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Abstract

I characterize the social choice rules implemented by sophisticated voting on the broad
class of priority agendas. The result provides key insights into the kinds of strategic
voting outcomes that can arise in the context of legislative voting.

I. Introduction

Agenda voting is ubiquitous in legislative decision-making. While a wide variety of agendas
are used in practice (Farquharson [1969]; Miller [1995]; Ordeshook and Schwartz [1987]; Riker
[1958]), the literature has only considered sophisticated voting behavior (Farquharson [1969]) for
a few specific agendas, notably the FEuro-Latin and Anglo-American agendas (Apesteguia et al.
[2014]; Banks [1985]; Miller [1977, 1980, 1995]; Sheplse and Weingast [1984]).1

In this paper, I introduce a much broader class of agendas, called priority agendas, and char-
acterize sophisticated voting for these agendas. For priority agendas, alternatives are added one
at a time using a priority order and an amendment rule. While the former determines when
a given alternative is to be added to the agenda, the latter determines how it is to be added.
The simple recursive structure of these agendas reflects the inherently incremental nature of the
legislative process. Since they account for this reality, priority agendas possess two features as-
sociated with almost every agenda used in practice (see Ordeshook and Schwartz [1987]; Miller
[1995]): every vote eliminates some alternatives from consideration; and, alternatives are con-
tested until they are either eliminated or ultimately selected.? In other words, priority agendas
are non-repetitive and continuous.

At the same time, priority agendas depart only minimally from Euro-Latin and Anglo-
American agendas. Effectively, they only expand the scope of possible proposals. To elaborate,
recall that agendas induce “binary” extensive-form games with majority voting in every stage.
The figure below illustrates the Euro-Latin and Anglo-American games for three alternatives:
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Figure 1: Euro-Latin (left) and Anglo-American (right) agendas on three alternatives

For the Euro-Latin agenda, voting is by sequential majority approval. In every stage, voters
consider one alternative for approval (in bold). The selection from the agenda is the first alter-

While a variety of names have been used for these two agendas, I follow the nomenclature of Schwartz [2008].
2Notably, the two-stage amendment agendas studied by Banks [1989] do not possess the second feature.



native approved by majority. For the Anglo-American agenda, voting is by sequential majority
comparison. In every stage, voters compare two alternatives (in bold) — with the “loser” being
eliminated and “winner” moving on to the next stage. The selection is the only alternative not
eliminated by the end of this process.

It is straightforward to extend both agendas by proposing new alternatives as “amendments”
to items already on the agenda.? For a Euro-Latin agenda, a new proposal amends the last
alternative proposed. For an Anglo-American agenda, a new proposal amends every alternative
proposed before it. To illustrate:
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Figure 2: Extending the Euro-Latin (left) and Anglo-American (right) agendas in Figure 1

Intuitively, the force of an amendment is to confront voters with an additional decision. For a
Euro-Latin amendment (left), voters only face such a decision when they would otherwise select
the previously last alternative on the agenda (x3). For an Anglo-American amendment (right),
voters face an additional decision regardless of which alternative they would otherwise select.
The more flexible structure of priority agendas allows the agenda-setter to mix and match
these two kinds of amendments: Euro-Latin agendas can be extended by Anglo-American amend-
ment; and, Anglo-American agendas can be extended by Euro-Latin amendment. To illustrate:

{21, 22,23, 24} {21, 22, 23,24}
{x1, 24} {@a, x3, 4} {z1, 23,24} {@a, x3, 4}
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Figure 3: Priority agendas that extend Euro-Latin (left) and Anglo-American (right) agendas

More broadly, the amendment rules of priority agendas allow a new addition y to amend any
alternative x already on the agenda—subject only to the natural restriction that y also amend
every alternative added to the agenda after x. Intuitively, an alternative that “takes issue” with
a particular alternative on the agenda must also take issue with the other additions that took
issue with the same alternative.

3] use the term “amendment” out of convenience. Whether the proposal associated with a given alternative is
technically an “amendment”, a “motion”, or a “substitute bill” will depend on how it is added to the agenda.



Related Literature: At one extreme, the literature on sophisticated voting considers only a
narrow class of agendas. Besides the cited work on Euro-Latin and Anglo-American agendas,
Banks [1989] studies sophisticated voting for two-stage amendment agendas; and, a few papers
examine agendas implementing outcomes in the Iterated Banks Set (Coughlan and Le Breton
[1999]) or outcomes with “high” Copeland scores (Fischer et al. [2011]; Iglesias et al. [2014]).
At the other, the literature focuses on necessary and sufficient conditions for implementation
(Horan [2013]; McKelvey and Niemi [1978]; Moulin [1986]; Srivastava and Trick [1996]). While
this work clearly delimits what can be implemented by sophisticated agenda voting in general,
it does not help clarify what can be implemented by any specific agenda. In part, this lacuna is
related to the fact that the results rely on proof techniques that are partially non-constructive.
The current paper bridges the gap between these disparate strands of the literature. By
characterizing sophisticated voting for a wide range of agendas used in practice, it sheds light on
the voting outcomes that can be implemented by decision-making procedures used in practice.

I1. Basic Definitions

In this section, I briefly review the basic definitions and concepts used in the paper.

The environment consists of an odd number of voters with linear order preferences over the
alternatives in a finite set X. A preference profile of voters is denoted by P and the collection
of all profiles by P. A decision problem (P, A) consists of a profile P and a set of alternatives
(known as an issue) A C X. Where X denotes the collection of non-empty issues, a decision rule
defines a mapping v : P x X — X which selects a single social outcome v(P, A) € A for every
decision problem (P, A) € P x X.

I study the implementation of decision rules by agenda. To formalize the notion of an agenda:

Definition 1 An agenda Tx on a set of alternatives X is a rooted binary tree such that:

(1) every terminal node is labeled by (a set consisting of) one alternative in X;*
(2) every alternative in X labels one or more terminal nodes; and,
(3) every non-terminal node is labeled by the set of alternatives that label its two successors.?

Figures 1-3 of the Introduction clearly illustrate these three features.

For an issue A C X, one can “prune” the agenda Tx by deleting the terminal nodes labeled
by alternatives in X \ A. This operation is considered in a number of other papers (Bossert and
Sprumont [2013]; Horan [2011]; and, Xu and Zhou [2007]). Like an elimination-style tournament
in sports, the infeasible alternatives “forfeit” without changing the structure of the agenda.

Definition 2 Given an agenda Tx, the pruned agenda Tx /4 for an issue A C X is defined as follows:

(1) delete every terminal node of Tx labeled by an alternative z € X \ A; then,
(2) delete every non-terminal node with a unique successor, connecting its successor and predecessor;
(3) and, finally, relabel every non-terminal node of the resulting tree to conform with Definition 1.

To illustrate, consider the agenda Tx below and the pruned agenda for the issue {b, ¢, z}:

4Wherever it causes no confusion, I abuse set notation by omitting the brackets for singleton sets.

5Property (3) follows the “Farquharson-Miller” definition of agendas rather than the “Ordeshook-Schwartz”
definition (see Schwartz [2008]). Since the interest is sophisticated voting rather than sincere voting, this is
without loss of generality.
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Figure 4: An agenda Tx (left) and its associated pruned agenda Tx|{p,c,«} (right)

Every agenda Tx|4 defines an extensive game form where the outcomes are the terminal
nodes and the stage games (or decision nodes) consist of majority voting between two subgames.
Given a decision problem (P, A), the pair (Tx|4; P) describes a complete information extensive-
form game on the pruned agenda Tx|4. Every such game is dominance solvable (Moulin [1979]).
In other words, (TX‘ 4; P) has a unique undominated Nash equilibrium outcome, denoted by
UNE[Tx)a; P], for all A C X.

This solution concept corresponds to Farquharson’s [1969] notion of sophisticated voting. The
idea is that sophisticated voters anticipate the outcome of voting in later stages. Since they have a
dominant strategy to endorse their preferred candidate in any terminal subgame, voters discount
alternatives that lose at this stage. By using this “backward induction” reasoning to roll back
the agenda to the root, one obtains the undominated Nash equilibrium outcome (McKelvey and
Niemi [1978]).

To formalize the notion of implementation considered in the paper:

Definition 3 A decision rule v is implementable by agenda if there exists an agenda Tx such that
v(P,A) = UNE[Txa; P]
for every decision problem (P, A). In that case, the agenda Tx is said to implement v.

Despite superficial appearances, this notion of implementation is no more (and no less) general
than the standard notion of implementation where the issue is fixed (i.e. does not vary from X).

Remark 1 If a decision rule v is implementable by agenda, then v(P, A) = v(P*,X) for any profile
P that coincides with P on A but “demotes” all z € X \ A to the bottom of every voter preference.

This shows that the sub-issues A C X formally contribute nothing to the difficulty of the im-
plementation problem. Once the agenda-setter has determined what to implement for X, the
outcomes for all sub-issues are determined. Having said this, there are compelling reasons to
think about the sub-issues explicitly. For one, some problems of economic interest, such as the
issue of strategic candidacy, depend on how the outcomes change when some alternatives become
unavailable (Dutta et al. [2002]). No less compelling, the sub-issues simplify the statement of
the conditions for implementation as well as their interpretation.

III. Implementation by Simple Agenda

Before turning to priority agendas in Section IV, I first consider the more general class of simple
agendas. After formally defining these agendas in part (a), I identify two conditions that are



sufficient for implementation by simple agenda in part (b). Finally, I provide in part (c) a
“recipe” for constructing a simple agenda to implement any rule which satisfies these conditions.

