic pattern, with intervals of length m/n. As can be seen in the figure, for quota values that are sufficiently
distant from the interval endpoints, all of the Shapley values tend to be equivalent (as the Shapley values of the
highest and lowest agents are equal in these regions). Intuitively, this follows from the fact that as the number of
balls grows, all of the bins tend to have the same number of balls in them, with very high probability; this low
weight discrepancy immediately translates to very low power discrepancy.

We now give a theoretical justification for the above observation.
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Figure 2: Average values obtained for the uniform balls and bins process with n = 10,m = 1000. 200 populations
were generated. Note the huge disparity in Shapley values at q = ` · mn , as opposed to the near equality when q is
bounded away from integer multiples of mn .

Theorem 4.1. Let M = m
3n3 . Suppose that |q− `m

n | >
1√
M

m
n for all integers `. Then with probability 1−2( 2

e )n,
all Shapley values are equal to 1/n.

In this proof, we do not assume that the weights w1, . . . , wn are ordered, in order to maintain the fact that
the weights are independent random variables. The idea of the proof is to use the following criterion, which is a
consequence of Lemma 3.1:

Proposition 4.1. Suppose that for all agents i, j ∈ N and for all subsets S ⊆ N \ {i, j}, we have q /∈ (w(S ∪
{i}), w(S ∪ {j})]. Then all Shapley values are equal to 1/n.

Proof. We show that under the assumption on q, all Shapley values are equal, and so all must equal 1/n. Suppose
that for some agents i 6= j, we have ϕi < ϕj (and so wi < wj). Lemma 3.1 implies the existence of a set
S ⊆ N \ {i, j} satisfying q − wj ≤ w(S) < q − wi, or in other words w(S) + wi < q ≤ w(S) + wj . This is
exactly what is ruled out by the assumption on q.

Next, we show that the weights w(S) are concentrated around points of the form `mn .

Lemma 4.1. Suppose that m > 3n2. With probability 1 − 2( 2
e )n, the following holds: for all S ⊆ N , |w(S) −

|S|m
n | ≤

√
3nm.

Proof. The proof uses a straightforward Chernoff bound. We can assume that S 6= ∅ (as otherwise the bound is
trivial). For each non-empty set S ⊆ N , the distribution of w(S) is B(m, |S|n ). Therefore for 0 < δ < 1,

Pr

[∣∣∣∣w(S)− |S|m
n

∣∣∣∣ > δ
|S|m
n

]
≤ 2e−

δ2|S|m
3n .

Choosing δ =
√

3n2

|S|m < 1, we obtain

Pr

[∣∣∣∣w(S)− |S|m
n

∣∣∣∣ >√3|S|m
]
≤ 2e−n.

Since there are 2n possible sets S, a union bound implies that |w(S) − |S|mn | ≤
√

3nm with probability at least
1− 2( 2

e )n.

8



This immediately impplies Theorem 4.1, as we now show.

Proof of Theorem 4.1. First, note thatM < 1, as otherwise, it would imply that for all ` = 1, . . . , n, |q−`m/n| ≥
m/n, which is impossible, as every quota in the range (0,m] is within some integral multiple of m/n. Thus,
having M > 1, implies that m > 3n3 ≥ 3n2, as required by Lemma 4.1.

Lemma 4.1 shows that with probability 1− 2( 2
e )n, for all sets S we have |w(S)− |S|mn | ≤

√
3nm. Condition

on this event. Suppose, for the sake of obtaining a contradiction, that ϕi < ϕj for some agents i, j. Then
Proposition 4.1 shows that there must exist some S ⊆ N \ {i, j} such that q ∈ (w(S ∪ {i}), w(S ∪ {j})]. Since
bothw(S∪{i}) andw(S∪{j}) are

√
3nm-close to (|S|+1)m

n , this implies that |q− (|S|+1)m
n | ≤

√
3nm = 1√

M
·mn ,

contradicting our assumption on q. We conclude that all agents have the same Shapley value 1/n.

Returning to our voting setting, the interpretation of Theorem 4.1 is that if the voter population is much larger
than the number of candidates, and the votes are assumed to be cast uniformly at random (i.e., a totally neutral
distribution of preferences), then choosing a quota that is well away from a multiple of mn , will most probably lead
to an even distribution of power among the elected representatives (e.g., political parties).

4.1 How weak can the weakest agent get in the uniform case?
As Theorem 4.1 demonstrates, if the quota is sufficiently bounded away from any integral multiple of mn , then the
distribution of power tends to be even among the agents. When the quota is close to an integer multiple of m

n , it
may very well be that the resulting weighted voting game may not display such an even distribution of power, as
a result of weight differences, as a result of the intrinsic “noise” of the process. Figure 2 provides an empirical
validation of this intuition. Motivated by these observations, we now proceed to study the expected Shapley value
of the weakest agent, ϕ1 (recall that we assume that the weights are given in non-decreasing order).

We now present two contrasting results. Let q = ` · mn , for an integer `. When ` = o(log n), we show that the
expected minimal Shapley value is roughly 1

2n , and so it is at least half the maximal Shapley value (in expectation).

Theorem 4.2. Let q = ` · mn for some integer ` = o(log n). For m = Ω(n3 log n), E[ϕ1] = 1
2n + o( 1

n ).

In contrast, when ` = Ω(n), this effect disappears.

Theorem 4.3. Let q = ` · mn for ` ∈ {1, . . . , n} such that γ ≤ `
n ≤ 1 − γ for some constant γ > 0. For

m = Ω(n3),

E[ϕ1] ≥ 1

n
−Oγ

(√
log n

n3

)
.

The idea behind the proof of both theorems is the following formula for ϕ1. In this formula and in the rest of
the section, the probabilities are taken over both the displayed variables and the choice of weights.

Lemma 4.2. Let q = ` · mn , where ` ∈ {1, . . . , n− 1}. For m = Ω(n3 log n),

E[ϕ1] =
1

2(n− `)
− `

n(n− `)
+

1

n− `
Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q]±O

(
1

n2

)
.

Proof sketch. Let pk = Pr
A∈R[N\{1}k ][q − w1 ≤ w(A) < q]. Then the alternative definition of the Shapley value

(Formula (1) in the preliminaries) shows that E[ϕ1] = 1
n

∑n−1
k=0 pk. We then consider three cases, corresponding

to possible sizes of the set A in the formula for pk; each of these cases will contribute a term in expression of
the lemma. Since w(A) ≈ |A|m

n , when |A| ≥ ` + 1 it is highly unlikely that w(A) < q. Similarly, since
w(A) + w1 ≈ (|A|+1)m

n , when |A| ≤ ` − 2 it is highly unlikely that w(A) ≥ q − w1. So roughly speaking,
E[ϕ1] ≈ p`−1+p`

n . Furthermore, when |A| = ` − 1, it is very likely that w(A) < q, and when |A| = `, it is very
likely that w(A) ≥ q − w1. So roughly speaking,

E[ϕ1] ≈ 1

n
Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q] +

1

n
Pr

A∈R[N\{1}` ]
[w(A) < q].

9



The trick now is to relate the two terms:

Pr
A∈R[N\{1}` ]

[w(A) < q] =
1(
n−1
`

) ∑
A∈[N\{1}` ]

Pr[w(A) < q]

=
1(
n−1
`

) ∑
A∈[N` ]

Pr[w(A) < q]− 1(
n−1
`

) ∑
A∈[N\{1}`−1 ]

Pr[w(A) + w1 < q]

=
n

n− `
Pr

A∈R[N` ]
Pr[w(A) < q]− `

n− `

(
1− Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q]

)
.

To address the first term in the above expression, note that when |A| = `, E[w(A)] = q, and so the first probability
is roughly 1/2. Therefore

Pr
A∈R[N\{1}` ]

[w(A) < q] ≈ n

2(n− `)
− `

n− `
+

`

n− `
Pr

A∈R[N\{1}`−1 ]
Pr[w(A) + w1 ≥ q].

Substituting this in our estimate for E[ϕ1], we obtain

E[ϕ1] ≈ 1

n− `
Pr

A∈R[N\{1}`−1 ]
Pr[w(A) + w1 ≥ q] +

1

2(n− `)
− `

n(n− `)
.

The full details of the proof appear in the subsequent subsection (Subsection 4.2).
In order to estimate the expression Pr

A∈R[N\{1}`−1 ][w(A) + w1 ≥ q], we need a good estimate for w1. Such an
estimate is given by the following lemma.

Lemma 4.3. With probability 1− 2/n,√
m log n

3n
≤ m

n
− w1 ≤

√
4m log n

n
.

We obtain this bound by applying the Poisson approximation technique to the Balls and Bins process, which
we now roughly describe. Consider the case of a random event, defined with respect to the weight distribution
induced by the process. The probability of the event can be well-approximated by the probability of an analogous
event, defined with respect to n i.i.d. Poisson random variables, assuming the event is monotone in the number of
balls.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. Lemma 4.6 (a simple technical result proved in subsection 4.2) shows that

Pr
A∈R[N\{1}`−1 ]

[w(A) + w1 ≥ q] ≤
n

n− `+ 1
Pr[B(m, `−1

n ) ≥ q − w1].

The concentration bound on w1 (Lemma 4.3) shows that with probability 1− 2/n, q−w1 ≥ (`−1)m
n +

√
m logn

3n .
Assuming this, a Chernoff bound gives

Pr[B(m, `−1
n ) ≥ q − w1] ≤ Pr[B(m, `−1

n ) ≥ (`− 1)m

n
+

√
m log n

3n
] ≤ e−

m logn/(3n)
3(`−1)m/n ≤ e−

logn
9` = o(1),

using ` = o(log n). Accounting for possible failure of the bound on q − w1, we obtain

Pr
A∈R[N\{1}`−1 ]

[w(A) + w1 ≥ q] ≤
(

1− 2

n

)
· o
(

n

n− `

)
+

2

n
· 1 = o(1),

using ` = o(log n). Lemma 4.2 therefore shows that

E[ϕ1] ≤ 1

2(n− `)
+ o

(
1

n− `

)
+O

(
1

n2

)
=

1

2n
+ o

(
1

n

)
,
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since ` = o(log n) implies 1
n−` = 1

n + `
n(n−`) = 1

n + o( 1
n ). Lemma 4.2 also implies a matching lower bound:

E[ϕ1] ≥ 1

2(n− `)
− `

n− `
−O

(
1

n2

)
≥ 1

2n
− o

(
1

n

)
.

In the regime of ` addressed by Theorem 4.2, Pr
A∈R[N\{1}`−1 ][w(A) + w1 ≥ q] was negligible. In contrast, in

the regime of ` addressed by Theorem 4.3, Pr
A∈R[N\{1}`−1 ][w(A) +w1 ≥ q] ≈ 1/2, as the following lemma, which

is proved later in Subsection 4.4, using the Berry–Esseen theorem, shows.

Lemma 4.4. Suppose q = `mn for an integer ` satisfying γ ≤ `−1
n ≤ 1− γ, and let

tε = Pr
A∈R[N\{1}`−1 ]

[
w(A) + w1 ≥ q : w1 =

m

n
− ε
√
m log n

n

]
.

Then for m ≥ 4n3,

tε ≥
1

2
− ε

2πγ

√
log n

n
− 1

n
.

As Lemma 4.3 shows, 1/3 ≤ ε ≤ 4 with probability 1 − 2/n, which explains the usefulness of this bound.
We can now prove Theorem 4.3.

Proof of Theorem 4.3. Lemma 4.3 shows that with probability 1 − 2/n, w1 = m
n − ε

√
m logn
n for some 1/3 ≤

ε ≤ 4, in which regime Lemma 4.4 shows that tε ≥ 1
2 −

2
πγ

√
logn
n − 1

n . Accounting for the case in which ε is
out of bounds,

Pr
A∈R[N\{1}`−1 ]

[w(A) + w1 ≥ q] ≥
(

1− 2

n

)(
1

2
− 2

πγ

√
log n

n
− 1

n

)
≥ 1

2
− 2

πγ

√
log n

n
− 3

n
.

Substituting this in Lemma 4.2, we obtain

E[ϕ1] ≥ 1

2(n− `)
− `

n(n− `)
+

1

n− `

(
1

2
− 2

πγ

√
log n

n
− 3

n

)
−O

(
1

n2

)

=
1

n− `
− `

n(n− `)
− 1

n− `
Oγ

(√
log n

n

)
−O

(
1

n2

)
=

1

n
−Oγ

(√
log n

n3

)
.

4.2 Proof of Lemma 4.2
We prove the following lemma.

Lemma 4.2. Let q = ` · mn , where ` ∈ {1, . . . , n− 1}. For m = Ω(n3 log n),

E[ϕ1] =
1

2(n− `)
− `

n(n− `)
+

1

n− `
Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q]±O

(
1

n2

)
.

The proof closely follows the proof sketch in Section 4.1.
We will need the fact that with high probability, w1 is close to m/n.

Lemma 4.5. With probability at least 1− 1/n,

m

n
−
√

4m log n

n
≤ w1 ≤

m

n
.
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Proof. Clearly w1 ≤ m/n always, so we only need to address the lower bound on w1. Let w′1, . . . , w
′
n be the

loads of the bins before sorting them. The loadsw′i are independent random variables with distribution B(m, 1/n).
For each index i, Chernoff’s bound shows that

Pr

[
w′i <

m

n
−
√

4m log n

n

]
≤ e−

4m logn/n
2m/n =

1

n2
.

A union bound shows that with probability 1 − 1/n, all i ∈ N satisfy w′i ≥ m
n −

√
4m logn

n , and so w1 ≥
m
n −

√
4m logn

n .