(a) Definition

Given a non-terminal node A of an agenda Tx, the alternative x € A is said to be contested at A
if z € B\ C where B and C denote the successors of A. For a simple agenda, every non-terminal
node involves a “contest” between two alternatives that continue to be contested until they are
either eliminated or selected as the outcome. To formalize:

Definition 4 A simple agenda Sx on X is an agenda such that
(i) there exists an alternative b € B\ C that labels exactly one terminal node below B and,
(i) there exists an alternative ¢ € C'\ B that labels exactly one terminal node below C

for every non-terminal node A of Sx whose successors are B and C.°

Equivalently, an agenda is simple if it is at once non-repetitive and continuous.
Non-repetitiveness refers to the fact that every stage of voting in the agenda eliminates some
alternatives regardless of which subgame the voters actually select. Formally:

Definition 5 An agenda Tx is non-repetitive if
B,C C A for every non-terminal node A of Tx whose successors are labeled B and C'.

Non-repetitive agendas have the appealing feature that the outcome is determined by relatively
few votes. Since every subgame contains alternatives unavailable at its “sibling” subgame, the
height of a non-repetitive agenda on X is | X| — 1 and the number of votes is limited by X.

Continuity, in turn, refers to the fact that some alternatives contested at any stage continue
to be contested until they are either eliminated or selected as the outcome. Formally:

Definition 6 An agenda Tx is continuous if, for every non-terminal node A of Tx whose successors
are labeled B and C, some alternative © € B contested at A labels exactly one terminal node below B."

For some alternative x contested at the node A, there is a unique path starting at A that
leads to the selection of x. On this path, x is contested at every node. Intuitively, this means
that every stage of voting on path may be interpreted as a choice between continuing to entertain
the possibility of x and rejecting this alternative once and for all.

To help illustrate these two properties, consider the following pair of agendas:

{x1,%2,%3, 24} {z1, %2, %3}
{®1, 23,4} {®2,x3,x4} {z1, 22} {z1,22,X3}
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Figure 5: A non-repetitive non-continuous agenda (left) and a repetitive continuous agenda (right)

6 A simple agenda on X will always be denoted by Sx to help distinguish it from a generic agenda Tx.
7Continuity was originally defined only for “Ordeshook-Schwartz” agendas (footnote 5). The definition adapts
the concept to “Farquharson-Miller” in a way that addresses the concerns of Groseclose and Krebhiel [1993].



The left-hand agenda is non-repetitive: the two successors of each node contain a strict subset
of the alternatives. However, it is non-continuous: while zo is contested at the root, it is not
contested at the successor {xq,r3,74}.5 Conversely, the right-hand agenda is repetitive: the
right successor of the root contains the same alternatives as the root. At the same time, it is
continuous: the only alternative contested at the root (x3) appears at a single terminal node.

(b) Sufficient Conditions

The sufficient conditions for implementation by simple agenda are related to Plott’s [1973] Path
Independence (PI) and Arrow’s [1950] Independence of Irrelevant Alternatives (ITA).

The first condition, which weakens PI, states that the outcome for every issue can be deter-
mined by splitting it into simpler sub-issues. For a decision rule v, an issue A C X can be split if
there exists a pair of issues (B, C), called a splitting, such that: (i) BNC # B, C (i.e. B and C are
distinctive) and BUC = A (i.e. B and C cover A); and, (ii) v(P, A) = v(P, {v(P, B),v(P,C)})
for every profile P. To formalize the splitting condition:

Issue Splitting (IS) For v, every issue can be split into sub-issues.

By comparison, PI imposes the stronger requirement that the identity in (ii) must hold for all
pairs of sub-issues (B, C) that cover A, regardless of whether these issues are distinctive.’

In the spirit of ITA, the second condition states that outcomes are not affected by alternatives
that never appeal to a majority.!? To formalize, an alternative a € A is the Condorcet loser for
the decision problem (P, A) if, for all x € A\ a, the majority of voters in P prefer x to a. Then,
a decision rule v is independent of the losers for the issue A if v(P, A) = v(P, A\ a) for every
profile P where a is the Condorcet loser on (P, A). To formalize the independence condition:

Independence of the Losing Alternatives (ILA) For every issue, v is independent of the losers.

Theorem 1 shows that every decision rule v satisfying these two conditions is implementable by
a unique simple agenda S%. As discussed in section (b) below, the structure of S% is straight-
forward to determine from the outcomes of v for decision problems of three alternatives, called
Condorcet triples, where the pairwise majority preference forms a cycle:

Theorem 1 If a decision rule v satisfies IS and ILA, then it is implementable by a unique simple
agenda 8% whose structure is determined by the outcomes on Condorcet triples.

It is worth commenting on the necessity of the two conditions. Clearly, ILA is necessary for
implementation by simple agenda. Indeed, it is necessary for implementation by any kind of
agenda. Since the Condorcet loser cannot win a majority vote in any terminal subgame of an
agenda, sophisticated voters disregard it when deciding how to vote in earlier stages.

In contrast, IS is not even necessary for implementation by simple agenda. To see this,
consider the decision rule implemented by the simple agenda 7Ty in Figure 4. Let P, denote
the Condorcet triple with cycle orientation xbc (i.e. z is preferred by majority to b, b to ¢,
and ¢ to x); and, let P, denote the triple with the reverse orientation. “Backward induction”
shows that Tx|(s,c,») implements b for P.p. and c for P,ep. In other words, Ty (p,c,.«} selects the
majority preferred alternative between b and c¢. However, there is no way to do this by splitting
{b,c,z} (as shown in Table 1 below).!!

8The other alternative contested at the root (z1) does appear at a single terminal node below {x1, 3, x4}

918 also weakens the Division Consistency (DC) condition of Apesteguia et al. [2014]. For one, it does not
require the sub-issues (B, C) to be disjoint. And, it does not impose any consistency between the splitting of A
and its sub-issues. That is, IS does not require v(P, D) = v(P,{v(P, BN D),v(P,C N D)}) for any D C A.

10 Apesteguia et al. [2014] call this condition Condorcet Loser Consistency.

HThe outcome for Pyp. (resp. Pyep) implies 2 cannot be paired with b (resp. c). So, the only potential splitting
is (z, {b, c}). Since this requires z as the outcome for both P, and Py, however, there is no way to split {b, c, z}.



(¢) A Recipe

It is straightforward to define the agenda &% from Theorem 1 by recursion. First, define a
root node and label it X. Then, for any existing node whose label is a non-singleton issue A,
construct two successors nodes, using the unique'? splitting (B4, C4) of A to label them B4 and
C4, respectively. To illustrate:

— T
— —
AN AN

X

~ e
{x7y} : A
VAN VRN
x y Ba  Cy
SN LN
Figure 6: The recursive construction of 8%
In Figure 6, the leftmost nodes below By illustrate the construction for |A| = 2 while the

leftmost nodes below Cx illustrate it for |A] > 2. In turn, the two triangles represent the
subgames starting from the nodes labeled Cp, and C¢, while the ellipses indicate where some

details have been omitted.!?
As Theorem 1 indicates, Condorcet triples may be used to describe S% more explicitly. For
the issue {x,b,c}, there are three splittings where b and ¢ appear in separate sub-issues:

({b,z} {c;x})  (b{c,x})  ({b,a},0)

Each of these corresponds to the initial stage game of a different simple agenda on {z, b, c}:

(a) (b) (c)
{b,c,z} {b,c,z} {b,c,z}
AN PN /

{bvx} {C,X} b {C,X} {b,x} C
b/ ANVAR /\ b/ \

Figure 7: Simple agendas on three alternatives {z, b, c}

These three agendas implement different combinations of outcomes for the triples P.p. and Pyp:

121S and ILA ensure that there is unique way to split every issue (see Claim 9 of the Appendix).
13Tt is important not to confuse Sx (A) and Sx|a (which may be quite different — see Figure 4). While the
former refers to the subgame at node A in Sx, the latter refers to the agenda obtained by pruning away X \ A.



Profile\Agenda | (a) | (b) | (c)

P, xbe c b c
Pach b b c
Outcomes Majority loser Outcome b for Outcome ¢ for
between b and ¢ both triples both triples

Table 1: Outcomes implemented by agendas (a)-(c) on {z,b, c}

By construction, there exist alternatives b4 and c4 that appear only on opposite sides of the
agenda S%(A) starting at any node A. For these alternatives, the outcomes on any issue
{z,ba,ca} involving an x € A must coincide with one of the possibilities in Table 1. After
using this observation to locate some bs,cyq € A, one can use Table 1 to describe the splitting
(Ba,Ca) of A in terms of Condorcet triples:

By ={ba} U{x € A: type-(a) or type-(c) outcomes on {x,ba,ca}}
Ca ={ca}U{z € A: type-(a) or type-(b) outcomes on {x,ba,ca}}

Intuitively, type-(a) outcomes reveal that x appears in both sub-issues of (B4, Cx) while type-(c)
outcomes (type-(b) outcomes) reveal that x appears only in the same sub-issue as ba (ca).

While the goal was to define a simple agenda for the “grand” issue X, the same approach also
defines a simple agenda S that implements v for any issue A C X. This is a straightforward
consequence of IS and ILA. This observation highlights a practical feature of decision rules
satisfying these conditions. Instead of using the pruned agenda S}’q 4 to implement the social
choice function v(-,A) : P — A, one can use Y. The advantage is that the latter requires less
voting. By virtue of its simplicity, every node in SY must affect the outcome for some profile.
In contrast, 5%, may include redundant nodes that cannot affect the outcome for any profile.

To summarize, IS ensures that it is possible to “simplify” the agenda implementing a decision
rule on X for every issue A C X. In other words:

Theorem 1* If a decision rule v is implementable by agenda, then it satisfies IS if and only if the social
choice function v(-,A) is implementable by simple agenda for every issue A.

IV. Implementation by Priority Agenda

I define priority agendas in part (a) and characterize the rules that they implement in part (b).

(a) Definition

A priority agenda on X is defined by a pair (7, «) consisting of a weak priority = and an
amendment rule «. Intuitively, (77, @) provides a way to construct the agenda by progressively
adding alternatives. While = determines when each alternative should be added, o determines
how each should be added.

Formally, 77 is a weak order on X whose indifference classes contain at most two alternatives.
When x > y, the idea is that = has higher priority and is added to the agenda before y. When
x ~ y, the two alternatives have equal priority and may be added to the agenda in either order.

To formalize the amendment rule «, let X; denote the 4t highest indifference class of -
and let X = {{z} : x € X} U{X; : |Xj| # 1} denote the collection of singletons and equal

priority pairs in X. Using this notation, the amendment rule is a mapping « : X \ X; — X.
An alternative z is said to amend another alternative z if (i) x € a(z) or (i) y > x > z for



some y € a(z). The interpretation is that, when z is added to the agenda, it amends y € a(z)
and every alternative x already on the agenda that has strictly lower priority than y. To match
this interpretation, o must satisfy the following additional restrictions: (i) every new addition
to the agenda must amend some alternative already on the agenda; (ii) alternatives with the
same priority must amend the same alternatives; and, (iii) every alternative whose priority is
immediately below two alternatives with the same priority must amend both.

The Euro-Latin and Anglo-American agendas are easy to describe in terms of this notation:

e «
N for d
Euro-Latin T1 > > Tpe1 ~ Tn | afxg) = {wia} for ’L'# "
{zn—2} for i=n
Anglo-American T1~ T2 > ... = Ty a(z;) = {z1, 22}

Table 2: (=, @) for Euro-Latin and Anglo-American agendas of n alternatives

To reconstruct the agendas from the (77, @) pairs in this table, one simply adds the alternatives in
decreasing order of priority = using the amendment rule a. Indeed, the same type of construction
defines an agenda for every priority-amendment pair (27, «). To formalize:

Definition 7 For any pair (7, @) on X, the priority agenda P~ ,) is defined recursively as follows:
(1) Define P(lz’a) to be the simple agenda Sx, on the highest indifference class X;.
(2) Define P(J;;d by adding the alternatives z;41 € X;11 to KP(jtya) as follows:
(i) Replace every terminal node of P{ba) labeled by:

- ok € axj41) with the simple agenda Sy, x and,

i+1b
- 2 € Xy for k' sit. k < k' < j with the simple agenda S¢.,, x;, .-
(ii) If | X 41| # 1, replace every node X1 in the agenda resulting from (i) with Sx, ;.

(3) Define P~ o) to be P(Ii,a) where K is the number of indifference classes in 7.

Clearly, this recursive construction defines a simple agenda on X 15 At any stage j < K, the
simple agenda 73(3> @) is extended into a longer simple agenda P(J;r L) by appending new simple

agendas (of two or three alternatives) to the terminal nodes. The figure below serves to illustrate:

N N
SN e, @ /N

Xk’
T / \ if Xjpi={zj41,25,} Xj+1
T Xj+1 / AN
/

Tjt+1 Tjt1

Figure 8: Detail at the terminal node zj, in stage j < K of the construction.

14 These three requirements can be formalized as follows: (i) z € a(2) = z = 2; (ii) z ~ y = a(z) = a(y); and,
(iii) [t~y > zandno 2’ € X s.t. x ~y > 2’ > 2] = [z € a(z) or w > z for all w € a(z)].

15Technically, one must relabel the non-terminal nodes to conform with Definition 1(3). Since this is straight-
forward but cumbersome, it has been omitted to preserve clarity. For the details, see Claim 1 of the Appendix.



Notice that Definition 7 effectively uses the class of priority agendas on m alternatives to define
the class of priority agendas on m + 1 alternatives. The following example serves to illustrate:

Example 1 There are three consistent ways of proposing a new alternative x4 to extend the (i) Euro-
Latin and (ii) Anglo-American agendas in Figure 1 into priority agendas on {1, x2,Ts,T4}.

(1) By Euro-Latin amendment — z4 amends only the last alternative x3 in {x1, 2,23}, which
leads to (i) the Euro-Latin agenda in Figure 2 and (ii) the right-hand agenda in Figure 3;

(2) By Anglo-American amendment — x4 amends every alternative in {x1,x2,x3}, which leads
to (i) the left-hand agenda in Figure 8 and (ii) the Anglo-American agenda in Figure 2; and,

(3) By Intermediate amendment — z4 amends x2 and 3, which leads to the two agendas below.

{z1, 22,23, 24} {z1, 22,23, 24}
71 {xa, w3, 4} {x1, 23,4} {xa, w3, 24}

/N /N /N

{w2, 24} {w3, 24} {ws, 24} {z2, 24} {w3, 24}

A I Y

T2 Xa X4 T2 Xa

Figure 9: Priority agendas that extend Euro-Latin (left) and Anglo-American (right) agendas

Since the Euro-Latin and Anglo-American agendas are the only priority agendas on three alternatives,
these siz agendas constitute the entire class of priority agendas on four alternatives (up to permutation).

(b) Necessary and Sufficient Conditions

Euro-Latin and Anglo-American agendas are structured so that the lowest priority alternatives
are the sophisticated voting outcomes only when they always appeal to a majority (Miller [1977];
Moulin [1991, Exercise 9.5]). To formalize, an alternative a € A is the Condorcet winner for the
decision problem (P, A) if, for all © € A\ a, the majority of voters in P prefer a to 2. Then, an
alternative a* € A is said to be marginal for the issue A when v(P, A) = a* only if P is a profile
where a* is the Condorcet winner for (P, A). To state the property:

Weak Marginalization (WM) For every issue, v has a marginal alternative.

It turns out that the same property is satisfied by sophisticated voting on every priority agenda:
Proposition 1 Ewvery decision rule v implementable by priority agenda satisfies Weak Marginalization.
Indeed, it is the distinguishing feature of rules implementable by priority agenda:

Theorem 2 A decision rule v satisfies IS, ILA, and WM if and only if it is implementable by a priority
agenda P% . For any decision rule v satisfying these three conditions, Px is unique and the pair (o, o)

~v)

that defines this agenda is uniquely determined by the outcomes on Condorcet triples.

To establish the sufficiency of the axioms, the key is to determine the priority structure im-
posed by WM. To accomplish this task, the proof relies on the familiar tool of revealed preference:



Definition 8 Given a decision rule v, define the binary relations =, and ~, on X by:

-y > 2z if there exists an issue A D {y, z} where z is marginal but y is not; and,
-y ~y 2 if y is marginal for every issue A where z is marginal and vice versa.

Using > and ~,, define the binary relation 7=, on X by y o 2 if Y =0 2 0T Y ~y 2.

For the Anglo-American and Euro-Latin agendas, =, reflects the underlying weak priority.
For every issue A, the first marginalizes the lowest ranked alternative in A according to -, while

the second marginalizes the two lowest ranked alternatives.'® In fact, >, defines a weak priority
with similar features for any decision rule that satisfies IS, ILA, and WM:

Lemma 1 If v satisfies IS, ILA, and WM, then: (i) =, is a weak priority; and; (i) for every issue
A, v marginalizes either the lowest or two lowest alternatives in A according to 7.

As indicated in Theorem 2, it is possible to re-formulate the revealed priority 77, in terms of
Condorcet triples. For any two alternatives y and z, Table 1 shows that there are six combinations
of outcomes for the triples P,,. and P,,. Of these, four directly reveal y =, z or z >, y while
two combinations are consistent with every possible priority ranking of y and z. By varying the
alternative x, it is possible to resolve these ambiguous cases (see Corollary 2 of the Appendix).

Table 1 also shows how to define the amendment rule «, in terms of Condorcet triples.
Intuitively, = is “revealed to amend” a higher priority alternative b if the Condorcet triples for
every alternative ¢ with intermediate priority yields type-(a) or type-(c) outcomes—namely the
outcomes where x appears in the same sub-issue as b in Figure 7. Then, «,(z) can be defined as
the highest priority alternative(s) that z is revealed to amend (see Definition 9 of the Appendix).

In light of Theorem 1, the sufficiency of the axioms in Theorem 2 follows by showing that the
simple agenda S% “branches” in the same way as the priority agenda P% defined by (Zu, o).

V. Concluding Discussion

To conclude, I highlight how priority agendas extend our understanding of legislative voting
beyond Euro-Latin and Anglo-American agendas. In part (a), I first describe two distinctive
features that every priority agenda shares with Euro-Latin and Anglo-American agendas. In
part (b), I then highlight a key difference between these agendas and other priority agendas.

(a) Similarities

The voting literature emphasizes three features of sophisticated voting on Euro-Latin and Anglo-
American agendas. The first is the Weak Marginalization property studied in Section IV. The
other two features are monotone comparative statics.

The first relates to changes in voter preferences (Moulin [1986]). Given a profile P, let
P? denote a profile where all voter preferences are identical to P except for one voter, whose
preference between x and the immediately preferred alternative are reversed.!” That is, P®
differs from P only by improving x in the eyes of one voter. Then, a decision rule v is said to be
preference monotonic if, for every decision problem (P, A) such that v(P, A) =z, v(P*,A) =«
for every profile P* where x improves in some voter’s preference.

Like Euro-Latin and Anglo-American agendas, every priority agenda is preference monotonic:

Proposition 2 Every decision rule v implementable by priority agenda is preference monotonic.