Below we will be interested in bounding probabilities of the form Pr
A∈R[N\{1}k ][P (w(A))] for predicates P .

The following lemma shows how to bound these probabilities from above.

Lemma 4.6. For a weight vector w and S ⊆ N , let E(w(S)) be a random event (i.e., some predicate on w(S)),
and let 0 ≤ k ≤ n− 1. Then

Pr
A∈R[N\{1}k ]

[E(w(A))] ≤ n

n− k
Pr[E(B(m, kn ))].

Also,
Pr

A∈R[Nk ]
[E(w(A))] = Pr[E(B(m, kn ))].

Proof. First, we have

Pr
A∈R[N\{1}k ]

[E(w(A))] =
1(
n−1
k

) ∑
A∈[N\{1}k ]

Pr[E(w(A))] ≤ 1(
n−1
k

) ∑
A∈[Nk ]

Pr[E(w(A))] =
n

n− k
Pr

A∈R[Nk ]
[E(w(A))].

Consider the last expression. Since the probability is over all subsets of N of size k, the same value is obtained
from the unsorted Balls and Bins process (without sorting the loads). Under this process, w(A) ∼ B(m, kn ) for
all A ∈

[
N
k

]
, and so

Pr
A∈R[Nk ]

[E(w(A))] = Pr
w∼B(m,

k
n )

[E(w)].

This implies the lemma.

Let pk = Pr
A∈R[N\{1}k ][q − w1 ≤ w(A) < q], and recall that formula (1) shows that ϕ1 = 1

n

∑n−1
k=0 pk. We

start by showing that the only non-negligible pk are p`−1 and p`, using a Chernoff bound. The idea is that when
k ≥ `+ 1, it is highly unlikely that w(A) < q, and when k ≤ `− 1, it is highly unlikely that w(A) ≥ q − w1.

Lemma 4.7. Suppose that m ≥ 9n2 log n. Then for k ∈ {1, . . . , n} \ {`− 1, `} we have pk ≤ 1/n2, and so

0 ≤ E[ϕ1]− p`−1 + p`
n

≤ 1

n2
.

Proof. Let k ∈ N . Lemma 4.6 shows that

pk ≤ nPr[q − w1 ≤ B(m, kn ) < q].

Suppose first that k ≥ `+ 1. Chernoff’s bound shows that

Pr[q − w1 ≤ B(m, kn ) < q] ≤ Pr[B(m, kn ) < km
n −

m
n ] ≤ e−

(m/n)2

3km/n = e−m/(3nk) ≤ 1

n3
.

Suppose next that k ≤ `− 2. Since w1 ≤ m/n, another application of Chernoff’s bound gives

Pr[q−w1 ≤ B(m, kn ) < q] ≤ Pr[B(m, kn ) ≥ (`−1)m
n ] ≤ Pr[B(m, kn ) ≥ km

n +m
n ] ≤ e−

(m/n)2

3km/n = e−m/(3nk) ≤ 1

n3
.

Therefore pk ≤ 1/n2 for all k ∈ N \ {`− 1, `}. The estimate for E[ϕ1] follows from formula (1).
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The next step is to consider the following estimates for p`−1, p`:

p′`−1 = Pr
A∈R[N\{1}`−1 ]

[q − w1 ≤ w(A)],

p′` = Pr
A∈R[N\{1}` ]

[w(A) < q].

The following lemma shows that p′`−1 ≈ p`−1 and p′` ≈ p`.

Lemma 4.8. Suppose that m ≥ 24n2 log n. Then p`−1 ≤ p′`−1 ≤ p`−1 + 1
n and p` ≤ p′` ≤ p` + 2

n , and so

− 3

n2
≤ E[ϕ1]−

p′`−1 + p′`
n

≤ 1

n2
.

Proof. Clearly p`−1 ≤ p′`−1 and p` ≤ p′`. First,

p′`−1 − p`−1 ≤ Pr
A∈R[N\{1}`−1 ]

[w(A) ≥ q] ≤ nPr[B(m, `−1
n ) ≥ q],

using Lemma 4.6. Chernoff’s bound shows that

Pr[B(m, `−1
n ) ≥ (`−1)m

n + m
n ] ≤ e−

(m/n)2

3(`−1)m/n = e−m/(3n(`−1)) ≤ 1

n2
.

Similarly,
p′` − p` ≤ Pr

A∈R[N\{1}` ]
[w(A) < q − w1] ≤ nPr[B(m, `n ) < q − w1].

We now need the lower bound on w1 given by Lemma 4.5, which holds with probability 1− 1/n:

q − w1 ≤
`m

n
−

(
m

n
−
√

4m log n

n

)
≤ `m

n
− m

2n
,

the latter inequality following from m ≥ 24n2 log n > 16n log n. Assuming the lower bound on w1,

Pr[B(m, `n ) < q − w1] ≤ e−
(m/(2n))2

3(`−1)m/n = e−m/(12n(`−1)) ≤ 1

n2
.

Therefore

p′` − p` ≤
(

1− 1

n

)
· 1

n2
+

1

n
· 1 < 2

n
.

The formula for E[ϕ1] follows from Lemma 4.7.

It remains to relate p′`−1 and p′`.

Lemma 4.9. Suppose that m ≥ 24n3 log n. Then∣∣∣∣p′` − ( n

2(n− `)
− `

n− `
(1− p′`−1)

)∣∣∣∣ ≤ 1

n
,

and so

− 4

n2
≤ E[ϕ1]−

(
1

2(n− `)
− `

n(n− `)
+
p′`−1

n− `

)
≤ 2

n2
.
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Proof. We have

p′` = Pr
A∈R[N\{1}` ]

[w(A) < q]

=
1(
n−1
`

) ∑
A∈[N\{1}` ]

Pr[w(A) < q]

=
1(
n−1
`

) ∑
A∈[N` ]

Pr[w(A) < q]− 1(
n−1
`

) ∑
A∈[N\{1}`−1 ]

Pr[w(A) + w1 < q]

=
n

n− `
Pr

A∈R[N` ]
Pr[w(A) < q]− `

n− `

(
1− Pr

A∈R[N\{1}`−1 ]
[w(A) + w1 ≥ q]

)

=
n

n− `
Pr[B(m,

`

n
) < q]− `

n− `
(1− p′`−1),

where the final equality follows from the second part of Lemma 4.6. We proceed to estimate Pr[B(m, `n ) < q]

using the Berry–Esseen theorem. The normalized binomial B(m, `n )− q is a sum of m independent copies of the
random variable X with Pr[X = 1− `

n ] = `
n and Pr[X = − `

n ] = 1− `
n . The Berry–Esseen theorem states that

|Pr[B(m,
`

n
)− q < 0]− Pr[N (0, σ2) < 0]| < ρ

σ3
√
m
,

where σ2 = E[X2] = `
n (1− `

n )2 + (1− `
n )( `n )2 = `

n (1− `
n ) and ρ = E[|X|3] = `

n (1− `
n )3 + (1− `

n )( `n )3 =
`
n (1− `

n )[( `n )2 + (1− `
n )2]. Since Pr[N (0, σ2) < 0] = 1/2, we conclude that∣∣∣∣Pr[B(m,

`

n
)− q < 0]− 1

2

∣∣∣∣ < 1√
m

( `n )2 + (1− `
n )2√

`
n

(
1− `

n

) ≤ 2

√
n

m
,

since the denominator is at least
√

1
n (1− 1

n ), and the numerator is at most 2(1 − 1
n )2 ≤ 2

√
1− 1

n . Since

m ≥ 24n3 log n ≥ 4n3, we further have 2
√

n
m ≤

1
n .

The formula for E[ϕ1] follows from Lemma 4.8.

Lemma 4.9 is simply a reformulation of Lemma 4.2.

4.3 Proof of Lemma 4.3
Let us recall Lemma 4.3.

Lemma 4.3. With probability 1− 2/n,√
m log n

3n
≤ m

n
− w1 ≤

√
4m log n

n
.

We already proved the upper bound in Lemma 4.5, using a simple union bound. The lower bound (correspond-
ing to an upper bound on w1) is much more difficult, because of the dependence between the individual bins. One
way to overcome this difficulty is to use the Poisson approximation, given by the following theorem.

Theorem 4.4 ([11]). Let w1, . . . , wn be sampled according to the Balls and Bins distribution with m balls, and
let X1, . . . , Xn be n i.i.d. random variables sampled from the distribution Pois(mn ). Let f : Rn → {0, 1} be a
boolean function over the weight vector, such that the probability p(w1, . . . , wn) = Pr[f(w1, . . . , wn) = 1] is
monotonically increasing or decreasing with the number of balls. Then p(w1, . . . , wn) ≤ 2p(X1, . . . , Xn).

The following lemma completes the proof of Lemma 4.3, since calculation shows that for all n ≥ 1,

m

n

√
log(n/ log(2n))

m/n
=

√
m log(n/ log(2n))

n
≥
√
m log n

3n
.

(In fact, the minimum of log(n/ log(2n))
logn is obtained for n = 3, in which case it is roughly 0.47.)
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Lemma 4.10. Let λ = m
n . For any ε ≤

√
log( n

log(2n) )
λ , Pr[w1 > λ(1− ε)] ≤ 1

n .

Proof. We define n i.i.d random variables X1, . . . , Xn, sampled from the distribution Pois(λ). We first derive a
concentration bound on miniXi, after which we will make use of Theorem 4.4 to obtain the desired result. By
the definition of the Poisson distribution,

Pr[min
i
Xi > t] = Pr[X1 > t]n ≤ Pr[X1 6= t]n ≤

(
1− e−λλ

t

t!

)n
≤

(
1− e−λ

(
eλ

t

)t)n
.

The last inequality is due to the fact that t! ≥
(
t
e

)t
, by Stirling’s approximation. Setting t = (1− ε)λ, we get

Pr[min
i
Xi > (1− ε)λ] ≤

(
1− e−λ

(
eλ

(1− ε)λ

)(1−ε)λ
)n

=

(
1− e−λ

(
e

1− ε

)(1−ε)λ
)n

≤
(

1− e−ελe(1−ε)ελ
)n

=
(

1− e−ε
2λ
)n
≤ e−ne

−ε2λ
.

The second inequality follows from the inequality 1
1−x ≥ ex, for |x| < 1. The third inequality follows from the

inequality 1− x ≤ e−x.

Now, for any ε ≤
√

log( n
log(2n) )
λ , we have

e−ne
−ε2λ

≤ e−ne
− log( n

log(2n) )
= e− log(2n) =

1

2n
.

A simple coupling argument shows that Pr[mini wi > (1 − ε)λ] is monotone increasing in the number of balls
(here, f(w1, . . . , wn) is 1 if and only if mini wi > (1− ε)λ). Therefore Theorem 4.4 holds, and we have

Pr[min
i
wi > (1− ε)λ] ≤ 2 Pr[min

i
Xi > (1− ε)λ] ≤ 1

n
,

which concludes the proof.

4.4 Proof of Lemma 4.4
Lemma 4.4. Suppose q = `mn for an integer ` satisfying γ ≤ `−1

n ≤ 1− γ, and let

tε = Pr
A∈R[N\{1}`−1 ]

[
w(A) + w1 ≥ q : w1 =

m

n
− ε
√
m log n

n

]
.

Then for m ≥ 4n3,

tε ≥
1

2
− ε

2πγ

√
log n

n
− 1

n
.

Proof. The idea of the proof is to replace w(A) by the weight of a random set of size ` − 1. A simple coupling
argument shows that

tε ≥ Pr
A∈R[ N`−1]

[
w(A) + w1 ≥ q : w1 =

m

n
− ε
√
m log n

n

]
= Pr

[
B(m, `−1

n ) ≥ (`− 1)m

n
+ ε

√
m log n

n

]
,

using the second part of Lemma 4.6.
As in the proof of Lemma 4.9, since m ≥ 4n3, we can use the Berry–Esseen theorem to estimate the latter

expression up to an additive error of 1
n :

tε ≥ Pr

[
B(m, `−1

n ) ≥ (`− 1)m

n
+ ε

√
m log n

n

]
≥ Pr

[
N ( (`−1)m

n , (`−1)m
n (1− `−1

n )) ≥ (`− 1)m

n
+ ε

√
m log n

n

]
− 1

n
.
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In order to estimate the latter probability, we use the bound Pr[N (0, 1) ≥ x] ≥ 1/2 − x√
2π

(for x ≥ 0), which

follows from Pr[N (0, 1) ≥ 0] = 1/2 and the fact that the density of N (0, 1) is bounded by 1/
√

2π. In our case,

x = ε

√
m log n

n

/√
(`−1)m

n (1− `−1
n ) ≤ ε

√
m log n

n

/√
γ2m = ε

√
log n

γ2n
.

Therefore

tε ≥
1

2
− ε

2πγ

√
log n

n
− 1

n
.

5 The Balls and Bins Distribution: the Exponential Case
In the previous section, we showed that even in the case where the distribution is not inherently biased towards any
of the agents, substantial inequalities may arise due to random noise. We now turn to study the case in which the
distribution is biased in a way that exacerbates the inequality among the agents. Returning to our formal definition
of the general balls and bins process, we assume that the probabilities in the vector p are ordered in increasing
order and pi

pi+1
= ρ, for some ρ < 1/2. We observe that as m approaches∞, the weight vector follows a power

law with probability 1, where for each i = 1, . . . , n− 1, wi
wi+1

= ρ. A closely related family of weight vectors that
we will refer to is the family of super-increasing weight vectors:

Definition 5.1 (Super-increasing weights). A series of positive weights w = (w1, . . . , wn) is said to be super-
increasing if for every i = 1, . . . , n,

∑i−1
j=1 wj < wi.