16Eliaz et al. [2011] characterize choice behavior that is consistent with selecting the “lowest two” alternatives.
17For the voter in question, the preference “... =; y =; « >; ...” in P becomes ... =T x =7 y>=7 .7 in PT.



The second property relates to changes in priority (Jung [1990]; Moulin [1991, Exercise 9.5]).
Given a priority agenda Px defined by (z,«), let (2., ;) denote a pair identical to (7, «)
except for one alternative x, whose priority and amendment features are swapped with an al-
ternative y such that: (i) y > z = « for no alternative z € X; or, (ii) x ~ y and z is amended
by every alternative that amends y. Let P% denote the priority agenda defined by (%, aus)-
Intuitively, = weakly improves in terms of priority in P% by “swapping places” with y in the
agenda.'® Then, Px is said to be priority monotonic if, for every decision problem (P, A) such
that UNE[Pxa, P| =z, UNE][ ;“(IA,P] =z for P%.

Like Euro-Latin and Anglo-American agendas, every priority agenda is priority monotonic:

Proposition 3 Every priority agenda Px is priority monotonic.

(b) Differences

Unlike other rules implemented by priority agenda, the Euro-Latin and Anglo-American agendas
treat the alternatives neutrally after taking the priorities into account. Intuitively, the outcomes
may depend on the “structure” of the profile and the priorities but not the “names” of the
alternatives. Perhaps the simplest (if not the weakest) implication of this neutrality is that
issues of the same size must have the same number of marginal alternatives. Where two issues
A, A" such that |A| = |A’| are understood to be similar, this neutrality property can be stated
more formally as follows:

Neutral Priority (NP) For similar issues, v has the same number of marginal alternatives.

The next result shows that, besides the Euro-Latin and Anglo-American procedures, no other
decision rule implementable by priority agenda satisfies even this weak form of neutrality:

Proposition 4 The Euro-Latin and Anglo-American procedures both satisfy NP. In fact, they are the
only decision rules implementable by priority agenda that satisfy this property.

Whereas the Euro-Latin agenda always marginalizes two alternatives, the Anglo-American
agenda always marginalizes one. No other rule that satisfies IS, ILA, and WM marginalizes
the same number of alternatives, even for similar issues. In recent work, Apesteguia et al. [2014]
provide a different characterization using the following properties:

Condorcet Priority (CP) FEvery issue A has a prioritarian alternative p* € A such that
V(Ppray, {p",x,y}) = p* for any Condorcet triple Py« sy involving alternatives x,y € A.

Condorcet Anti-Priority (CA) Every issue A has an anti-prioritarian alternative p. € A such
that v(Pp,ay, {p«,x,y}) =y for any Condorcet triple Py, 4y involving alternatives x,y € A.

To characterize the Euro-Latin procedure, they use CP along with ILA and Division Consistency
(DC) (see footnote 9). To characterze the Anglo-American procedure, they use CA along with
ILA and a property called Elimination Consistency (EC).

Theorem 2 shows that one can replace DC and EC in these characterizations by IS:

Corollary 1 A decision rule v is:

(i) a Euro-Latin procedure if and only if it satisfies IS, ILA, and Condorcet Priority.
(i) an Anglo-American procedure if and only if it satisfies IS, ILA, and Condorcet Anti-Priority.

Using 7, (particularly as characterized in Corollary 2 of the Appendix), it is easy to see that
CP marginalizes two alternatives for every issue while CA marginalizes one. This shows that the
key difference between the Euro-Latin and Anglo-American procedures is the structure of the
amendments associated with each.

18 Formally, P% can be obtained by permuting the labels of the terminal nodes in Px marked z and y.
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VI1II. Appendix — Proofs

NOTE: Except as indicated otherwise, the claims in sections (c)-(f) below suppose that v satisfies IS and
ILA.

(a) Proof of Remark 1

To formalize the remark, some notation is required. Given a profile P, let P* denote the profile that coincides
with P on A but places the alternatives in X \ A at the bottom of each voter preference (in a fixed order).

Proof of Remark 1. Suppose v is implemented by 7x. To establish v(P, A) = v(P*, X), note that
“backward induction” determines the UNE on any agenda (McKelvey and Niemi [1978]). In any terminal
subgame, it selects the Condorcet winner. One can then delete the Condorcet loser and repeat the argument
on the resulting (smaller) agenda. From this, it follows that UN E[Tx; P*] = UN E[Tx|a; P*]. Since P* and
P coincide on A, UNE[Tx|a; P*] = UNE[Tx|a; P] as well. So, UNE[Tx; P*] = UNE[Txa; P]. &

(b) Proof of Propositions 1, 2, and 3

Some additional notation is required for these results. Given a weak order =, let Ly(a) = {z € X : a > z}
denote the strict lower contour set of a € X. And, let =" denote any strict order such that y > z implies
y =" zforally,z € X. Given an issue A = {a1, ..., ax } labeled according to =", let Af denote the alternatives
in A between a; and ax. Formally, let A? = {aj,...,ar} if j <k < K; and, let A? = () otherwise.

Claim 1 Given a priority agenda P~ o), the two successor nodes of any node A are a1 U AJK and AKX for
some j s.t. j €{3,..., K + 1} where A = {aa,...,ax} is labeled according to >=". Moreover:

(i) AX = X, where X = {x1,...,xm} is labeled according to =*; and,

(i) az > a; and a;j is a highest priority alternative in AX that amends a1 (if such an alternative exists).

Proof. Let B and C denote the labels attached to the two successors of node A. Since = is a weak priority:
(1) maxy A = {a1,az2}; or, (2) maxy A = {a1}. Since the claim is trivial when |A| = 2, suppose |A| > 3.

(1) From the construction (step (ii) in Definition 7), a1 and az must have been added at A. Since
they must be added to different successors, a1 € B\ C and az € C'\ B. By definition of «, the next highest
priority alternative(s) in X are added under the successors identified with a1 and a2. So, B = a1 ULy (a1) and
C = aaULy (a1) by a straightforward induction argument. This shows that B = a1 UAL, C = A = X' _ k.o,
and a2 > as.

(2) From the construction (step (i) in Definition 7), a1 and the next highest priority alternative(s) at A
must be added to different successors. Defining A_; = maxy(4\ a1), a1 € B\ C and A_1 C C\ B. So,
C = A_1ULy(az2) = X;,_ k42 by the same argument as (1). To add an a; ¢ A—; under the successor identified
with a1, the construction requires that a; amends ai. Then, by the same argument as (1), B = a1 U Af{
where a; is a highest priority in C = X} .0 = AX that amends a; besides az > a; (if such an alternative
exists). B

Claim 2 Fiz a priority agenda P o) on X = {z1,...,xm} as labeled according to =* and an alternative x;
that amends 1 according to a. Then, every path from the root X to a terminal node in P~ o) passes through
a non-terminal node x; U X;" whose successors are X" and x; U X" for some i < j <k <m+1.

Proof. The proof is by strong induction on m. The base cases m = 2, 3 are straightforward. For the induction
step m = n + 1, consider the two successors of the root X. By Claim 1, these are X3" and z1 U X} for
2 <k <m+1. If j = 2, then the root X is the desired node (since every path to a terminal node goes through
this node). If j > 2, then z; € X" and z; € X3". Moreover, x; amends z2 by definition of a. Since the
agendas starting at X5"* and x1 U X" are priority agendas on n or fewer alternatives, the induction hypothesis
implies that every path to a terminal node starting from X35" or x1 U X}" passes through a non-terminal node
with the desired characteristics. And, since every path from the root X passes through X3* or x1 U X}, the
result follows. m



The next results require some additional definitions. First, two agendas Tx and 7y s.t. Y C X are said to
be outcome-equivalent on Y if UNE[Tx 4, P] = UNE[T{,M, P] for every decision problem (P, A) such that
ACY.

Second, for any priority agenda Px defined by (2, ) and any alternative x € X, let Px\, denote the
deleted priority agenda that “deletes” from the agenda Px every subgame where x has highest priority as
follows:

(1) locate the nodes A, of Px s.t. © € maxy A, and = ¢ max, A% for the predecessor AL of Ag;

(2) for all such A, delete the agenda starting at the (necessarily unique) successor A; s.t. x € A;
(3) delete every non-terminal node with a unique successor, connecting its successor and predecessor;
(4) and, finally, relabel every non-terminal node of the resulting tree to conform with Definition 1.

To see that Px\, defines a priority agenda, note that the only potential change to the amendment rule o
involves an alternative y with immediately lower priority than x (i.e. z >y and > z > y for no z € X). If
a(y) = {z}, the deletion has the effect of changing a(y) to a(x). Formally, define the priority rule a—;(y) by:

() = { a(z) if y has immediately lower priority than z and a(y) = {z}
a_z(y) =

a(y) otherwise

By construction, a—, is an amendment rule consistent with the priority 7. As such, (7Z,a—5) defines a
priority agenda. It is straightforward to see that this agenda is the deleted priority agenda Px\, described
above.

It is worth noting that this agenda is formally distinct from the pruned priority agenda Px|x\.. Intuitively,
Px\» prunes “higher up” the agenda than Px|x\, (unless x has lowest priority according to 7). As a result,
it prunes away a larger portion of Px. However, the two agendas are outcome-equivalent:

Claim 3 For any priority agenda Px and any x € X, Px is outcome-equivalent to Px\y on X \ .

Proof. Suppose X = {z1,...,xm} where X is labeled according to >*. The proof is by strong induction on
m. The base cases m = 2,3 are trivial. For the induction step m = n + 1, note that the successors at the
root X of Px are (x1 U X", X3") by Claim 1. Consider the three cases: (i) j = m + 1; (ii) j = 3; and, (iii)
3<ji<m.