The following three results (Lemma 5.1, Lemma 5.2 and Theorem 5.1) show that for a sufficiently large value
ofm, estimating the Shapley values in a weighted voting game where the weights are sampled from an exponential
distribution can be reduced to the study of Shapley values in a game with a prescribed (fixed) super-increasing
weight vector; Section 6 studies power distribution in WVGs with super-increasing weights. The following
lemma gives a characterization of the necessary size of the voter population, so as to make the weight vector
super-increasing, if the voters vote according to the above exponential distribution.

Lemma 5.1. Assume that m voters submit the votes according to the exponential distribution over candidates,
such that for ρ ∈ (0, 1

2 ), Pr[voter j votes for candidate i] ∝ ρn−i. There is a constant C > 0 such that if
m ≥ Cρ−n(2ρ − 1)−2 log n then the resulting weight vector is super-increasing with probability 1 − O( 1

n ).
Furthermore, as m→∞, the probability approaches 1.

Proof. The proof uses Bernstein’s inequality with a subsequent application of the union bound. Consider a se-
quence w1 ≤ w2 ≤ · · · ≤ wn. The sequence is clearly super-increasing if for every i = 2, . . . , n, wi/wi−1 ≥ 2,
andw1 > 0. We now lower bound the probability of this event, by upper-bounding the probability of the following
bad events: Ei is the event that wi < 2wi−1 (for i = 2, . . . , n), and E1 is the event that w1 = 0. A union bound
shows that the sequence w is super-increasing with probability at least 1−

∑n
i=1 Pr[Ei].

First note that the probability that voter j votes for candidate i is equal to

pi =
ρn−i∑n
i=1 ρ

n−i =
ρn−i(1− ρ)

1− ρn
= Θ(ρn−i).

Bounding the probability of E1 is easy:

Pr[E1] = (1− p1)m ≤ e−p1m = e−Θ(ρn−1m).

In order to bound the probability of Ei for i 6= 1, consider the random variable X = 2wi−1 − wi. This
random variable is a sum of m i.i.d. random variables X(1), . . . , X(m) corresponding to the different voters with
the following distribution:

X(j) =


2 w.p. pi−1,

−1 w.p. pi,
0 w.p. 1− pi−1 − pi.
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Using the identity pi−1 = ρpi, the moments of X are

E[X] = mE[X(j)] = (2ρ− 1)pim = Θ((2ρ− 1)ρn−im),

Var[X] = m(E[X(j)2]− E[X(j)]2) = (4ρ+ 1)pim− (2ρ− 1)2p2
im = O(ρn−im).

Since |X(j) − E[X(j)]| = O(1), Bernstein’s equality gives

Pr[Ei] = Pr[X > 0]

≤ exp−
1
2 E[X]2

Var[X] +O(E[X])

= exp−Θ((2ρ− 1)2ρ2(n−i)m2)

O(ρn−im)

= exp−Ω((2ρ− 1)2ρn−im).

Summarizing,
n∑
i=1

Pr[Ei] ≤ e−Θ(ρn−1m) +

n∑
i=2

e−Ω((2ρ−1)2ρn−im).

When m ≥ Cρ−n(2ρ − 1)−2 log n for an appropriate C, all the terms are O(1/n2), and so the total error prob-
ability is O(1/n), proving the first part of lemma. As m → ∞, all the terms tend to 0, and so the total error
probability tends to 0, proving the second part of the lemma.

Before we proceed, it would be helpful to provide some intuition about the behavior of the Shapley values.
Assuming that agent weights are given by an n-length (increasing) sequence w of real-values, consider the set of
all distinct subset sums of the weights S(w) = {s : ∃P ⊆ [n] s.t. s =

∑
i∈P wn+1−i} (we use wn+1−i instead

of wi to make some formulas below nicer). Furthermore, suppose that the subset sums are ordered in increasing
order; i.e., S(w) = {sj}tj=1, such that sj < sj+1 for 1 ≤ j < t. It is easy to show, using the definition of the
Shapley value, that for any quota q ∈ (sj , sj+1], for 1 ≤ j < t, the Shapley values of every agent i ∈ N remain
constant at some value ϕi(j), defined for the j’th interval. We formalize this intuition in Section 6, where we give
a formula for ϕi(j).

Before we state the formula (Proposition 5.2 below), we need some notation. For each P ⊆ N , let w̃(P ) =∑
i∈P wn+1−i. For some j, w̃(P ) = sj , where sj ∈ S . If P 6= N then j < t and so sj+1 = w̃(P+) for

some P+ ⊆ N . We define IwP = (w̃(P ), w̃(P+)]. From the definition it follows that the intervals IwP partition
the interval (0, w(N)]. We can now state the formula for ϕi(j). Given a weight vector w, let ϕw

i (q) denote the
Shapley value of player i when the quota is q and the weights are given by w.

Proposition 5.2. Suppose that w = (w1, . . . , wn) is a super-increasing sequence of weights, and suppose that
q ∈ (0, w(N)], say q ∈ IwP for some P ⊆ N . Write P = {j0, . . . , jr} in increasing order. If i /∈ P then

ϕwn+1−i(q) =
∑

t∈{0,...,r} :
jt>i

1

jt
(
jt−1
t

) .
If i ∈ P , say i = js, then

ϕw
n+1−i(q) =

1

js
(
js−1
s

) − ∑
t∈{0,...,r} :

jt>i

1

jt
(
jt−1
t−1

) .
Suppose that w is generated using a Balls and Bins process with probabilities p, where p is a super-increasing

sequence; then it stands to reason that if a sufficiently large number of balls is tossed (i.e., m is large enough),
then voting power distribution under w will be very close to power distribution under the weight vector p. This
intuition is captured in the following lemma.

Lemma 5.2. Suppose that p = (p1, . . . , pn) is a super-increasing sequence summing to 1, and let w1, . . . , wn be
obtained by sampling m times from the distribution p1, . . . , pn.

Suppose that T ∈ (0, 1], say T ∈ Ip(P ) for some P ⊆ {1, . . . , n}. If the distance of T from the endpoints
p̃(P ), p̃(P+) of Ip(P ) is at least ∆ =

√
log(nm)/m then with probability 1 − 2

(nm)2 it holds that if w is
super-increasing then for all i ∈ N , ϕw

i (mT ) = ϕp
i (T ).

17



Proof. Suppose that w is super-increasing. Lemma 6.1 implies that Iw(P ) = (w̃(P ), w̃(P+)], since both p and
w are super-increasing (a priori, it could be that P+ would have different values when defined with respect to p
and to w). The idea of the proof is to show that with high probability, mT ∈ Iw(P ), and then the lemma follows
from Proposition 5.2. We do that by upper-bounding the probability of the following two bad events: w̃(P ) ≥ mT
and w̃(P+) < mT .

The random variable w̃(P ) is a sum of m i.i.d. indicator random variables which are 1 with probability p̃(P ).
Therefore E[w̃(P )] = mp̃(P ). Hoeffding’s inequality shows that

Pr[w̃(P ) ≥ mT ] ≤ Pr[w̃(P ) ≥ E[w̃(P )] +m∆] ≤ e−2∆2m.

Similarly Pr[w̃(P+) < mT ] ≤ e−2∆2m. When ∆ ≥
√

log n/m, both error probabilities are at most 1/(nm)2.

Combining both lemmas, we obtain our main result on the exponential case of the Balls and Bins distribution.

Theorem 5.1. Assume that m voters submit the votes according to the exponential distribution over candidates,
such that for ρ ∈ (0, 1

2 ), pi = Pr[voter j votes for candidate i] ∝ ρn−i. Assume further that m ≥ Cρ−n(2ρ −
1)−2 log n, where C > 0 is some global constant.

Suppose that T ∈ (0, 1], say T ∈ Ip(P ) for some P ⊆ {1, . . . , n}. If the distance of T from the endpoints
p̃(P ), p̃(P+) of Ip(P ) is at least ∆ =

√
log(nm)/m then with probability 1 − O(1/n) it holds that for all

i ∈ {1, . . . , n}, ϕw
i (mT ) = ϕp

i (T ).
Furthermore, for all but finitely many values of T ∈ (0, 1], the probability that ϕw

i (mT ) = ϕp
i (T ) tends to 1

as m→∞.

Proof. Lemma 5.1 gives a constant C > 0 such that if m ≥ Cρ−n(2ρ − 1)−2 log n then w is super-increasing
with probability 1−O(1/n). Hence the first part of the theorem follows from Lemma 5.2.

For the second part, Lemma 5.1 shows that as m→∞, the probability that w is super-increasing approaches
1. Suppose now that T is not of the form p̃(P ) (these are the finitely many exceptions). When m is large enough,
the conditions of Lemma 5.2 are satisfied, and so as m → ∞, the error probability in that lemma goes to 0. The
second part of the theorem follows.

The theorem shows that in the case of the exponential distribution, if the number of balls is large enough then
we can calculate with high probability the Shapley values of the resulting distribution based on the Shapley values
of the original exponential distribution (without sampling). It therefore behooves us to study the Shapley values
of an exponential distribution, or indeed any super-increasing sequence, a study which we undertake in Section 6.

6 Super-increasing sequences
In the previous section, we discussed the case where the weights are distributed according to a discrete exponential
distribution, as modeled by a balls and bins process. As we have shown, for a long enough process, studying the
distribution of Shapley values boils down to the study of the Shapley values for the case where the weights are
given by a super-increasing sequence. This section constitutes a thorough analysis of power distribution in a
setting where weights are super-increasing; in particular, we provide strong generalizations of the results by [22]
and [24].

First, we give an explicit formula for ϕi for any super-increasing sequence of weights.
Second, we show that when agent weights are super-increasing, the Shapley value is extremely well-behaved:

Lemma 6.5 shows that it is possible to easily determine when ϕi(q) = ϕi+1(q)—a problem that is computationally
intractable even for the player with the smallest weight [22]— as well as bounds on the rate of increase/decrease
in ϕi(q) as q changes (Lemma 6.8).

Finally, suppose that agent weights are the prefix of an infinite sequence of weights; for example, if the weights
are given by (1, 1/2, 1/4, . . . , 2−n), then they are the prefix of the sequence (2−n)

∞
n=0. Fixing an agent i, we

observe ϕi(q) as we keep adding weights; continuing our previous example, we observe ϕi(q) when the weights
are (1, . . . , 2−n), (1, . . . , 2−n, 2−n−1), and so on. We show that this sequence of Shapley values is convergent
(Theorem 6.3), and its limit is a continuous function of q (Theorem 6.4).

Up to this point, we assumed that the weights are arranged in non-decreasing order. In order to simplify
our formulas, we will somewhat abuse our definitions by assuming that the weights are rather ordered in non-
increasing order, w1 > w2 > · · · > wn > 0. We also assume that w is a super-increasing sequence; that is, a
sequence satisfying wi >

∑n
j=i+1 wj for all i ∈ N .
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When considering different weight vectors, we will use ϕw
i (q) for the Shapley value of agent i under weight

vector w and quota q.
Figure 3 illustrates the behavior of the Shapley value under super-increasing weights, for various configura-

tions of the game.

(a) Shapley values for n = 5, wi = 2−i. Values
ϕi(q) for different i are slightly nudged to show
the effects of Lemma 6.5.

(b) Shapley values ϕ1(q) for n = 5, wi = 2−i

compared to the limiting case n = ∞.

(c) Shapley values in the limiting case, wi = 2−i. (d) Shapley values in the limiting case, wi = 3−i.

Figure 3: Examples of several Shapley values corresponding to super-increasing sequences.

6.1 Reducing super-increasing weights to the case of a power law of 2
While not every quota in the range (0, w(N)] can be expanded as a sum of members of {w1, . . . , wn}, there are
certain naturally defined intervals that partition (0, w(N)]. For a subset C ⊆ N , define β(C) =

∑
i∈C 2n−i.

Intuitively, we think of β(C) as the value resulting from the binary characteristic vector of the set of agents C.
The purpose of the following two lemmas is to reduce every super-increasing weight vector to the case where the
weights obey a power-law distribution, with a power of 2.

Lemma 6.1. Let C1, C2 ⊆ N . Then β(C1) < β(C2) if and only if w(C1) < w(C2).

Proof. In order to prove the claim, it suffices to observe adjacent sets C1, C2 ⊆ N , i.e., ones satisfying β(C2) =
β(C1) + 1. Let ` = max(N \ C1), and define C = C1 ∩ {1, . . . , ` − 1}. Then C1 = C ∪ {` + 1, . . . , n}
and C2 = C ∪ {`}. Therefore w(C2) − w(C1) = w` − w({` + 1, . . . , n}) > 0, since w1, . . . , wn is super-
increasing.

For example, when n = 3 the intervals are

(0, w1 + w2 + w3] = (0, w3] ∪ (w3, w2] ∪ (w2, w2 + w3] ∪ (w2 + w3, w1]

∪ (w1, w1 + w3] ∪ (w1 + w3, w1 + w2] ∪ (w1 + w2, w1 + w2 + w3].

For a non-empty set of agents C ⊆ N , we let P− ⊆ N be the unique subset of agents satisfying β(P−) =
β(P ) − 1. Lemma 6.1 shows that every quota q ∈ (0, w(N)] belongs to a unique interval (w(P−), w(P )]; we
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denote P by A(q). We think of A(q) as an increasing sequence a0, . . . , ar depending on q, for some value of r
which also depends on q. Whenever we write P = {a0, . . . , ar}, we will always assume that a0 < · · · < ar.