The argument is the same in all cases if x # x1,x2. In fact, the same argument also works for z = x2
in cases (i) and (iii). Fix any = = z; s.t. ¢ > 2 (where ¢ # 2 if case (ii) is the relevant case). By the
induction hypothesis, the priority agenda Px;» = Px(X3") starting at the “right” successor X3" of the root
is outcome-equivalent on X3* \ z; to PX”L\x@ Slmﬂa]rly7 the priority agenda leuxm Px (z1 UX]’-") starting
at the “left” successor x1 U X" is outcome-equivalent on (z1 U X]*) \ x; to P(rluxm)\r Then, “backward
induction” shows that the outcome on Px for any issue A C X \ z; does not change if one replaces the agendas
at the root by their outcome-equivalents. Since the resulting agenda is Px\,, by definition, the claim follows.
The following diagram serves to illustrate:

Agenda Px Agenda Px\a,
Peyuxy Pxp Plaiuxpne, Pxga;

To complete the proof, it suffices to establish the result for © = z1 in cases (i)-(iii) and = z2 in case (ii).

(i) The claim is trivial since Px|(x\z,) = Px\a; by definition.

(ii)-(iii) It suffices to show the claim for z = z1. (In case (ii), the same reasoning works for z = z2 as
well.) By the induction hypothesis, 'leuxm is outcome-equivalent on X3 to Px;n Let Tx\z, denote the
agenda obtained from Px by replacing the agenda Paru xm at 1 U X w1th me To complete the proof, I
show that Tx\,, is outcome-equivalent to the priority agenda Pxp startlng at X2 .



By way of contradiction, suppose there is some profile P s.t. UNE[Tx\o,, Pl = #y = UNE[PXZ;n , P].
Since x is the outcome at the root X, “backward induction” shows that UN E[Pxm, P] = z. By Claims 1 and
2, every path down the agenda from X3 reaches a node x; U X" where: (i) the “left” successor is z; U X}
for i < j < k; and, (ii) the “right” successor is X". Since UNE[Px;n, P] = z, y must be the outcome at
some “left” successor(s) z; UX]". Since UNE[PX;;L , P] = x however, y must be eliminated at the predecessor
z; U XJ" of any such “left” successor. So, UNE[Pxjy, P] # y, a contradiction which shows that Tx\,, is
outcome-equivalent to ngn. ]

Proof of Proposition 1. Suppose v is implementable by a priority agenda Px defined by (77, ). I show
that x,, is marginal for X = {x1,...,zm} as labeled according to >*. It then follows that z,, is marginal
for any issue A s.t. =, € A. Since Px|{e1,....em_1} 18 & priority agenda on X \ Tm s.t. x; 7 Tm-1, the
same argument shows that z,,—1 is marginal for any issue A C X \ 1, s.t. Tm—1 € A. The result follows by
extending this reasoning.

The proof that x,, is marginal for X is by strong induction on m. The base cases m = 2,3 are trivial. For
the induction step m = n + 1, consider the successors of the root X. By Claim 1, these are X3" and z1 U X"
for 2 < k < m + 1. There are three possibilities: (i) k =m + 1; (ii) k = m; and, (iii) 2 < k < m.

(i) In this case, the root splits Px into z; and a priority agenda Pxy on n alternatives. Since z; 2 xm
for all x; € X3", the induction hypothesis implies that z,, is the outcome on Pxy only if it is the Condorcet
winner on X3". Rolling back the agenda to the root node X, z,, is the outcome on Px only if it is the
Condorcet winner on {x1,zm,} as well. Combining the last two observations gives the result.

(ii) In this case, z, amends z1 by Claim 1. Then, by construction of Px, every terminal subgame pairs
Tm against another alternative in X. So, any alternative majority defeated by x., is eliminated at the last
stage (i.e. only x,, and alternatives that beat x,, can be selected as outcomes). Rolling back the agenda to
the root node, it then follows that x,, is the outcome on Px only if it is the Condorcet winner on X 19

(iif) In this case, the agendas P, ux; = Px(z1 U X}") and Pxp = Px(X3") are priority agendas on n
or fewer alternatives. Since x; - xp, for all z; € X, the induction hypothesis implies that z,, is the outcome
on Px only if it is the Condorcet winner on X" (i.e. the intersection of z1 U X;* and X3*).

In that case, one can prune away X;"’l from Px to obtain Px|y where Y = Xffl U Zym. By Claim 3,
Px is outcome-equivalent on Y to the priority agenda Py (on n or fewer alternatives). Since x; 77 =, for
all ; € Y, the induction hypothesis implies z,, is the outcome on Py (and hence Px |y ) only if it is the
Condorcet winner on X f “!Uz,,. Combining this with the observation in the last paragraph gives the result.
|

Claim 4 FEwvery decision rule v implementable by priority agenda satisfies IS.

Proof. If v is implementable by the priority agenda Px, then there exists a way to split X. By Claim 3, the
same is true for any X \ z. By applying Claim 3 to the resulting priority agenda Px\,, the same must be
true for any X \ {z,y}. Extending this reasoning by induction, it follows that v satisfies IS. m

Claim 5 If Px is a priority agenda s.t. the successors of the root node X are labeled B and C, then:
UNE[Px,P] € BNC implies UNE[Px(B), P] = UNE[Px(C), P].

Proof. The proof is by strong induction on m. The base case m = 3 is straightforward. For the induction
step m = n + 1, suppose (7, ) defines Px and X = {z1,...,zm,} is labeled according to >*. By Claim
1: B =21 UX]" for some 3 < j < m+1; and, C = X3". If j = m + 1, then B is a singleton and
there is no profile P s.t. UNE[Px,P] € BN C. So, suppose j < m without loss of generality. Now, fix
a profile P s.t. UNE[Px,P] = z for j < k < m. By way of contradiction, suppose the claim is false.
Since UNE[Px,P] = ), “backward induction” leads to two possibilities for UN E[Px(B), P] = =, and
UNE[Px(C),P]) = z.: (i) b=k and ¢ # k; and, (ii) b # k and ¢ = k. To establish the result, I show that
each case leads to a contradiction:

(i) Consider the agenda Tx\,, (described in Claim 3) where the successors of the root are X;" and C =
X3". Since UNE[Px (B), P] = @b, UNE[Pxm, P] = 2. To see this, let B’ denote the “left” successor of B in

19This type of argument is well-known in the literature (see e.g. Theorem 2.2 of Iglesias et al. [2014]).



Px. Ifxy € B'NX]", then UNE[PX;n , P] = zp by the induction hypothesis. If z;, ¢ B’, then UNE[PX_;n, Pl =
xp as well. (Otherwise, “backward induction” gives UNE[Px(B),P] # x.) Since UNE[Px,P] = xy,
UNE[PX]m, P] =z, implies UNE[Tx\4,, P] = 21 as well. By the argument in Claim 3(ii)-(iii), Tx\,, must
be outcome-equivalent to Px\z, = Px(C). So, » = UNE[Tx\a,, P] = UNE[Px(C), P] = x., which is a
contradiction.

(ii) By Claim 1, X3" is the “right” successor of C' in Px. Moreover, UNE[Pxy, P| = z. by the same
reasoning as in (i). Now, consider the priority agenda Px\,, on n alternatives. If j > 3, then the successors
at the root node X \ z2 are B and X3". So, “backward induction” gives UNE[Px\4,,P] = .. Since
UNE[Px(B), P] = x, however, this contradicts the induction hypothesis. If j = 3, then Px\,, = Px(B).
So, UN E[Px\z,, P] = zp. Since the “right” successor of B in Px\,, is X3* and UNE[Px, P] = x. however,
this contradicts UNE[Px, P] = z..m

Proof of Proposition 2. Let Px denote the priority agenda that implements v. It suffices to show
preference monotonicity for X. Since UNE[Px|a, P] = UNE[Px, P*] by Remark 1, the result then follows
for all A C X.

The proof is by strong induction on m. The base case m = 3 is straightforward. For the induction step m =
n+ 1, fix a profile P s.t. UNE[Px, P] = x and suppose the successors of the root X are B and C. There are
two cases: (i) x € BNC; and, (ii) x € B\ C. (i) By Claim 5, UNE[Px(B), P] = UNE[Px(C), P] = z. Since
Px (B) and Px (C) are priority agendas on n or fewer alternatives, UN E[Px (B), P*] = UNE[Px(C),P*] =«
by the induction hypothesis. Then, “backward induction” gives UNE[Px, P*] = z. (ii) Since Px(B) is a
priority agenda on n or fewer alternatives, UN E[Px (B), P*] = x by the induction hypothesis. Since = ¢ C,
UNE[Px(C), Pl =UNE[Px(C), P]. Since UNE[Px, P] = z, “backward induction” gives UN E[Px, P*] =
z. |

Proof of Proposition 3. Suppose Px is defined by (7, &) where X = {z1,...,zm } is labeled according to
>". By Remark 1, it suffices to establish the result for X. The proof is by strong induction on m.

The base cases m = 2,3 are straightforward. For the induction step m = n + 1, fix a profile P s.t.
UNE[Px, P] = xx. (Where zy_1 ~ zj, suppose that every alternative that amends zy_; also amends zy.)
By Claim 1, the successors of the root X are: B = z1 U X" for some 3 < j < m+1; and, C = X3". So, there
are four cases to consider: (i) 7+ 1<k <m; (ii) 3 < k <j—1; (iii) k = j; and, (iv) k = 2. To establish the
result, I show that UNE[P%, P] = 2, in each case (where P% = PT* to simplify the notation):

(i) Since z € BN C and UNE[Px, P| = z, Claim 5 implies UNE[Px (B), Pl = UNE[Px(C), P] = zk.
Since Px (B) and Px (C) are priority agendas on n or fewer alternatives and k # j, the induction hypothesis
implies UN E[P% (B), P] = UNE[P%(C), P] = zx. So, UNE[P%, P] = xy.

(i) Since zx ¢ B and UNE[Px, P] = zk, “backward induction” implies UNE[Px (C), P] = x. Since
Px(C) is a priority agenda on n or fewer alternatives, the induction hypothesis implies UNE[P% (C), P] =
UNE[Px(C), P] = zi. Since x1, ¢ B, UNE[P%, P] = x;, by the same kind of reasoning as Proposition 2(ii).

(iii) By the reasoning in case (i), UNE[Px(B),P] = UNE[Px(C),P] = x; and UNE[P%(C),P] =
z;. By way of contradiction, suppose UNE[P%, P] # z;. Then, UNE[P%,P] = z; by Claim 5. Since
UNE[P%(C), P] = z;, “backward induction” implies that ; is majority preferred to ;.

Since UN E[P%, P] = x1, “backward induction” implies UN E[P% (B;), P] = 21 where B; = {x1,2j_1} U
X741 is the “left” successor of the root X in PE. Since the agenda at the “left” successors B = z; U

7 of B and B; coincide and UNE[P% (B;), P] = x1, “backward induction” implies UN E[P% (B’), P] =
UNE[Px(B’),P] = z1. Since UNE[Px(B),P] = z; however, “backward induction” implies that z; is
majority preferred to x1. Since this contradicts the inference drawn in the last paragraph, it follows that
UNE[P%, P] = z;.

(iv) While more involved than case (iii), the basic proof technique in this case is similar. Since
UNE[Px, P] = x2 and z2 ¢ B, “backward induction” implies UN E[Px (C), P] = z2. Let B’ = UX;-? and
C’' = X3 denote the two successors of C in Px. Since x2 only appears at one terminal node below B’ and
UNE[Px(C), P] = z2, 2 is majority preferred to UNE[Px(C"), P] and every alternative it meets on the
“backward induction” path in Px(B’). Now, consider P% . letting By = x2 U X;" and C2 = 1 U X3" denote
its two successors. By construction, B, = 21 U X7' and C% = C' are the two successors of Cy in P%.



Since every alternative that amends x1 in Px also amends x2, everything that x2 meets on the “backward
induction path” in Px(Bsz) is something that it meets in Px(B’). Since z2 is majority preferred to all
of these alternatives by the first observation in the last paragraph, UNE[P%(B2), P] = xa. Moreover,
UNE[P%(C}), Pl = UNE[Px(C"), P] by the second observation in the last paragraph.

By way of contradiction, suppose UNE[P%, P] # z2. Since UNE[P%(B2),P] = z2 and > is ma-
jority preferred to UNE[P%(C%), P] = UNE[Px(C"), P], “backward induction” implies UNE[P%, P] =
UNE[P%(B}), P]. Since x2 is majority preferred to everything that z; meets along the “backward induction
path” in Px(Bj), UNE[P%,P] = UNE[P%(B}),P] = x1. Since UNE[P%(B2),P] = x2, 21 is majority
preferred to x2.

Since UNE[P%(B5), P] = z1, the same kind of reasoning as in the previous paragraphs establishes
that UNE[P%(B),P] = x1. Since UNE[P%, P] = x> however, x> is majority preferred to z1. Since this
contradicts the inference drawn in the last paragraph, it follows that UNE [Pf(, Pl=z,.m

(c) Proof of Theorem 1 and Theorem 1*
Claim 6 For any two profiles P, P’ that coincide on A, v(P, A) = v(P’, A).

Proof. The proof is by induction on |A|. The base case |A| = 2 follows from ILA. For the induction
step, v(P, A) = v(P,{v(P, B),v(P,C)}) = v(P,{v(P', B),v(P',C)}) = v(P',{v(P', B),v(P',C)}) = v(P', A)
follows from IS, the induction hypothesis, and the base case. m

Using the definition of P* from section (a) above, one can establish an analog of Remark 1:
Claim 7 For any decision problem (P, A), v(P, A) = v(P*, X).
Proof. By ILA, v(P4, X) = ... = v(P*, A). Since v(P#, A) = v(P, A) by Claim 6, v(P*,X) = v(P,A). m
Claim 8 Suppose (B,C) splits A for v. Then, for all D C A:

(i) v(P,D) =v(P,{v(P,BND),v(P,CND)}); and,
(i) (BN D,CND) splits D if D# BND,CND.

Proof. Fix some z € A and let P, coincide with P except x is demoted to Condorcet loser on A. Then,
v(P,A\ 2) = v(Py, A\ z) = v(Pr, A) = v(Pr, {v(Ps, B),v(Ps,C)}) = ... = v(P,{v(P,B\ z),v(P,C\ x)}) by
Claim 6, ILA, and IS. Part (i) follows by repeated application of this reasoning. For part (ii), observe that
D #BND,CNDimplies BNCND# BND,CND. Then, given part (i), (BN D,C N D) splits D. m

Claim 9 For v, there is a unique way to split every issue.

Proof. By way of contradiction, suppose (B,C) and (B’,C’) are distinct splittings of A. Using Claim 8(i),
it can be shown that v(P, {v(P, B),v(P,C)}) # v(P, {v(P, B"),v(P,C")}) for some profile P whose Condorcet
set is a cyclic triple where (B, C) and (B’,C’) disagree. The contradiction proves the claim. m

Claim 10 S% is continuous.

Proof. The proof is by strong induction on m = |X|. The base cases m = 2,3 follow directly from the
definition of S% and IS. For the induction step m = n + 1, consider the root node X of S%. Let B and C
denote its two successors. By IS and the induction hypothesis, the agendas S%(B) and S%(C') are simple.

Let B’ and C’ denote the two successors of B. And, let b € B'\ C’ (c € C'\ B’) denote some alternative
that labels one terminal node below B’ (C”). To complete the proof, it suffices to show that b ¢ C or ¢ ¢ C.
(The argument for C'is similar.) By way of contradiction, suppose b, ¢ € C. By IS, there exists some x € B\C.
By Claim 8, it follows that v(P,{z,b,c}) = v(P,{v(P,{z,b,c}),v(P,{b,c})}.

By Claim 8 and the assumption about B’, the only possible splittings of {x,b, c} are: (i) ({b},{c,z}); (ii)
({b,z},{c}); or, (iii) ({b,z},{c,z}). By the formula in the last paragraph, each of these cases entails a contra-
diction: (i) b = v(Pyes, {x,b,c}) # v(Paeb, {v(Prcb, {2, b, c}), v(Pres, {b,c})} = ¢ (ii) ¢ = v(Pype, {x, b, c}) #
V(Pybe, {v(Prbe, {2, b, c}), v(Pybe, {b,c})} = b; or, (iii) both of the contradictions obtained in cases (i)-(ii). m

Proof of Theorem 1. Using the approach described in the text, the structure of the agenda S% can be
determined from outcomes on Condorcet triples. By construction, S% is non-repetitive. By Claim 10, S% is
continuous.



To show that S% implements v, I show that UNE[S%;P] = v(P,X) for any profile P. Since
UNE[Ska; P] = UNE[S%; P*] (by Remark 1) and v(P#, X) = v(P, A) (by Claim 7), UNE[Ska; P] =
v(P, A) for any A C X. To see that UNE[S%; P] = v(P, X), use “backward induction” on S% (see the proof
of Remark 1). In any terminal subgame, the UNE selects the Condorcet winner. By ILA, so does v. By
deleting the Condorcet loser and continuing in this fashion, UN E[S%; P] = v(P, X) follows immediately by
IS and the construction of 8% . Finally, Claim 9 ensures that S% is the unique simple agenda implementing
v. For any simple agenda Sx implementing v, the subgames at any node A must induce the unique splitting
of A. So, Sx must coincide with S%. m

Proof of Theorem 1*. (using the assumptions about v in the statement of the Theorem) (=)
Since ILA is necessary for v to be implementable by agenda and v satisfies IS by assumption, the result
follows from the discussion in the text. (<) Fix an issue A. Since v(-, A) is implementable by simple agenda,
“backward induction” establishes that A can be split. Since this is true for every A, v satisfies IS. m

(d) Proof of Theorem 2
Sub-sections (i) and (ii) establish Lemmas 1 and 2. The proof of Theorem 2 is given in sub-section (iii).
(i) Proof of Lemma 1

Claim 11 If a* is marginal in A for v, then it is marginal in A\ z for allz € A\ a”.

Proof. Fix any z € A\ a*. By way of contradiction, suppose v(P, A\ z) = a* for some profile P where
a”™ is not the Condorcet winner in A \ z. By Claim 6, v(P;, A\ z) = v(P, A\ z) for any profile P, that
coincides with P except z is demoted to Condorcet loser in A. Moreover, v(Py, A) = v(P,, A\ z) by ILA. So,
v(Pg, A) = a”, which contradicts the assumption that a* is marginal in A. m

Claim 12 For v, every issue A has at most two marginal alternatives.

Proof. Suppose otherwise. Denote any three marginal alternatives by z, y, and z and consider the triple
P,y (as defined in the text). Then, v(Puy:, {z,y,2}) ¢ {z,y, 2} by Claim 11, which is a contradiction. m

Claim 13 Suppose (B,C) splits A for v and a™ is marginal in A. Then:
(i) ifa® € C\ B, then (B,C) = (b, A\ b); and,
(ii) if a* € BNC and o™ € C'\ a” is also marginal in A, then a™* € BN C.