Lemma 6.2. For all agents i ∈ N and quotas q ∈ (0, w(N)], ϕw
i (q) = ϕb

i (β(A(q))), where b = (2n−1, . . . , 1).

Proof. Let σ be a random permutation in Symn, and recall that Pi(σ) is the set of agents appearing before
agent i in σ. The Shapley value ϕw

i (q) is the probability that w(Pi(σ)) ∈ [q − wi, q), or equivalently, that q ∈
(w(Pi(σ)), w(Pi(σ))+wi]. Since the intervals (w(C−), w(C)] partition (0, w(N)], q is in (w(Pi(σ)), w(Pi(σ))+
wi] if and only ifw(Pi(σ)) ≤ w(A(q)−) andw(A(q)) ≤ w(Pi(σ)∪{i}). Lemma 6.1 shows that this is equivalent
to checking whether β(Pi(σ)) ≤ β(A(q)−) and β(A(q)) ≤ β(Pi(σ) ∪ {i}). Now, note that β(A(q)−) =
β(A(q))− 1, so the above condition simply states that i is pivotal for σ under b when the quota is β(A(q)).

Lemma 6.2 implies that for any super-increasing w, if one wishes to compute ϕw
i (q), it is only necessary to

find A(q). However, finding A(q) is easy; as the following claim shows, a simple greedy algorithm can find A(q)
in polynomial time.

Lemma 6.3. Given a point q ∈ (0, w(N)] and a vector of super-increasing weights w, it is possible to find A(q)
in time O(n).

Proof. Algorithm 1 calculates A(q), as we show below. While the algorithm as stated does not run in linear time,
it is easy to modify it so that it does.

Let A(q) = a0, . . . , ar, so that A(q)− = a0, . . . , ar−1, ar + 1, . . . , n. Denote by Ai the value of A in
the algorithm after i iterations of the loop. We prove by induction on i that Ai = A(q) ∩ {1, . . . , i}, which
shows that the algorithm returns A(q). The inductive claim trivially holds for i = 0. Assuming that Ai−1 =
A(q)∩{1, . . . , i−1}, we now prove thatAi = A(q)∩{1, . . . , i}. We consider two cases: i /∈ A(q) and i ∈ A(q).
If i /∈ A(q) then q ≤ w(A(q)) = w(Ai−1)+w(A(q)∩{i, . . . , n}) ≤ w(Ai−1)+w({i+1, . . . , n}), and so line 5
does not get executed. Suppose now that i ∈ A(q). If ar = i then q > w(A(q)−) = w(Ai−1)+w({i+1, . . . , n}),
and so line 5 gets executed. If ar > i then q > w(A(q)−) ≥ w(Ai−1) + wi > w(Ai−1) + w({i + 1, . . . , n}),
since w is super-increasing, and so line 5 gets executed in this case as well.

Algorithm 1 An algorithm for finding A(q)

1: procedure FIND-SET(w, q)
2: A← ∅
3: for i← 1 to n do
4: if q > w(A ∪ {i+ 1, . . . , n}) then
5: A← A ∪ {i}
6: end if
7: end forreturn A
8: end procedure

In the case where agent weights follow a simple exponential increase, A(q) can be characterized in a very
simple manner, as stated in the following lemma.

Lemma 6.4. Suppose wi = dn−i for some integer d ≥ 2, and let q ∈ (0, w(N)]. Write dqe in base d: dqe =
(t1 . . . tn)d. If the base d representation only consists of the digits 0 and 1 then A(q) = {i ∈ N : ti = 1}.
Otherwise, let ` be the minimal index such that t` > 1, and let k < ` be the maximal index less than ` satisfying
tk = 0 (the proof shows that such an index exists). Then A(q) = {i ∈ {1, . . . , k − 1} : ti = 1} ∪ {k}.

Proof. Suppose first that ti ∈ {0, 1} for all i ∈ N , and let Q(q) = {i ∈ N : ti = 1}. Since dqe ≥ 1, Q(q) 6= ∅.
Lemma 6.1 shows that w(Q(q)−) < w(Q(q)) and so q = w(Q(q)) ∈ (w(Q(q)−), w(Q(q))], showing that
A(q) = Q(q).

Suppose next that ` is the minimal index such that t` > 1. If tk = 1 for all k < ` then

q > dqe − 1 ≥
`−1∑
j=1

wj + 2w` − 1 ≥ w(N),
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since the fact that the wi are integral and super-increasing implies that

w` ≥
n∑

j=`+1

wj + 1.

We conclude that the maximal index k < ` satisfying tk = 0 exists. Let Q(q) = {i ∈ {1, . . . , k − 1} : ti =
1} ∪ {k}. On the one hand,

q ≤ dqe ≤
∑

j∈Q(q)\{k}

wj + (d− 1)

n∑
j=k+1

wj < w(Q(q)).

On the other hand,

q > dqe − 1 ≥
∑

j∈Q(q)\{k}

wj +

`−1∑
j=k+1

wj + 2w` − 1

≥
∑

j∈Q(q)\{k}

wj +

n∑
j=k+1

wj = w(Q(q)−).

Therefore A(q) = Q(q).

We now present a closed-form formula for the Shapley values. The resulting Shapley values are illustrated in
Figure 3.

Theorem 6.1. Consider an agent i ∈ N and a prescribed quota value q ∈ (0, w(N)]. Let A(q) = {a0, . . . , ar}.
If i /∈ A(q) then

ϕi(q) =
∑

t∈{0,...,r} :
at>i

1

at
(
at−1
t

) .
If i ∈ A(q), say i = as, then

ϕi(q) =
1

as
(
as−1
s

) − ∑
t∈{0,...,r} :

at>i

1

at
(
at−1
t−1

) .
Proof. Lemma 6.2 shows that ϕw

i (q) = ϕb
i (β(A(q))), where b = 2n−1, . . . , 1. Therefore we can assume without

loss generality that w = 2n−1, . . . , 1, i.e., wi = 2n−i, and that q =
∑
j∈A(q) wj .

Recall that ϕi(q) is the probability that w(Pi(π)) ∈ [q−wi, q), where π is chosen randomly from Symn, and
Pi(π) is the set of predecessors of i in π. The idea of the proof is to consider the maximal τ ∈ {1, . . . , r + 1}
such that at ∈ Pi(π) for all t < τ . We will show that when i /∈ A(q), each possible value of τ(π) corresponds
to one summand in the expression for ϕi(q). When i ∈ A(q), say i = as, we will show that the events that i is
pivotal with respect to q and that i is pivotal with respect to q −wi are disjoint, and their union is an event having
probability 1/as

(
as−1
s

)
.

Suppose that i is pivotal for π and τ(π) = τ . We start by showing that τ ≤ r, ruling out the case τ = r + 1.
If τ = r + 1 then by definition

w(Pi(π)) ≥
∑

j∈A(q)

wj = q,

contradicting the assumption w(Pi(π)) < q. Therefore τ ≤ r, and so aτ is well-defined. We claim that if
k ∈ Pi(π) for some agent k < aτ then k ∈ A(q). Indeed, otherwise

w(Pi(π)) ≥
τ−1∑
t=0

wat + wk ≥
τ−1∑
t=0

wat + waτ−1 >

τ−1∑
t=0

wat +

n∑
j=aτ

wj ≥ q,

again contradicting w(Pi(π)) < q (the third inequality made use of the fact that w is super-increasing).
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Furthermore, we claim that aτ ≥ i. Otherwise,

w(Pi(π)) ≤
τ−1∑
t=0

wat +

n∑
j=aτ+1

wj − wi <
τ∑
t=0

wat − wi ≤ q − wi,

contradicting the assumption w(Pi(π)) ≥ q − wi.
Summarizing, we have shown that τ ≤ r, aτ ≥ i and

Pi(π) ∩ {1, . . . , aτ} = {a0, . . . , aτ−1}. (2)

Denote this event Eτ , and call a τ ≤ r satisfying aτ ≥ i legal.
Suppose first that i /∈ A(q). We have shown above that if i is pivotal then Eτ happens for some legal τ . We

claim that the converse is also true. Indeed, given Eτ defined with respect to a permutation π, and for some legal
τ , the weight of Pi(π) can be bounded as follows.

τ−1∑
t=0

wat ≤ w(Pi(π)) ≤
τ−1∑
t=0

wat +

n∑
j=aτ+1

wj <

τ∑
t=0

wat .

The second inequality follows from the definition of τ , whereas the third inequality follows as before from the
definition of a super-increasing sequence. The upper bound is clearly at most q, and the lower bound satisfies

τ−1∑
t=0

wat ≥ q −
n∑

j=aτ

wj > q − waτ−1 ≥ q − wi,

since i < aτ .
It remains to calculate Pr[Eτ ]. The event Eτ states that the restriction of π to {1, . . . , aτ} consists of the

elements {a0, . . . , aτ−1} in some order, followed by i (recall that i ≤ aτ ). For each of the τ ! possible orders, the
probability of this is 1/aτ · · · (aτ − τ) = (aτ − τ − 1)!/aτ !, and so

Pr[Eτ ] =
τ !(aτ − τ − 1)!

aτ !
=

1

aτ
(
aτ−1
τ

) . (3)

Summing over all legal τ , we obtain the formula in the statement of the theorem. This completes the proof in the
case i /∈ A(q).

Suppose next that i ∈ A(q), say i = as. Since aτ ≥ as = i while i /∈ Pi(π), we deduce that τ = s. Therefore
the event Es happens. Conversely, when Es happens,

w(Pi(π)) ≤
s−1∑
t=0

wat +

n∑
j=as+1

wj <

s∑
t=0

wat ≤ q.

Therefore i is pivotal (with respect to q) if and only if Es happens and w(Pi(π)) ≥ q − wi.
It is easy to check that A(q − wi) = A(q) \ {i} = a0, . . . , as−1, as+1, . . . , ar. The argument above shows

that if i is pivotal with respect to q − wi then for some τ ′ ≥ s+ 1,

Pi(π) ∩ {1, . . . , aτ ′} = {a0, . . . , as−1, as+1, . . . , aτ ′−1}.

In particular, the event Es happens. Conversely, when Es happens,

w(Pi(π)) ≥
s−1∑
t=0

wat ≥ q − was −
n∑

j=as+1

wj > (q − was)− was .

Therefore i is pivotal with respect to q − wi if and only if Es happens and w(Pi(π)) < q − wi. We conclude that

Pr[wi is pivotal with respect to q] = Pr[Es]− Pr[wi is pivotal with respect to q − wi].

Above we have calculated Pr[Es] = 1/as
(
as−1
s

)
, and we obtain the formula in the statement of the theorem.

In Section 6.3, we further provide a characterization of the Shapley values for the limiting case where n, the
number of agents, goes to infinity.
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6.2 Properties of the Shapley values
Zuckerman et al. [24] provide a nice characterization of super-increasing sets:

Theorem 6.2 ([24]). If the weights w are super-increasing then for every quota q ∈ (0, w(N)], either ϕ1(q) =
ϕ2(q) or ϕ2(q) = ϕ3(q).

In this section, we further generalize this result, using Theorem 6.1. Specifically, as a consequence of the
theorem, we can determine in which cases ϕi(q) = ϕi+1(q). The results are summarized in the following lemma.

Lemma 6.5. Let a quota q ∈ (0, w(N)] be given, and let A(q) = {a0, . . . , ar}. For each i ∈ N \ {n}:

(a) If i, i+ 1 /∈ A(q) then ϕi(q) = ϕi+1(q).

(b) If i /∈ A(q) and i+ 1 ∈ A(q) then ϕi(q) ≥ ϕi+1(q), with equality if and only if i+ 1 = ar.

(c) If i ∈ A(q) and i+ 1 /∈ A(q) then ϕi(q) > ϕi+1(q).

(d) If i, i+ 1 ∈ A(q) then ϕi(q) = ϕi+1(q).

For each i ∈ N , let Ψi be the truth value of i ∈ A(q). Lemma 6.5 shows that if Ψi = Ψi+1 then ϕi(q) =
ϕi+1(q). Since there are only two possible truth values, for each i ∈ N \ {1, n}, either ϕi−1(q) = ϕi(q) or
ϕi(q) = ϕi+1(q). This generalizes Theorem 6.2.

To prove Lemma 6.5, we will need some combinatorial identities.

Lemma 6.6. Let p, t be integers satisfying p > t ≥ 1. Then

1

p
(
p−1
t

) +
1

p
(
p−1
t−1

) =
1

(p− 1)
(
p−2
t−1

) .
Proof. The proof is a simple calculation:

1

p
(
p−1
t

) +
1

p
(
p−1
t−1

) =
t!(p− t− 1)! + (t− 1)!(p− t)!

p!

=
(t− 1)!(p− t− 1)![t+ (p− t)]

p!
=

(t− 1)!(p− t− 1)!

(p− 1)!
=

1

(p− 1)
(
p−2
t−1

) .

Lemma 6.7. Let p, t, k be integers satisfying p > t ≥ 0 and k ≥ 0. Then

1

p
(
p−1
t

) − k∑
`=1

1

(p+ `)
(
p+`−1
t+`−1

) =
1

(p+ k)
(
p+k−1
t+k

) .
In particular,

1

p
(
p−1
t

) =

∞∑
`=1

1

(p+ `)
(
p+`−1
t+`−1

) .
Proof. The proof is by induction on k. If k = 0 then there is nothing to prove. For k > 0 we have

1

p
(
p−1
t

) − k∑
`=1

1

(p+ `)
(
p+`−1
t+`−1

) =
1

(p+ k − 1)
(
p+k−2
t+k−1

) − 1

(p+ k)
(
p+k−1
t+k−1

) =
1

(p+ k)
(
p+k−1
t+k

) ,
using Lemma 6.6. The second expression of the lemma follows from rearranging the first formula and taking the
limit k →∞.

We are now ready to prove Lemma 6.5.
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Proof of Lemma 6.5. For the first item, since i+ 1 /∈ A(q) then at > i iff at > i+ 1, and so

ϕi(q) =
∑

t∈{0,...,r} :
at>i

1

at
(
at−1
t

) =
∑

t∈{0,...,r} :
at>i+1

1

at
(
at−1
t

) = ϕi+1(q).

For the second item, suppose that i+ 1 = as. We have

ϕi(q)− ϕi+1(q) =

r∑
t=s

1

at
(
at−1
t

) − [ 1

as
(
as−1
s

) − r∑
t=s+1

1

at
(
at−1
t−1

)]

=

r∑
t=s+1

[
1

at
(
at−1
t

) +
1

at
(
at−1
t−1

)] =

r∑
t=s+1

1

(at − 1)
(
at−2
t−1

) ,
using Lemma 6.6. Therefore ϕi(q) ≥ ϕi+1(q), with equality if and only if s = r.

For the third item, suppose that i = as. We have

ϕi(q)− ϕi+1(q) =
1

as
(
as−1
s

) − r∑
t=s+1

1

at
(
at−1
t−1

) − r∑
t=s+1

1

at
(
at−1
t

)
=

1

as
(
as−1
s

) − r∑
t=s+1

1

(at − 1)
(
at−2
t−1

) ,
using Lemma 6.6. The same lemma also implies that the expression 1/p

(
p
t−1

)
is decreasing in p. Since i + 1 /∈

A(q), if as+1 exists then as+1 ≥ as + 2, and in general as+` ≥ as + `+ 1. Therefore

ϕi(q)− ϕi+1(q) ≥ 1

as
(
as−1
s

) − r−s∑
`=1

1

(as + `)
(
as+`−1
s+`−1

) =
1

(as + r − s)
(
as+r−s−1

r

) > 0,

using Lemma 6.7.
For the fourth item, suppose that i = as. We have

ϕi(q)− ϕi+1(q) =

[
1

as
(
as−1
s

) − r∑
t=s+1

1

at
(
at−1
t−1

)]− [ 1

as+1

(
as+1−1
s+1

) − r∑
t=s+2

1

at
(
at−1
t−1

)]

=
1

as
(
as−1
s

) − 1

as+1

(
as+1−1
s+1

) − 1

as+1

(
as+1−1

s

) = 0,

using Lemma 6.6 together with as+1 = as + 1.

Since the Shapley values are constant in the interval (w(P−), w(P )], it follows that in order to analyze the
behavior of ϕi(q), one need only determine the rate of increase or decrease at quotas of the formw(P ) for P ⊆ N .
These are given by the following lemma.

Lemma 6.8. Let P ⊆ N be a non-empty set of agents, and let i ∈ N be an agent. If i /∈ P− then ϕi(w(P−)) <
ϕi(w(P )). If i ∈ P− then ϕi(w(P−)) > ϕi(w(P )).

Moreover, |ϕi(w(P )) − ϕi(w(P−))| ≤ 1
n . Furthermore, this inequality is tight only in one of the following

cases:

(a) P = {n}.

(b) i < n and P = {1, . . . , i} or P = {i, n}.

(c) i = n and P = {n− 1}.

Otherwise, |ϕi(w(P ))− ϕi(w(P−))| ≤ 1
n(n−1) .
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Proof. Define ϕ+ = ϕi(w(P )) and ϕ− = ϕi(w(P−)). Let P = a0, . . . , ar. We have P− = a0, . . . , ar−1, ar +
1, . . . , n.

Suppose first that i > ar, and let s be the index of i in the sequence P−. According to Theorem 6.1, ϕ+ = 0
and

ϕ− =
1

i
(
i−1
s

) − n−i∑
`=1

1

(i+ `)
(
i+`−1
s+`−1

) =
1

n
(
n−1
s+n−i

) .
We see that i ∈ P− and ϕ− > ϕ+. Furthermore, |ϕ+ − ϕ−| ≤ 1

n(n−1) unless s + n − i ∈ {0, n − 1}. If
s+n− i = 0 then s = 0 and i = n, implying P− = {n} and so P = {n−1}. If s+n− i = n−1 then s = i−1
and so P− = 1, . . . , n, which is impossible.

Suppose next that i = ar. According to the theorem,

ϕ+ − ϕ− =
1

i
(
i−1
r

) − n−i∑
`=1

1

(i+ `)
(
i+`−1
r+`−1

) =
1

n
(
n−1
r+n−i

) .
We see that i /∈ P− and ϕ+ > ϕ−. Furthermore, |ϕ+ − ϕ−| ≤ 1

n(n−1) unless r + n − i ∈ {0, n − 1}. If
r + n− i = 0 then r = 0 and i = n, and so P = {n}. If r + n− i = n then r = i− 1 and so P = 1, . . . , i.

Finally, suppose that i < ar. If i /∈ P then

ϕ+ − ϕ− =
1

ar
(
ar−1
r

) − n−ar∑
`=1

1

(ar + `)
(
ar+`−1
r+`−1

) =
1

n
(

n−1
r+n−ar

) .
We see that i /∈ P− and ϕ+ > ϕ−. Furthermore, |ϕ+ − ϕ−| ≤ 1

n(n−1) unless r + n − ar ∈ {0, n − 1}. If
r + n− ar = 0 then r = 0 and ar = n, and so P = {n}. If r + n− ar = n− 1 then ar = r + 1, which implies
P = {1, . . . , r + 1}. However, this contradicts the assumption i /∈ P .

If i < ar and i ∈ P then

ϕ− − ϕ+ =
1

ar
(
ar−1
r−1

) − n−ar∑
`=1

1

(ar + `)
(
ar+`−1
r+`−2

) =
1

n
(

n−1
r+n−ar−1

) .
We see that i ∈ P− and ϕ− > ϕ+. Furthermore, |ϕ+ − ϕ−| ≤ 1

n(n−1) unless r + n − ar − 1 ∈ {0, n − 1}. If
r + n− ar − 1 = 0 then r = 1 and ar = n, and so P = {i, n}. If r + n− ar − 1 = n− 1 then ar = r, which is
impossible.

6.3 Limiting case
Given a super-increasing sequence w1, . . . , wn (where again, w1 > w2 > · · · > wn) and some m ∈ N , let us
write w|m for (w1, . . . , wm) and [m] for {1, . . . ,m}. We write ϕw|m

i (q) for the Shapley value of agent i ∈ [m]
in the weighted voting game in which the set of agents is [m], the weights are w|m, and the quota is q. We also
write A|m(q) for the set P ⊆ [m] such that q ∈ (w|m(P−), w|m(P )].

The following lemma relates ϕw
i (q) and ϕw|m

i (q).

Lemma 6.9. Let m ∈ N and i ∈ [m], and let q ∈ (0, w([m])]. Then

ϕ
w|m
i (q) = ϕw

i (w(A|m(q))).

Proof. Theorem 6.1 provides a function Φ such that ϕw|m
i (q) = Φ(A|m(q)) and ϕw

i (w(A|m(q))) =
Φ(A(w(A|m(q)))) = Φ(A|m(q)). We conclude that the Shapley values coincide.

Therefore the plot of ϕw|m
i can be readily obtained from that of ϕw

i . This suggests looking at the limiting case
of an infinite super-increasing sequence (wi)

∞
i=1, which is a sequence satisfying wi > 0 and wi ≥

∑∞
j=i+1 wj for

all i ≥ 1. The super-increasing condition implies that the sequence sums to some value w(∞) ≤ 2w1. Lemma 6.9
suggests how to define ϕi in this case: for q ∈ (0, w(∞)) and i ≥ 1, let

ϕ
(∞)
i (q) = lim

n→∞
ϕ
w|n
i (q).
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We show that the limit exists by providing an explicit formula for it, as given in Theorem 6.3. The theorem is
proved in the following subsection. In the theorem, we consider possibly infinite subsets P = {a0, . . . , ar} of the
positive integers, ordered in increasing order; when r = ∞, the subset is infinite. Also, the notation {a, . . . ,∞}
(or {a, . . . , r} when r =∞) means all integers larger than or equal to a.

Theorem 6.3. Let q ∈ (0, w(∞)) and let i be a positive integer.

(a) There exists a non-empty subset of the positive integers P = {a0, . . . , ar} such that either q = w(P ) or P is
finite and q ∈ (w(P−), w(P )], where P− = {a0, . . . , ar−1} ∪ {ar + 1, . . . ,∞}.

(b) The limit ϕ(∞)
i (q) = limn→∞ ϕ

w|n
i (q) exists. When i /∈ P ,

ϕ
(∞)
i (q) =

∑
t∈{0,...,r} :

at>i

1

at
(
at−1
t

) ,
and when i ∈ P , say i = as, then

ϕ
(∞)
i (q) =

1

as
(
as−1
s

) − ∑
t∈{0,...,r} :

at>i

1

at
(
at−1
t−1

) .
Lemma 6.9 easily extends to the case n =∞.

Lemma 6.10. Letm ≥ 1 be an integer, let i ∈ [m], and let q ∈ (0, w([m])]. Then ϕw|m
i (q) = ϕ

(∞)
i (w(A|m(q))).

Proof. Lemma 6.9 shows that for n ≥ m, ϕw|m
i (q) = ϕ

w|n
i (w(A|m(q))), and therefore ϕ

w|m
i (q) =

limn→∞ ϕ
w|n
i (w(A|m(q))) = ϕ

(∞)
i (w(A|m(q))).

We conclude by showing that the limiting functions ϕ(∞)
i are continuous.

Theorem 6.4. Let i be a positive integer. The function ϕ(∞)
i is continuous on (0, w(∞)), and limq→0 ϕ

(∞)
i (q) =

limq→w(∞) ϕ
(∞)
i (q) = 0.

Proof. Let q ∈ (0, w(∞)). We start by showing that ϕ(∞)
i is continuous from the right at q. Lemma 6.12 shows

that we can find a subset P such that either q = w(P ) or q ∈ (w(P−), w(P )]. If q < w(P ) then since ϕ(∞)
i is

constant on (w(P−), w(P )] according to Theorem 6.3, clearly ϕ(∞)
i is continuous from the right at q. Therefore

we can assume that q = w(P ). Since q < w(∞), we can further assume that there are infinitely many n /∈ P .
Suppose that we have a sequence qj tending to q strictly from the right. For each j we can find a subset

Pj such that either qj = w(Pj) or qj ∈ (w(P−j ), w(Pj)]. We can assume that the second case doesn’t happen
by replacing qj with w(P−j ); the new sequence still tends to q strictly from the right. So we can assume that
qj = w(Pj) > w(P ). Let k(j) = min(Pj \ P ), and let l(j) > k(j) be the smallest index larger than k(j) such
that l(j) /∈ P . Then

qj − q = w(Pj)− w(P ) ≥ wk(j) −

 ∞∑
t=k(j)+1

wt − wl(j)

 ≥ wl(j).
As j → ∞, l(j) → ∞ and so k(j) → ∞. Therefore we can assume without loss of generality that k(j) > i for
all j. Theorem 6.3 then implies that

|ϕ(∞)
i (qj)− ϕ(∞)

i (q)| ≤
∞∑
s=0

1

(k(j) + s)
(
k(j)+s−1

s

) =
1

k(j)− 1
,

using Lemma 6.7. Since k(j)→∞, ϕ(∞)
i (qj)→ ϕ

(∞)
i (q).

We proceed to show that ϕ(∞)
i is continuous from the left at q. Lemma 6.12 shows that we can find a subset P

such that either q = w(P ) or q ∈ (w(P−), w(P )]. In the second case, since ϕ(∞)
i is constant on (w(P−), w(P )]
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according to Theorem 6.3, clearly ϕ(∞)
i is continuous from the left at q. Therefore we can assume that q = w(P ).

Since q > 0, we can further assume that there are infinitely many n ∈ P .
Suppose that we have a sequence qj tending to q strictly from the left. For each j we can find a subset Pj such

that either qj = w(Pj) or qj ∈ (w(P−j ), w(Pj)], and in both cases qj ≤ w(Pj) < w(P ). Let k(j) = min(P \Pj),
and let l(j) > k(j) be the smallest index larger than k(j) such that l(j) ∈ P . Then

q − qj ≥ w(P )− w(Pj) ≥ wk(j) + wl(j) −
∞∑

t=k(j)+1

wt ≥ wl(j).

At this point we can prove that ϕ(∞)
i (qj)→ ϕ

(∞)
i (q) as in the preceding case.

It remains to show that limq→0 ϕ
(∞)
i (q) = limq→w(∞) ϕ

(∞)
i (q) = 0. We start by showing that

limq→0 ϕ
(∞)
i (q) = 0. Let qj be a sequence tending to 0 strictly from the right. As before, we can assume

that qj = w(Pj) for each j. Let k(j) = minPj . Since qj ≥ wk(j), k(j)→∞. Therefore we can assume without
loss of generality that k(j) > i for all j. Theorem 6.3 then implies that

ϕ
(∞)
i (qj) ≤

∞∑
s=0

1

(k(j) + s)
(
k(j)+s−1

s

) =
1

k(j)− 1
,

using Lemma 6.7. Since k(j)→∞, ϕ(∞)
i (qj)→ 0.