Proof. (i) By way of contradiction, suppose |B \ C| > 2. Fix b,b' € B\ C and consider the triple P,y .
By Claim 8, v(Pyrppr, {a”*,0,b'}) = v(Pyrppr, {v(Porppr, {b,0'}),a*}) = a*. By Claim 11, this contradicts the
assumption that a is marginal in A. (ii) By way of contradiction, suppose a** ¢ B. Fix some b € B\ C and
consider the triple Py«pq++. Then, a contradiction obtains along the same lines as (i). m

Claim 14 If v satisfies WM, then =, is asymmetric and 7, is complete.

Proof. The completeness of 7, is a direct consequence of the asymmetry of >,. To see that >, is asymmetric,
suppose y =, z and z =, y for some y,z € X. Let Y and Z denote the issues leading to the inferences y >, z
and z >, y. The proof that this amounts to a contradiction is by induction on |Y U Z|.

For |Y U Z| = 4: suppose Y = {a”,y,z} and Z = {z,y,z}. (Every other case is ruled out by ILA or
Claim 11.) By WM and Claims 11-12, the only possible marginal alternatives in YU Z are: a* and z; or, one
of the two, say a*. Now, consider the unique splitting (B, C) of {a*,z,y, z}. There are two possibilities: (i)
a* € C\ B; and, (ii) «* € BN C. (i) By Claim 13(i), (B,C) = (b,{a",z,y,z} \ b) with b # a*. By Claim
8, every possibility for b leads to a contradiction: if b = y, then y is not marginal in {a*,y, z}; if b = z, then
z is not marginal in {x,y, 2}; and, if b = x, then y is marginal in {x,y,2}.2° (ii) By Claims 8 and 13(ii),
y€ BNC. So, (B,C) =({a",y, 2}, {a",z,y}). But, then z is not marginal in {z,y, z}.

For Y UZ| =n+1: Y and Z have one or two marginal alternatives (by WM and Claim 12). If both
have two, then this reduces to the case |Y U Z| = n by Claim 11. If both have one, then y or z is marginal

20This last case cannot occur if z is marginal in {a*, z,y, 2}.



in YUZ by WM and Claims 11-12. So, either y is marginal in Z or z is marginal in Y by Claim 11, both
contradictions. So, suppose y and a* are marginal in Y while z is marginal in Z. By WM and Claim 11, a* is
the only marginal alternative in Y U Z and a* ¢ Z. By Claim 11, it also follows that: a* and y are marginal
in {a”,y, z}; and, z is marginal in {z,y, z} for any z € Z.

Now, consider the splitting (B,C) of Z* = Z U a". As in the base case, there are two possibilities: (i)
(B,C) = ({b},Z" \ b) with b # a™; and, (ii) a* € BN C. For both, I claim that y and z must appear in the
same sub-issues as a*. (i) As in the base case, b # y,z. So, {y, 2z} C C as claimed. (ii) As in the base case,
y € BN C. This, in turn, implies z € BN C. To see why, suppose z € B\ C and fix some = € C'\ B. Then,
as in the base case, z cannot be marginal in {z,y, z}. So, {y, 2} C BN C as claimed.

Continuing in the same vein on the sub-issues B and C it follows that y and z always appear in the same
sub-issues (up to the splitting of {a*,y, 2}). Now, construct the agenda Sy .. By the last observation, y
and z appear in exactly the same subgames of Sz, |7 (i.e. after a” is deleted). By assumption, v(P, Z) =y
for some profile P where y is not the Condorcet winner in Z. Since S7 implements v on Z by Theorem 1,
v(P,Z) = UNE[SZ; P] = y. To show a contradiction, consider the related profile P, that permutes z and y
in every voter’s preference. From the symmetry of S7, v(P,,Z) = UNE|Sy; P;] = z. But, this contradicts
the assumption that z is marginal in Z and establishes that >, is asymmetric. m

Claim 15 If v satisfies WM, -, is a weak order whose indifference classes contain one or two alternatives.

Proof. Since 7, is complete by Claim 14, showing transitivity proves 7, is a weak order. Fix x =, y =, 2.
By way of contradiction, suppose z -, . By WM, some alternative is marginal in A = {z,y, z}. By definition
of 7Z,, it then follows that A has three marginal alternatives. But, this contradicts Claim 12. This rules out
the possibility that z -, z. Since 7, is complete by Claim 14, it follows that x >, z, which shows that the
indifference classes of 77, may contain at most two alternatives. m

Proof of Lemma 1. Claim 15 establishes (i). To establish (ii), fix an issue A. By WM, some z € A must
be marginal. Let z € miny A and y = miny A\ z. If x # y, z, one obtains a contradiction along the lines of
Claim 15. So, suppose z = y. Since 7, is complete by Claim 14, there are two possibilities. If z 7, z, then
z is marginal as well. If z >, z, then  may be the only marginal alternative. m

Corollary 2 If v satisfies WM, then:
(i) y v z if and only if there exists an © € X such that v(Payz,{z,y,2}) = y; and,

V(Ppyz,{2,y,2}) =2 and v(Ppzy,{z,y,2}) =y
(ii) y ~o z if and only if or forallz € X.
U(szza{xay7z}) = a’nd U(PIZya{mayvz}) =z

Proof. (i) (<) From the six possible splittings of {z,y, 2}, v(Psyz, {%,y, 2}) = y implies v(Py.y, {z,y, 2}) €
{z,y}. So, y =+ z. (=) By way of contradiction, suppose v(Psy:,{z,y,2}) # y for all x € X. Since
Yy v 2z, asymmetry implies v(Pyy.,{z,y,2}) # 2 for all x € X. So, v(Pry:,{z,y,2}) = z for all z €
X. By the argument in (<), v(Pszy, {z,y,2}) € {x,2} for all z € X. Since y >, z, asymmetry implies
V(Pyzy,{z,y,2}) = x for all € X. Now, fix an issue A s.t |A| > 3 with splitting (B, C). First, observe that
y,z € BNC or y,z € C\ B. Otherwise, y € C' \ B and z € B without loss of generality. If z € B\ C,
Claim 8 shows that v(Peyz,{z,y,2}), v(Pezy, {x,y,2}) # x for any x € A. If z € BN C, there is a similar
contradiction for x € B\ C. Since y,z € BNC or y,z € C'\ B for the splitting (B, C) of any issue A, y and
z appear in the same subgames of S%. Since y >, z, a contradiction obtains by the argument in Claim 14.
(ii) Fix any = € X. Given the six possible splittings of {z,y, z}, the result follows from (i) and the fact that
Zv is a weak order (by Claim 14). m

(ii) Proof of Lemma 2

Claim 16 If v satisfies WM and (B, C) is the unique splitting of A, then |C'\ B| > 2 implies |B\ C| = 1.

Proof. By way of contradiction, suppose |C'\ B|,|B\C| > 2. Fix any b,b' € B\C and c¢,c’ € C'\ B. By Claim
8, ({b,b'},{c,c'}) is the unique splitting of A" = {b,b",c,c'}. For all a € A’, it follows that v(P(a),A’) = a
for some profile P(a) where a is not the Condorcet winner, which contradicts WM. m



Using the definitions in section (b) above:

Claim 17 If v satisfies WM and A = {au1, ...,ax } is labeled according to =, for K > 2, then:
(a1 U A, AK) splits A for some j s.t. j € {3,..., K + 1}.

Proof. By Claim 13(i), there are two possibilities for the unique splitting (B, C) of A: (i) either (B,C) =
(b, A\ b) with b # ak; or, (ii) ax € BN C. In either case, I show that (B, C) has the form required.

(i) In this case, it suffices to show b = a1. By way of contradiction, suppose b = aj for some k # 1, K.
Then, v(Payayar, {01, ak, ax }) = ar by Claim 8 so that ar >, a1 by Lemma 2. Since a1 7. ar by assumption,
ar v a1 contradicts the fact that -, is a weak order (by Claim 14). So, b = a1 as required.

(ii) By Claim 16, there are two possibilities: (1) (B,C) = (A\ ¢, A\ b); and, (2) (B,C) = (bUB’,A\b)
for B'C A\band |A\ B’| > 3. (1) It suffices to show b = a1 and ¢ = az. If a; # b, ¢, then the outcomes on
{a1,b,c} lead to the contradictions b, ¢ >, a1 following the same kind of reasoning as in case (i). So, b = a1
without loss of generality. If as # ¢, then the outcomes on {a1, a2, c} lead to the contradiction ¢ >, as. So,
¢ = as. (2) It suffices to show: (a) b= a1; (b) a2 ¢ B’; and, (c) ar € B’ implies ar+1 € B’. (a) By the same
reasoning as (1), a1 ¢ BNC = B’. If a1 # b, then {a1,b,c} leads to the contradiction b >, a1 for c ¢ bU B'.
So, b = ai. (b) If az € B, then {a1, a2, c} leads to the contradiction ¢ >, as for ¢ ¢ a1 U B’ given (a). So,
az ¢ B'. (c) If ay € B" and ax41 ¢ B’, then {a1,ar, ax+1} leads to the contradiction ax+1 =, ax given (a). m

Definition 9 Given a decision rule v with revealed priority 7., © is revealed to amend b >, x if:
V(Pgbe, {b,c,z}) = ¢ for all c € X such that b, ¢ =, x.

Define aw, as follows: b € ay(x) if x is revealed to amend b and x is not revealed to amend any a >, b.

Lemma 2 If v satisfies WM, then o, is an amendment rule.