We finish the proof by showing that limq→w(∞) ϕ
(∞)
i (q) = 0. Let qj be a sequence tending toM strictly from

the left. As before, we can find subsets Pj such that qj ≤ w(Pj) and ϕ(∞)
i (qj) = ϕ

(∞)
i (w(Pj)). Let k(j) be the

minimal k /∈ Pj . Since qj ≤ w(∞)−wk(j), k(j)→∞. Therefore we can assume without loss of generality that
k(j) > i for all j. Theorem 6.3 implies that

ϕ
(∞)
i (qj) ≤

1

i
(
i−1
i−1

) − k(j)−1−i∑
`=1

1

(i+ `)
(
i+`−1
i+`−2

) =
1

k(j)− 1
,

using Lemma 6.7. Since k(j)→∞, ϕ(∞)
i (qj)→ 0.

Summarizing, we can extend the functions ϕw|n
i to a continuous function ϕ(∞)

i which agrees with ϕw|n
i on

the points w(P ) for P ⊆ {1, . . . , n}. When wi = 2−i then the plot of ϕ(∞) has no flat areas, but when wi = d−i

for d > 2, the limiting function is constant on intervals (w(P−), w(P )]. This is reflected in Figure 3.

6.4 Proof of Theorem 6.3
We start with some preliminary lemmas. For a (possibly infinite) subset P of the positive integers, define

β∞(P ) =
∑
i∈P

2−i.

We have the following analog of Lemma 6.1.

Lemma 6.11. Suppose P1, P2 are two subsets of the positive integers. Then β∞(P1) ≤ β∞(P2) if and only if
w(P1) ≤ w(P2). Furthermore, if β∞(P1) < β∞(P2) then w(P1) < w(P2).

Proof. Suppose that β∞(P1) ≤ β∞(P2) and P1 6= P2. Let i = min(P2 \ P1). Then

w(P2)− w(P1) ≥ wi −
∞∑

j=i+1

wj ≥ 0.

Equality is only possible if maxP2 = i and P1 = P2 \ {i} ∪ {i + 1, . . . ,∞}. However, in that case β∞(P1) =
β∞(P2).
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There is a subtlety involved here: we can have β∞(P1) = β∞(P2) for P1 6= P2. This is because dyadic
rationals (numbers of the form A

2B
) have two different binary expansions. For example, 1

2 = (0.1000 . . .)2 =
(0.0111 . . .)2. The lemma states (in this case) that w({1}) ≥ w({2, 3, 4, . . .}), but there need not be equality.

In the sequel, we will use the fact that each real r ∈ (0, 1) has a binary expansion with infinitely many 0s
(alternatively, a set P such that β∞(P ) = r and there are infinitely many n /∈ P ), and a binary expansion with
infinitely many 1s (alternatively, a set P such that β∞(P ) = r and there are infinitely many n ∈ P ). If r is not
dyadic, then it has a unique binary expansion which has infinitely many 0s and 1s. If r is dyadic, say r = 1

2 , then it
has one expansion (0.1000 . . .)2 with infinitely many 0s and another expansion (0.0111 . . .)2 with infinitely many
1s.

The following lemma, which forms the first part of Theorem 6.3, describes the analog of the intervals
(w(P−), w(P )] in the infinite case.

Lemma 6.12. Let q ∈ (0, w(∞)). There exists a non-empty subset P of the positive integers such that either
q = w(P ) or P = {a0, . . . , ar} is finite and q ∈ (w(P−), w(P )], where P− = {a0, . . . , ar−1}∪{ar+1, . . . ,∞}.

Proof. Since q < w(∞), for some m we have q ≤ w([m]). For n ≥ m, let A|n = A|n(q). Let Q|n be
the subset of [n] preceding A|n, and let R|n be the subset of [n + 1] preceding A|n; here “preceding” is in the
sense of X 7→ X−. The interval (w(Q|n), w(A|n)] splits into (w(Q|n), w(R|n)] ∪ (w(R|n), w(A|n)], and so
A|n+1 ∈ {R|n, A|n}. Also β∞(A|n+1) ≤ β∞(A|n), with equality only if A|n+1 = A|n.

We consider two cases. The first case is when for some integer M , for all n ≥ M we have A|n = A =
{a0, . . . , ar}. In that case for all n ≥M ,

r−1∑
t=0

wat +

n∑
t=ar+1

wt < q ≤
r∑
t=0

wat ,

and taking the limit n→∞ we obtain q ∈ (w(A−), w(A)].
The other case is when A|n never stabilizes. The sequence β∞(A|n) is monotonically decreasing, and reaches

a limit b satisfying b < β∞(A|n) for all n. Since w(A|m) ∈ (w(Q|n), w(A|n)] for all integers m ≥ n ≥ 1,
Lemma 6.11 implies that b ∈ [β∞(Q|n), β∞(A|n)).

Let L be a subset such that b = β∞(L) and there are infinitely many i /∈ L, and define L|n = L ∩ [n]. We
have b ∈ [β∞(L|n), β∞(L|n) + 2−n). Therefore Q|n = L|n, and so q > w(Q|n) = w(L|n). Taking the limit
n→∞, we deduce that q ≥ w(L).

If n /∈ L then A|n = Q|n ∪ {n}, and so q ≤ w(A|n) = w(L|n) +wn. Since there are infinitely many such n,
taking the limit n→∞ we conclude that q ≤ w(L) and so q = w(L).

We can now give an explicit formula for ϕ(∞)
i .

Theorem 6.3. Let q ∈ (0, w(∞)) and let i be a positive integer.

(a) There exists a non-empty subset of the positive integers P = {a0, . . . , ar} such that either q = w(P ) or P is
finite and q ∈ (w(P−), w(P )], where P− = {a0, . . . , ar−1} ∪ {ar + 1, . . . ,∞}.

(b) The limit ϕ(∞)
i (q) = limn→∞ ϕ

w|n
i (q) exists. When i /∈ P ,

ϕ
(∞)
i (q) =

∑
t∈{0,...,r} :

at>i

1

at
(
at−1
t

) ,
and when i ∈ P , say i = as, then

ϕ
(∞)
i (q) =

1

as
(
as−1
s

) − ∑
t∈{0,...,r} :

at>i

1

at
(
at−1
t−1

) .
We comment that the convergence of the sums in the theorem is guaranteed by Lemma 6.7.
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Proof. The first part has been proved as Lemma 6.12, and it remains to prove the second part.
Suppose first that P is finite P and either q = w(P ) or q ∈ (w(P−), w(P )]. For all n ≥ maxP , P |n(q) = P ,

and so Lemma 6.9 shows that ϕw|n
i (q) = ϕ

w|maxP

i (q). Therefore the limit exists and equals the stated formula,
which is the same as the one given by Theorem 6.1.

Suppose next that P is infinite and q = w(P ). Consider first the case in which we can also write q = w(Q)
for some finite Q, say Q = {q0, . . . , qu}. Then P = {q0, . . . , qu−1}∪{qu + 1, qu + 2, . . . ,∞}. We now consider
several cases.

If i < qu and i /∈ P then i /∈ Q and

ϕ
(∞)
i (q) =

∑
t∈{0,...,u} :

qt>i

1

qt
(
qt−1
t

) =
∑

t∈{0,...,u−1} :
qt>i

1

qt
(
qt−1
t

) +

∞∑
`=1

1

(qu + `)
(
qu+`−1
t+`−1

) ,
using Lemma 6.7. The right-hand side is the expression we gave for ϕ(∞)

i (w(P )).
If i < qu and i ∈ P , say i = qs, then i ∈ Q and

ϕ
(∞)
i (q) =

1

i
(
i−1
s

) − ∑
t∈{0,...,u} :

qt>i

1

qt
(
qt−1
t

) =
1

i
(
i−1
s

) − ∑
t∈{0,...,u−1} :

qt>i

1

qt
(
qt−1
t

) − ∞∑
`=1

1

(qu + `)
(
qu+`−1
t+`−1

) ,
using Lemma 6.7. The right-hand side is the expression we gave for ϕ(∞)

i (w(P )).
If i = qu then i ∈ Q and i /∈ P . In that case

ϕ
(∞)
i (q) =

1

i
(
i−1
u

) =

∞∑
`=1

1

(i+ `)
(
i+`−1
u+`−1

) ,
using Lemma 6.7. The right-hand side is the expression we gave for ϕ(∞)

i (w(P )).
Finally, if i > qu then i /∈ Q and i ∈ P . Suppose that i is the vth member in P . In that case

ϕ
(∞)
i (q) = 0 =

1

i
(
i−1
v

) − ∞∑
`=1

1

(i+ `)
(
i+`−1
v+`−1

) ,
using Lemma 6.7. The right-hand side is the expression we gave for ϕ(∞)

i (w(P )).
It remains to consider the case in which q cannot be written as q = w(Q) for finite Q. In that case, there are

infinitely many positive integers n such that n ∈ P and infinitely many such that n /∈ P . This implies that for
every positive integer n, q ∈ (w(P ∩ [n]), w(P ∩ [n]) + wn), and so P |−n (q) = P ∩ [n]. Lemma 6.8 shows that
|ϕn(q)−ϕn(w(P ∩ [n]))| ≤ 1

n . On the other hand, Theorem 6.1 readily implies that ϕn(w(P ∩ [n])) tends to the
expression we gave for ϕ(∞)

i (w(P )). We conclude that ϕn(q) tends to the same expression.

7 Independent and Identical Samples
Up to this point, we have been studying cases where the agent weights are sampled from discrete distributions. In
this section, we slightly change our direction, by considering the case where the agent weights are independently
sampled from an identical continuous distribution D that is reasonably bounded in a way that would be made
precise momentarily. An especially interesting example of such a distribution is the case where all of the weights
are uniformly sampled from the interval [0, 1]. We remind the reader that U(a, b) signifies the uniform distribution
over the interval [a, b].

In order to reason about the distribution of the Shapley values, we again take a probabilistic approach by
estimating the probability that a given agent is pivotal. In order to estimate the Shapley value of the highest-
weighted agent n, it is not hard to see that an answer to the following question would prove instrumental:

Conditioning on them being less than or equal to the highest weight wn, let Y1, . . . , Yn−1 ∼ D, and define
Si =

∑i
i=1 Yi. What is the expected number of points from {S1, . . . , Sn−1} that lie in the interval [q − wn, q)?

A symmetric question can be phrased for the lowest-weighted agent as well. Put in these terms, we can think of
the process that generates the n− 1 weights (conditioning on the highest weight) as a renewal process, where the
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Figure 4: Shapley values for X = U([0, 1]) and n = 10, 20 of both minimal and maximal player, normalized by
n. Results of 106 experiments.

inter-arrival times are given by the agent weights, and the measure in question is the expected number of arrivals
within the specified interval. Our analysis gives a powerful characterization of the Shapley values of both the
highest- and lowest-weighted agents.

Before we begin to analyze the Shapley values, we consider the special case of the uniform distribution, for
which our simulation results are depicted in Figure 4. Intuitively, we can see that apart from two relatively short
intervals at the two extremes of the interval [0, 1], the Shapley values are stable at 2/n for the highest Shapley
value, and roughly Θ(1/n2) (this asymptotic term will be justified momentarily) for the lowest Shapley value.
From a more practical point of view, this means that as the number of players increases, the ratio of the highest to
lowest Shapley values grows at a linear rate.

Given the above results, we proceed to a rigorous analysis of the two extreme Shapley values. We use the
following notation in this section: for a random variable Z and real number t, Z≤t is the distribution of Z condi-
tioned on being at most t, and Z≥t is the distribution of Z conditioned on being at least t. Furthermore, given an
integer n, we let the random variableXn

max (Xn
min) denote the n’th (first) order statistic in an experiment involving

n i.i.d. samples of X .
Let X be a continuous random variable supported on [χmin, χmax], where χmin ≥ 0, with bounded density.

We further assume that for small enough ε, Pr[X > χmin + ε] > 0 and Pr[X < χmax− ε] < 0, which just means
that we chose the “tight” χmin, χmax.

Consider the following random process for generating weights: sample x1, . . . , xn fromX independently, and
let Sn =

∑n
i=1 xi. We define the weights w1, . . . , wn to be the sequence obtained from x1/Sn, . . . , xn/Sn by

sorting them in non-decreasing order, i.e., w1 is the smallest weight and wn is the largest weight.
The following is our main theorem. We defer its proof to Section 8 in favor of discussing a couple of its

implications.

Theorem 7.1. For all m ∈ (χmin, χmax) there exist ψ < 1 and C > 0 such that the following holds.
For all q ∈ [(1 + Cn−1/3)χmax/(nE[X]), (1− Cn−1/3)E[X≤m]/E[X]],

E[ϕn(q)] =
1

n
E

x∼(Xnmax)≥m

[ x

E[X≤x]

]
±O(nψn

1/3

+ ψnq).

Similarly, for all q ∈ [(1 + Cn−1/3)χmax/(nE[X]), 1− Cn−1/3],

E[ϕ1(q)] =
1

n
E

x∼Xnmin

[ x

E[X≥x]

]
±O(nψn

1/3

+ ψnq).

In particular, we can determine the limiting values of nE[ϕn(q)] and nE[ϕ1(q)].
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Corollary 7.1. Suppose that q ∈ (0, 1). Then

lim
n→∞

nE[ϕn(q)] =
χmax

E[X]
,

lim
n→∞

nE[ϕ1(q)] =
χmin

E[X]
.

Proof. Take m = (χmax + q)/2 > q in the theorem. The function x/E[X≤x] is continuous in x, and tends to the
limit χmax/E[X] as x tends to χmax. Since Xn

max tends to the constant distribution χmax as n grows, we obtain
the first formula. The proof of the second formula is similar (this time any m would do).