Proof. Definition 9 and Corollary 2 ensure the following: (i) z € aw(z) = x >, 2z; and, (iii) [z ~y Y >v 2
and no 2’ € X sit. T ~y Y o 2 =y 2] = [z € au(z) or w >, x for all w € au(2)]. I show: (ii)
T~ = aul2) = o (y).

(ii) It suffices to show that y is revealed to amend b if x is revealed to amend b. By way of contradiction,
suppose y is not revealed to amend b. By Definition 9, there exists some ¢ s.t. b 2, ¢ >y y ~, 2 and,
moreover, v(Pye, {b, c,y}) # c for all such c. By Corollary 2, v(Pype, {b,c,y}) # y. Otherwise, y >, b which
contradicts the fact that -, is a weak order (by Claim 14). So, v(Pyse, {b,¢,y}) = b which, by Corollary 2,
implies b >, c. Finally, Definition 9(i) implies v(Pxsc, {b, ¢,x}) = cfor all cs.t. b 22, ¢ >, = (since z is revealed
to amend b). To summarize, v(Pypc, {b, ¢, z}) = ¢ and v(Pype, {b, ¢, y}) = b for some ¢ s.t. b=y ¢ >4 y ~y .

By Claim 17, the splitting of {b, ¢, z,y} is (0UB’,{c,z,y}) for B’ C {z,y}. By Claim 8, v(Pubc, {b,c,z}) =
c implies z € B’ and v(Pype, {b,c,y}) = b implies y ¢ B’. So, the splitting of {b,c, z,y} is ({b,z},{c,z,y}).
By Claim 8, this implies v(Pyyz, {b, z,y}) = y so that y >, z by Corollary 2, which is a contradiction. m

(iii) Proof of Theorem 2

Proof of Theorem 2. (using the assumptions about v in the statement of the Theorem) (<)
The discussion in the text following Theorem 1 shows that v satisfies ILA (i.e. any decision rule implemented
by an agenda satisfies ILA). In turn, Proposition 1 and Claim 4 show that v satisfies WM and IS.

(=) This follows from the fact that the simple agenda S% from Theorem 1 coincides with the priority
agenda P% defined by (2., @v). To establish this fact, it suffices to show that the successors at the root node
of P% and S% coincide. Extending this reasoning by induction, it follows that S% coincides with P%.

Consider the root node X = {z1,...,zm } of Sk as labeled according to >;. By Claim 17, the successors of
X are x1UX]" and XJ" for some j s.t. j € {3,...,m+1}. There are two cases: (i) X" is empty (i.e. j = m+1);
or, (i) X7 is non-empty (i.e. j < m). The fact that the successors of X on S% coincide with the successors
on P% follows by Claim 1 in both cases: (i) Claim 8 applied to (z1, X3") gives v(Pyjzye, {71, 25, 2}) = @1
for all zj,c s.t. =1 Zv ¢ >u xj. So, no x; s.t. x2 >, x; is revealed to amend z; (by Definition 9). (ii)

Claim 8 applied to (z1 U X", X3") gives v(Py;ape1, {21, Tk, 25}) = 21 and v(Pr,ey0y, {21, Th, x5 }) = o for



T € ngl. This shows that xx >, z; (by Corollary 2) and x; is revealed to amend z;. To see that no xx
s.t. T2 =y Tk = T; is revealed to amend x1, it is enough to observe that v( Py yws, {21, T2, 21 }) = 21 for all
Tk € Xg_l. | |

(e) Proof of Proposition 4

Claim 18 If every issue A s.t. |A| # 1 has two marginal alternatives, then 8% is a Euro-Latin agenda.

Proof. Consider the splitting (B1, X1) of X and let a* denote a marginal alternative in X. By Claim 13(i),
there are two possibilities: (1) a* € B1NX; with by € B1\ X1 and 21 € X1\ Bi; and, (2) (B1, X1) = (b1, X \b1).
For (1), Claim 8 implies that {a*,b1,z1} has one marginal alternative a*, a contradiction. So, the splitting
must be (2). Continuing in the same vein on X; establishes that S% is a Euro-Latin agenda. m

Claim 19 If every issue A s.t. |A| # 2 has a unique marginal alternative, then S% is an Anglo-American
agenda.

Proof. Consider the splitting (B, C) of X. If |[C\B| > 1 (with b € B\C and ¢, ¢’ € C\ B), then Claim 8 implies
that {b,c,c’} has two marginal alternatives ¢ and ¢’, a contradiction. This shows that |C'\ B| = |B\ C| = 1.
In other words, (B,C) = (X \ ¢1, X \ b1) for some b; € B and ¢; € C. Continuing in the same vein on X \ ¢;
and X \ by establishes that S% is an Anglo-American agenda. m

Proof of Proposition 4. (using the assumptions about v in the statement of the Theorem)
Regarding the first part of the claim: the Euro-Latin procedure has two marginal alternatives for all A s.t.
|A| # 1; and, the Anglo-American procedure has a unique marginal alternative for all A s.t. |A| # 2.

Regarding the second part of the claim, suppose | X| > 3. (If | X| = 2, the claim is trivial.) By Claim 12, there
are two cases: (i) X has two marginal alternatives ai and a3; or, (ii) X has a unique marginal alternative.

(i) By Theorem 1 and Claim 18, it suffices to show that all A s.t. |A| # 1 have two marginal alternatives.
By Claim 11, aj and a3 are marginal in X \ z for all z # aj,a5. By NP, every X \ = has two marginal
alternatives. Continuing in the same vein, the result follows by a simple inductive argument.

(ii) By Theorem 1 and Claim 19, it suffices to show that all A s.t. |A| # 2 have one marginal alternative. By
way of contradiction, suppose |X| > 4 and some X \ z has two marginal alternatives. Then, by the argument
in case (i), every A # X s.t. |A| # 1 has two marginal alternatives. To establish the contradiction, consider
the splitting (B1, X1) of X. By the argument in Claim 18, (B1, X1) = (b1, X \ b1). Since Sk, is Euro-Latin
by Claim 18, this shows that S% is as well. It follows that X has two marginal alternatives, which is a
contradiction. m

(f) Proof of Corollary 1

For part (i), Apesteguia et al. [2014] show CP is necessary. Sufficiency follows from Claim 18 and:
Claim 20 If v satisfies CP, then every issue A such that |A| # 1 has two marginal alternatives.
For part (ii), Apesteguia et al. [2014] show CA is necessary. Sufficiency follows from Claim 19 and:

Claim 21 If v satisfies CP, then every issue A such that |A| # 2 has a unique marginal alternative. What
is more, this alternative coincides with the unique anti-prioritarian alternative in A when |A| > 3.

Since the proofs of these claims are quite similar, I point out only where the differences arise:

Proof. The proof of Claim 20 (21) is by induction on | X|. For the base cases | X| = 2, 3, the claim follows from
ILA and CP (CA). For the induction step, note that all A C X satisfy the claim by the induction hypothesis.
To see that X also satisfies the claim, consider the splitting (B, C) of X. There are two possibilities for the
prioritarian (anti-prioritarian) alternative p in X: (i) p € BN C; and, (ii) p € B\ C.

For Claim 20: Consider b € B\ C and ¢ € C'\ B. Using Claim 8, (i) leads to the contradiction that p is not
prioritarian in {b, ¢, p} (let alone X). So, (ii) must hold. Using the same kind of reasoning, it can be shown



that B = {p}. (The idea is to consider an issue {b’,c,p} s.t. b’ € B, ¢ € C'\ B. While there are several cases,
a contradiction obtains for each.) By the induction hypothesis, X \ p has two marginal alternatives. Since
the splitting of X is ({p}, X \ p), IS implies that these alternatives are marginal in X as well.

For Claim 21: Consider b € B and ¢ € C'\ B. Using Claim 8, (ii) leads to the contradiction that p is not
anti-prioritarian in {b, ¢, p} (let alone X). So, (i) must hold. By the induction hypothesis, p is marginal in B
and C (since it is anti-prioritarian for these issues). By IS, it then follows that p is marginal in X. Finally,
by Claim 11 and the induction hypothesis, there can be no other marginal alternative in X. m

IX. Appendix — Independence of the Axioms
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Figure 10: Agenda 71 (left) and Agenda Tz (right)

It is easy to see that the decision rule v; induced by 77 satisfies IS and ILA. To see that it violates WM,
note that vi(F1, {:U17 T2, X3, m4}) = x; for the profile P, where: x; is majority preferred to x2 and x3 but not
x4; and, xs is majority preferred to x4. So, x1 is selected without being the Condorcet winner. Since the
other alternatives are symmetrically placed, there are also profiles where they are selected without being the
Condorcet winner.

It is easy to see that the decision rule vy induced by 72 satisfies ILA. To see that it satisfies WM, note
that v(P, {z1, z2,x3}) = x5 only if z3 is the Condorcet winner on {1, z2,xz3}. To see that it violates IS, note
that va(Pi2s, {z1, T2, x3}) = z1 and va(Pisz2, {x1,22,23}) = x2. As such, the more preferred between x; and
x2 is selected for both Condorcet triples. By Table 1, this cannot be achieved with any simple agenda.

Finally, consider the decision rule vs on {z1, z2, 3} that selects: the majority preferred alternative between
z1 and z2 when both are available; z; on {z;, z3}; and, z; on {«;}. Since ({1, z3}, {z2, z3}) splits {z1, z2, 3},
vs satisfies IS. Since x3 is trivially marginal, vs also satisfies WM. To see that it violates ILA, consider a profile
P; where z3 is the Condorcet winner on {z1,z2,z3}. If vs satisfies ILA, then vs(Ps, {z1,22,23}) = ... = 3.
But, this contradicts the assumption that vs(Ps, {1, z2,z3}) = v3(Ps, {z1,z2}) # xs.