Corollary 7.1 tells us that the uniform case, i.e., X ∼ U(0, 1), for any q ∈ (0, 1), nϕn(q)→ 2 (using the fact
that E[X] = 1/2), while nϕ1(q) → 0. Moreover, using Theorem 7.1, we can obtain the following result for the
case of a uniform distribution:

Theorem 7.2. For all m ∈ (0, 1) there exist ψ < 1 and C > 0 such that the following holds.
For all q ∈ [(1 + Cn−1/3)(2/n), (1− Cn−1/3)m],

E[ϕn(q)] =
2

n
±O(nψn

1/3

+ ψnt).

Similarly, for all q ∈ [(1 + Cn−1/3)(2/n), 1− Cn−1/3],

E[ϕ1(q)] = 2

∫ 1

0

x(1− x)n−1

x+ 1
dx±O(nψn

1/3

+ ψnt),

where the integral lies in the range

2

(n+ 1)(n+ 2)
< 2

∫ 1

0

x(1− x)n−1

x+ 1
<

2

n(n+ 1)
.

The proof is given in Section 8.2. As remarked above, the proof can be adjusted to extend the range of q in the
formula for ϕn(q). Figure 4 illustrates Theorem 7.2. The (rather technical) proof can be found in Section 8.

8 Proving Theorem 7.1
Recall the statement of Theorem 7.1:

Theorem 7.1. For all m ∈ (χmin, χmax) there exist ψ < 1 and C > 0 such that the following holds.
For all q ∈ [(1 + Cn−1/3)χmax/(nE[X]), (1− Cn−1/3)E[X≤m]/E[X]],

E[ϕn(q)] =
1

n
E

x∼(Xnmax)≥m

[ x

E[X≤x]

]
±O(nψn

1/3

+ ψnq).

Similarly, for all q ∈ [(1 + Cn−1/3)χmax/(nE[X]), 1− Cn−1/3],

E[ϕ1(q)] =
1

n
E

x∼Xnmin

[ x

E[X≥x]

]
±O(nψn

1/3

+ ψnq).

The crux of the proof is the following formula for the Shapley values of the original sequence x1, . . . , xn. We
start with several definitions, which depend on an implicit parameter n:

• xmax = max(x1, . . . , xn), the corresponding distribution is Xn
max, and the corresponding Shapley value

(with respect to x1, . . . , xn) is ϕ[x]
max.

• xmin = min(x1, . . . , xn), the corresponding distribution is Xn
min, and the corresponding Shapley value

(with respect to x1, . . . , xn) is ϕ[x]
min.
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Lemma 8.1. For any quota value Q,

E[ϕ[x]
max(Q)] = E

x∼Xnmax

 1

n

n∑
i=1

Pr
y1,...,yn−1∼X≤x

i−1∑
j=1

yj ∈ [Q− x,Q)

 , (4)

E[ϕ
[x]
min(Q)] = E

x∼Xnmin

 1

n

n∑
i=1

Pr
y1,...,yn−1∼X≥x

i−1∑
j=1

yj ∈ [Q− x,Q)

 . (5)

Proof. The proofs of both formulas are similar, so we only prove the first one. We show that conditioned on
xmax = x,

E[ϕ[x]
max(Q)] =

1

n
Pr

y1,...,yn−1∼X≤x

i−1∑
j=1

yj ∈ [Q− x,Q)

 .
We can assume without loss of generality that xmax = xn. Given only this data, the variables x1, . . . , xn−1 are
distributed independently according to X≤xn . Therefore

E[ϕ[x]
n (Q)] = E

π∈Sn
[xn is pivotal in xπ1 , . . . , xπn ]

=
1

n

n∑
i=1

E
π∈Sn :
πi=n

Pr[xn is pivotal in xπ1
, . . . , xπn ]

=
1

n

n∑
i=1

E
π∈Sn :
πi=n

Pr

i−1∑
j=1

xπj ∈ [Q− x,Q)

 .
Here pivotal is always with respect to the threshold Q. Since x1, . . . , xn−1 are independent and identically dis-
tributed, xπ1 , . . . , xπi−1 are distributed identically to y1, . . . , yi−1, proving the first part of the theorem.

8.1 Estimating the formulas
Recall that our main approach is to use an analogy to renewal processes, in which each of the agent weights can
be thought of as renewal ‘steps’ and that furthermore, estimating the expected number of points that land within
the interval [q − wn, q) will be used for proving the formulas for the highest Shapley value (and similarly for the
lowest Shapley value).

The first step towards achieving this goal is to extend the sums in Lemma 8.1 to infinite sums. Estimating
these infinite sums will be done using the following Lemma, which is relevant to renewal processes with general,
bounded renewal time distributions.

Proposition 8.1 (Soundararajan). Suppose Y is a continuous distribution supported on [χmin, χmax] (where
χmin ≥ 0) whose density is bounded by C. Then for Q ≥ 0,

∞∑
i=1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj < Q

 =
Q

EY
+

E(Y 2)

2(EY )2
±O(e−γQ),

where γ > 0 and the constant in O(·) depend only on the parameters χmin, χmax, C.

For completeness, we provide the proof of Proposition 8.1 in Section 9.
In order to utilize this proposition for the estimation the sums in Lemma 8.1, we need to restrict the value of x

in X≥x and X≤x. For m ∈ (χmin, χmax), we say that Y is an m-reasonable random variable if either Y = X≥x
for x ≤ m or Y = X≤x for x ≥ m.

Corollary 8.2. Let Y be an m-reasonable random variable, for some m ∈ (χmin, χmax). Then for some γ < 1
depending only on m and for all Q ≥ 0,

∞∑
i=1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj < Q

 =
Q

EY
+

E(Y 2)

2(EY )2
±O(γQ).
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In particular, for all x ∈ [χmin, χmax] and Q ≥ x,

∞∑
i=1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj ∈ [Q− x,Q)

 =
x

EY
±O(γQ).

Proof. Let µ = min(Pr[X ≤ m],Pr[X ≥ m]) > 0. Denote the density of X by f and the density of Y by g. By
assumption f is bounded by some constantD. Clearly Y is supported on [χmin, χmax]. We claim that furthermore,
g is bounded by C = D/µ. Indeed, if Y = X≥x then for y ∈ [x, χmax] we have g(y) = f(y)/Pr[X ≥ x] ≤
f(y)/µ since x ≤ m. A similar argument applies for Y = X≤x. Since m is fixed, so is µ, and therefore also
C = D/µ. The first statement of the corollary thus follows directly from the proposition.

The first statement implies that for all x ∈ [χmin, χmax] and Q ≥ x,

∞∑
i=1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj ∈ [Q− x,Q)

 =
x

EY
±O(γQ + γQ−x).

Since γQ−x ≤ γQ−χmax , and χmax is fixed, we obtain the corollary.

The corollary affords us with a good estimate of the sums in Lemma 8.1, when extended from n to ∞. In
order to estimate the actual sums, we estimate the tail from n+ 1 to∞.

Lemma 8.2. Let Y be anm-reasonable random variable, for somem ∈ (χmin, χmax). For some δ < 1 depending
only on m and for all Q ≤ (n− n2/3)EY ,

∞∑
i=n+1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj < Q

 = O(nδn
1/3

),

where the constant in O(·) depends only on m.

Proof. Since Y ism-reasonable, it is bounded by χmax, and its variance is bounded by χ2
max. Bernstein’s inequal-

ity states that

Pr

 i∑
j=1

yj < iE[Y ]− t

 ≤ exp
(
− t2/2

iVar[Y ]2 + tχmax/3

)
≤ exp

(
− t2/2

iχ2
max + tχmax/3

)
.

As we will later plug iE[Y ] − t = Q, we will assume that iE[Y ] − t ≥ 0,and so t ≤ iE[Y ] ≤ iχmax. 2 Under
assumption,

Pr

 i∑
j=1

yj < iE[Y ]− t

 ≤ ct2/i, c = exp
(
− 3/8

χ2
max

< 1
)
.

Therefore

∞∑
i=n+1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj < Q

 =

∞∑
k=0

Pr
y1,...,yn+k∼Y

n+k∑
j=1

yj < Q


≤
∞∑
k=0

c((n+k)E[Y ]−Q)2/(n+k) ≤
∞∑
k=0

(c(E[Y ])2)(k+n2/3)2/(n+k).

where the last inequality follows from the upper-bound Q ≤ (n− n2/3)E[Y ].
Since Y is m-reasonable, E[Y ] ≥ E[X≤m] > 0, and so c(E[Y ])2 ≤ d for d = c(E[X≤m])2 < 1. We can crudely

bound the infinite series:
∞∑
k=0

d(n2/3+k)2/(n+k) ≤
n−1∑
k=0

dn
4/3/(n+k) +

∞∑
k=n

dk
2/(n+k)

≤ ndn
1/3/2 +

∞∑
k=n

dk/2 = ndn
1/3/2 +

dn/2

1−
√
d
.

2If Q < 0 the events in question happen with zero probability.
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This implies the lemma with δ =
√
d.

Combining this with Corollary 8.2, we obtain the following estimate.

Corollary 8.3. Let Y be an m-reasonable random variable, for some m ∈ (χmin, χmax). Then for some ζ < 1
depending only on m, for all x ∈ [χmin, χmax] and for all Q ∈ [x, (n− n2/3)E[Y ]],

n∑
i=1

Pr
y1,...,yn−1∼X≤x

i−1∑
j=1

yj ∈ [Q− x,Q)

 =
x

E[Y ]
±O(nζn

1/3

+ ζQ).

Proof. Clearly

∞∑
i=n+1

Pr
y1,...,yi−1∼X≤x

i−1∑
j=1

yj ∈ [Q− x,Q)

 ≤ ∞∑
i=n+1

Pr
y1,...,yi−1∼X≤x

i−1∑
j=1

yj < Q)

 = O(nδn
1/3

),

using Lemma 8.2. Therefore Corollary 8.2 implies that

n∑
i=1

Pr
y1,...,yn−1∼X≤x

i−1∑
j=1

yj ∈ [Q− x,Q)

 =
x

E[Y ]
±O(nδn

1/3

+ γQ).

The Corollary follows by taking ζ = max(δ, γ).

Using this estimate, we can estimate the sums in Lemma 8.1. The idea is to focus on the case in which the
variable X≤x or X≥x is m-reasonable.

Lemma 8.3. Letm ∈ (χmin, χmax). For some ξ < 1 depending onm and for allQ ∈ [χmax, (n−n2/3)E[X≤m]],

ϕ[x]
max(Q) =

1

n
E

x∼(Xnmax)≥m

[ x

E[X≤x]

]
+O(nξn

1/3

+ ξQ).

Similarly, for all Q ∈ [χmax, (n− n2/3)E[X]],

ϕ
[x]
min(Q) =

1

n
E

x∼Xnmin

[ x

E[X≥x]

]
+O(nξn

1/3

+ ξQ).

Proof. We start with the first formula. Let µ≤ = Pr[X ≤ m] and µ≥ = Pr[X ≥ m] = 1 − µ≤. Clearly
Pr[Xn

max ≤ m] = µn≤. Therefore (using Lemma 8.1)

ϕ[x]
max(Q) = E

x∼(Xnmax)≥m

[ 1

n

n∑
i=1

Pr
y1,...,yn−1∼X≤x

i−1∑
j=1

yj ∈ [Q− x,Q)

]±O(µn≤).

Corollary 8.3 implies that for all Q ∈ [χmax, (n− n2/3)E[X≤m]],

ϕ[x]
max(Q) =

1

n
E

x∼(Xnmax)≥m

[ x

E[X≤x]

]
±O(nζn

1/3

+ ζQ + µn≤).

This implies the formula in the statement of the lemma, with ξ = max(ζ, µ≤, µ≥) (we need µ≥ for the other part
of the lemma).

We continue with the second formula. As before, we have

ϕ
[x]
min(Q) = E

x∼(Xnmin)≤m

[ 1

n

n∑
i=1

Pr
y1,...,yn−1∼X≥x

i−1∑
j=1

yj ∈ [Q− x,Q)

]±O(µn≥).

Corollary 8.3 implies that for all Q ∈ [χmax, (n− n2/3)E[X]],

ϕ
[x]
min(Q) =

1

n
E

x∼(Xnmin)≤m

[ x

E[X≥x]

]
±O(nζn

1/3

+ ζQ + µn≥) (6)

(7)
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Now, as by definition Pr[Xn
min ≥ m] = µn≥, we have that

E
x∼(Xnmin)

[ x

E[X≥x]

]
= µn≥ · E

x∼(Xnmin)≥m

[ x

E[X≥x]

]
+ (1− µn≥) · E

x∼(Xnmin)x

[ x

E[X≥x]

]
= E
x∼(Xnmin)≤m

x

E[X≥x]
+ µn≥x ·

(
E

x∼(Xnmin)≥

[ x

E[X≥x]

]
− E
x∼(Xnmin)≤m

[ x

E[X≥x]

])
= E
x∼(Xnmin)≤m

x

E[X≥x]
+O(µn≥x) (8)

where the last equality follows from the fact that x/(EX≥x) ≤ 1. Combining this with Eq. 6, gives the second
formula in the statement of the lemma.

We can now prove the main theorem of this section, using a concentration bound on S.

Proof of Theorem 7.1. Recall that S =
∑n
i=1 xi. Bernstein’s inequality shows that

Pr[|S − nEX| ≥ n2/3 EX] ≤ exp− n4/3(EX)2/2

nVarX + n2/3χmax EX/3
= e−O(n1/3).

Suppose first that S is within these bounds, and let Q = qS. Using (1/t)′ = −1/t2, we deduce

q =
Q

nEX
±O

(
n2/3 EX
n2(EX)2

)
=

Q

nEX
±O

(
n−1/3

nEX

)
.

An elementary calculation shows that the conditions on q imply the conditions stated in Lemma 8.3 for Q. Apply-
ing the lemma, we obtain the estimates appearing in the statement of the theorem; the error terms are

±O(nξn
1/3

+ ξQ) = O(nξn
1/3

+ ξΩ(EXnq)).

Setting ψ = max(ξ, ξΩ(EX)) (the same constant in the Ω(·) as in the display), we obtain the error terms in the
theorem. These estimates, however, are only true as long as S is within the stated bounds. Accounting for the
small probability e−O(n1/3) that S is out of bounds results in an additional error term O(e−O(n1/3)), which can be
swallowed into the error term O(nψn

1/3

) by possibly increasing ψ.

8.2 Proving Theorem 7.2
Recall the statement of the theorem:

Theorem 7.2. For all m ∈ (0, 1) there exist ψ < 1 and C > 0 such that the following holds.
For all q ∈ [(1 + Cn−1/3)(2/n), (1− Cn−1/3)m],

E[ϕn(q)] =
2

n
±O(nψn

1/3

+ ψnt).

Similarly, for all q ∈ [(1 + Cn−1/3)(2/n), 1− Cn−1/3],

E[ϕ1(q)] = 2

∫ 1

0

x(1− x)n−1

x+ 1
dx±O(nψn

1/3

+ ψnt),

where the integral lies in the range

2

(n+ 1)(n+ 2)
< 2

∫ 1

0

x(1− x)n−1

x+ 1
<

2

n(n+ 1)
.

Proof. We have χmin = 0, χmax = 1, E[X] = 1/2, and E[X≤m] = m/2. This explains the ranges of q. The
formula ϕn(q) follows from

E
x∼(Xnmax)≥m

[
x

E[X≤x]
] = E

x∼(Xnmax)≥m
[2] = 2.
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It remains to compute the formula for ϕ1(q). Since Pr[Xn
min ≥ x] = (1−x)n, the density ofXn

min is n(1−x)n−1.
Therefore

E
x∼Xnmin

[
x

E[X≥x]
] = E

x∼Xnmin

[
2x

1 + x
] =

∫ 1

0

2nx(1− x)n−1

1 + x
dx.

We deduce the given formula forϕ1(q). In order to estimate the integral, we use the well-known formula
∫ 1

0
xa(1−

x)b dx = 1/(a+ b+ 1)
(
a+b
a

)
. Using this formula,∫ 1

0

2x(1− x)n−1

1 + x
dx =

∞∑
k=0

(−1)k
∫ 1

0

2xk+1(1− x)n−1 dx =

∞∑
k=0

(−1)k
2

(n+ k + 1)
(
n+k
k+1

) .
where the first equality follows from the expansion: 1

1+x =
∑∞
i=0(−1)kxk, for x ∈ [0, 1).

Since
(
n+k
k+1

)
=
(
n+k
n−1

)
, the expressions in the denominators are increasing, and so we have

2

(n+ 2)(n+ 1)
=

2

(n+ 1)n
− 4

(n+ 2)(n+ 1)n
<

∫ 1

0

2x(1− x)n−1

1 + x
dx <

2

(n+ 1)n
.

This completes the proof.

9 Proving Proposition 8.1
In this section, we complete the proof of Theorem 7.1 by proving Proposition 8.1.

The idea of the proof is to use the Mellin transform to write

m(Q) :=

∞∑
i=1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj < Q

 =
1

2πi

∫ c+i∞

c−i∞

esQ

s(1− E[e−sY ])
ds,

where c > 0 is arbitrary. The integrand has a double pole at s = 0 with residue Q/EY +E(Y 2)/2(EY )2, which
gives rise to the main term in the proposition. The conditions on the distribution Y imply that apart from the pole
at s = 0, the integrand has no poles in some halfspace <s > −γ. Therefore we can move the line of integration to
the left toward −γ, and then read off the error term. The exponential dependence comes from the numerator esQ.

In the rest of this section, whenever we use the term “constant”, we mean a constant depending on the param-
eters χmin, χmax, C.

We start by proving the formula for m(Q).

Lemma 9.1. For all c > 0,

m(Q) =
1

2πi

∫ c+i∞

c−i∞

esQ

s(1− E[e−sY ])
ds.

Proof. It is well-known that
1

2πi

∫ c+i∞

c−i∞

esx

s
ds =

{
1 x > 0,

0 x < 0.
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Therefore, letting (yi)
∞
1 ∼ Y ,

m(Q) =

∞∑
i=1

Pr
y1,...,yi−1∼Y

i−1∑
j=1

yj < Q


=

∞∑
i=1

E[1Q−y1+···+yi−1>0]

=

∞∑
i=1

E
y1,...,yi−1∼Y

1

2πi

∫ c+i∞

c−i∞

es(Q−y1−···−yi−1)

s
ds

=

∞∑
i=1

1

2πi

∫ c+i∞

c−i∞

esQ

s
E[e−sy1−···−syi−1 ] ds

=

∞∑
i=1

1

2πi

∫ c+i∞

c−i∞

esQ

s
E[e−sY ]i−1 ds

=
1

2πi

∫ c+i∞

c−i∞

esQ

s(1− E[e−sY ])
ds.

(Since Y is bounded, Fubini’s theorem can be applied to switch the order of integration twice.)

We proceed to show that in some halfspace <s > −γ, the integrand has no poles other than the double pole at
s = 0. In fact, we will show more: in this halfspace, excepting a fixed neighborhood of zero, |1−E[e−sY ]| = Ω(1).

Lemma 9.2. For every R2 > 0 there are constants η,R1 > 0 such that

<E[e−sY ] ≤ 1− η

whenever <s ≥ −R1 and |=s| ≥ R2.

Proof. Let s = −α+ iβ, and let f be the density of Y . Then

<E[e−sY ] =

∫ χmax

χmin

f(u)eαu cos(βu) du

=

∫ χmax

χmin

f(u)[cos(βu)(eαu − 1) + cos(βu)] du

≤ eαχmax − 1 +

∫ χmax

χmin

f(u) cos(βu) du

= eαχmax −
∫ χmax

χmin

f(u)(1− cos(βu)) du.

For every ε, |1 − cosx| ≤ ε only for intervals of length O(
√
ε) around 2πZ. In particular, |1 − cos(βu)| ≤ ε for

an O(
√
ε/|β|)-fraction of [χmin, χmax]. Therefore∫ χmax

χmin

f(u)(1− cos(βu)) du

≥ε
∫ χmax

χmin

f(u) du− εO(
√
ε/|β|)(χmax − χmin)C

=ε−O(ε3/2/|β|).

Since |β| ≥ R2, for small enough ε > 0 this expression is at least 2η for some η > 0. An appropriate choice of
R1 guarantees that eαχmax ≤ 1 + η, and we deduce that

<E[e−sY ] ≤ (1 + η)− 2η ≤ 1− η.
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The constant R2 arises from the following result.

Lemma 9.3. There is a constant Rm > 0 such that for all R3 ∈ (0, Rm) there exists a constant δ > 0 such that

|E[e−sY ]− 1| ≥ δ

whenever R3 ≤ |s| ≤ Rm.

Proof. We have

E[e−sY ] = 1− E[Y ]s+

∞∑
k=2

E[Y k]

k!
sk.

Since E[Y k] ≤ χkmax, there exists an absolute constant K > 0 such that

|E[e−sY ]− 1 + E[Y ]s| ≤ K|s|2

for |s| ≤ 1/χmax. On the other hand, it is not hard to check that E[Y ] ≥ χmin + 1/(2C) (the minimal expectation
is obtained for U(χmin, χmin + 1/C)). Therefore when |s| ≤ E[Y ]/(2K), K|s|2 ≤ |E[Y ]s|/2 and so

|E[e−sY ]− 1| ≥ |E[Y ]s|
2

≥ |s|
4C

.

The lemma easily follows.

Combining the two lemmas, we obtain the following information on E[e−sY ].

Lemma 9.4. There are constants ε, γ, R > 0 such that E[e−sY ] 6= 1 whenever <s ≥ −γ and s 6= 0, and
furthermore

|E[e−sY ]− 1| ≥ ε

whenever <s = −γ, or <s ≥ −γ and |=s| ≥ R.

Proof. Let Rm be the constant in Lemma 9.3. Choose R3 = Rm/
√

2 in Lemma 9.2. The lemma shows that for
some η,R1 > 0, |E[e−sY ] − 1| ≥ η whenever <s ≥ −R1 and |=s| ≥ Rm/

√
2. When |=s| ≤ Rm/

√
2, either

|<s| ≥ Rm/
√

2 or |s| ≤ Rm. In the latter case, Lemma 9.3 shows that E[e−sY ] 6= 1 unless s = 0. This shows
that the only solution to E[e−sY ] = 1 for |<s| ≤ γ := min(R1, Rm/

√
2) is s = 0. Since |E[e−sY ]| < 1 for

<s > γ, we conclude that the only solution to E[e−sY ] = 1 for <s ≥ −γ is s = 0.
Next, invoke Lemma 9.3 withR3 = γ to obtain δ > 0. If <s = −γ and |=s| ≥ Rm/

√
2 then |E[e−sY ]−1| ≥

η, as noted before. If |=s| ≤ Rm/
√

2 then R3 ≤ |s| ≤ Rm, and so |E[e−sY ]− 1| ≥ δ. This completes the proof
of the lemma, with ε = min(η, δ).

Next, we move the line of integration to the left in order to separate the main term Q/EY + E(Y 2)/2(EY )2

from the error term.

Lemma 9.5. For all Q > 0,

m(Q) =
Q

EY
+

E(Y 2)

(EY )2
+

1

2πi

∫ −γ+i∞

−γ−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds,

where γ > 0 is the constant from Lemma 9.4.

Proof. Our starting point is the formula of Lemma 9.1, for c = γ. Lemma 9.4 shows that the only pole of the
integrand in the strip |s| ≤ γ is at s = 0. Standard arguments (using the bound |E[e−sY ] − 1| ≥ ε given by
Lemma 9.4) show that

m(Q) =
1

2πi

∫ −γ+i∞

−γ−i∞

esQ

s(1− E[e−sY ])
ds+ Res

[
esQ

s(1− E[e−sY ])
, s = 0

]
=

1

2πi

∫ −γ+i∞

−γ−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds+ Res

[
esQ

s(1− E[e−sY ])
, s = 0

]
;
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the two integrals differ by the quantity ∫ −γ+i∞

−γ−i∞

esQ

s
ds = 0.

In order to compute the residue, write

esQ

s(1− E[e−sY ])
=

1 + sQ+O(s2)

s2(EY − 1
2 E(Y 2)s+O(s2))

=
(1 + sQ+O(s2))

(
1 + E(Y 2)

2EY s+O(s2)
)

s2 EY
.

Calculating the coefficient of s−1 in this expression completes the proof.

In order to estimate the error term, we need to understand the behavior of E[e−sY ] as |s| → ∞.

Lemma 9.6. Suppose α = −<s > 0. Then

|E[e−sY ]| ≤ eαχmax3C

|s|
.

Proof. Let f(u) be the density function of Y . Integration by parts gives

E[e−sY ] =

∫ χmax

χmin

f(u)e−su du

= − f(u)e−su

s

∣∣∣∣χmax

χmin

+

∫ χmax

χmin

f ′(u)
e−su

s
du

=
f(χmin)e−sχmin − f(χmax)e−sχmax

s
+

∫ χmax

χmin

f ′(u)
e−su

s
du.

Taking absolute values,

|E[e−sY ]| ≤ 2Ceαχmax

|s|
+
eαχmax

|s|

∫ χmax

χmin

f ′(u) du =
eαχmax3C

|s|
.

Finally, we estimate the error term.

Lemma 9.7. Let γ > 0 be the constant from Lemma 9.4. We have∣∣∣∣∫ −γ+i∞

−γ−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds

∣∣∣∣ = O(e−γQ).

Proof. The triangle inequality shows that∣∣∣∣∫ −γ+i∞

−γ−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds

∣∣∣∣ ≤ e−γQ ∫ −γ+i∞

−γ−i∞

∣∣∣∣ E[e−sY ]

s(1− E[e−sY ])

∣∣∣∣ ds.
Using Lemma 9.6 and Lemma 9.4, we can estimate the integrand:∣∣∣∣ E[e−sY ]

s(1− E[e−sY ])

∣∣∣∣ ≤ eγχmax3Cε−1 1

|s|2
.

We conclude that the integral converges, and the lemma follows.

Proposition 8.1 follows by combining Lemma 9.5 and Lemma 9.7.
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10 Conclusions and Future Work
We have presented a study of the distribution of the Shapley values in a number of natural weight distributions. In
contrast to the general case of a weighted voting game, we were able to reason about the distribution of Shapley
values. Along the way, we were also able to reason about cases where the agent weights are super-increasing, and
strongly characterize the distribution of the Shapley in a way that generalizes previous results.

Our results demonstrate a stark contrast between the different weight distributions in terms of an egalitarian
objective: whereas in some distributions (e.g., uniform) the multiplicative ratio of the highest to lowest Shapley
values was roughly stable at 2, in others, this ratio fluctuates, while mostly concentrated around values that are
much closer to 1.

We believe that there are other, interested cases of distributions that are worth exploring. In particular, we
believe that models of preferential attachment (a.k.a. the generalized, multiple-urn Pólya urn model[2]), in which
the probability that a ball enters a specified urn at a given step is proportional to the number of balls currently
contained in that urn.
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