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Abstract

Beimel, Tassa and Weinreb (2008) and Farras and Padro (2010) partially character-
ized weighted simple games that are access structures of ideal secret sharing schemes;
they did this in terms of the operation of composition of simple games. They classi-
fied such indecomposable weighted games, and proved that any other weighted game,
which is the access structure of an ideal secret sharing scheme, is a composition of
the indecomposable ones. It remained unclear which compositions of indecomposable
weighted games of this sort are weighted. In this paper we fill the gap by obtaining
an if and only if characterization of weighted simple games that are access structures
of ideal secret sharing schemes.

1 Introduction

Secret sharing schemes are modifications of cooperative games to the situation when not
money but information is shared. Instead of dividing a certain sum of money between
participants, a secret sharing scheme divides a secret into information shares—which are
then distributed among participants—so that some coalitions of participants have enough
information to recover the secret (authorised coalitions) and some (nonauthorised coalitions)
do not. A scheme is perfect if it gives no information about the secret to nonauthorised
coalitions. A perfect scheme is most informationally efficient if the shares contain the same
number of bits as the secret [12]; such schemes are called ideal [20]. The set of authorised
coalitions is said to be the access structure.

However, not every access structure can carry an ideal secret sharing scheme [20]. Find-
ing a description of those which can carry appeared to be quite difficult. A major milestone
in this direction was the paper by Brickell and Davenport [?] who showed that all ideal
secret sharing schemes can be obtained from matroids. Not all matroids, however, define
ideal schemes [?] so the problem is reduced to classifying those matroids that do. There was
little further progress, if any, in this direction.

Several authors attempted to classify all ideal access structures in subclasses of secret
sharing schemes. These include access structures defined by graphs [?], weighted thresh-
old access structures [1, 6], hierarchical access structures [6], bipartite and tripartite access
structures [15, 16, 5]. While in the classes of bipartite and tripartite access structures the
ideal ones were given explicitly, for the case of weighted threshold access structures Beimel
et al [1] suggested a new kind of description. Their method uses the operation of compo-
sition of access structures first studied by Shapley [19] and later rediscovered by Martin
[13]. Under this approach the first task is obtaining a characterisation of indecomposable
structures. Beimel et al [1] proved that every ideal indecomposable secret sharing scheme
is either disjunctive hierarchical or tripartite. Farras and Padro [6, 7] later gave a more
precise classification which was complete (but some access structures that they viewed as
indecomposable later appeared to be decomposable).

If a composition of two weighted access structures were again a weighted structure there
will not be need to do anything else. However, we will show that this is not true. Since
the composition of two weighted access structures may not be again weighted, it is not
clear which weighted indecomposable ideal access structures and in which numbers can be
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combined to obtain more complex weighted ideal access structures. To answer this question
in this paper we undertake a thorough investigation of the operation of composition. We
then recap the classification of indecomposable ideal weighted simple games given by [6].
According to it all ideal indecomposable games are either k-out-of-n games or belong to
one of the six classes: B1, B2, B3, T1, T2, T3. We show that some of the games in their
list are in fact decomposable, and hence arrive at a refined list of all indecomposable ideal
weighted simple games.

We investigate which of the games from the refined list can be composed to obtain
a new ideal weighted simple game. The result is quite striking; the composition of two
indecomposable weighted ideal games is weighted only in two cases: when the first game is
a k-out-of-n game, or if the first game is of type B2 (from the Farras and Padro list) and
the second game is an anti-unanimity game where all players are passers, i.e., players that
can win without forming a coalition with other players. This has a major implication for
the refinement of Beimel-Tassa-Weinreb-Farras-Padro theorem.

Using the results mentioned above, we show that a game G is an ideal weighted simple
game if and only if it is a composition

G = H1 ◦ · · · ◦Hs ◦ I ◦An,

where Hi is a ki-out-of-ni game for each i = 1, 2, . . . , s, An is an anti-unanimity game, and
I is an indecomposable game of types B1, B2, B3, T1, and T3. Any of these may be absent
but An may appear only if I is of type B2. The main surprise in this result is that in the
decomposition there may be at most one game of types B1, B2, B3, T1, T3.

2 Preliminaries

2.1 Secret Sharing Schemes

Due to lack of space, for preliminaries on secret sharing schemes we send the reader to
papers [1, 2, 12, 6, 18, 20].

2.2 Simple Games

The main motivation for this work comes from secret sharing. However, the access structure
on the set of users is a simple game on that set so we will use game-theoretic terminology.

Definition 1 (von Neumann & Morgenstern, 1944). A simple game is a pair G = (PG,WG),
where PG is a set of players and WG ⊆ 2PG is a nonempty set of coalitions which satisfies
the monotonicity condition: if X ∈WG and X ⊆ Y , then Y ∈WG. Coalitions from set WG

are called winning coalitions of G, the remaining ones are called losing.

A typical example of a simple game is the United Nations Security Council, which consists
of five permanent members and 10 nonpermanent. The passage of a resolution requires that
all five permanent members vote for it, and also at least nine members in total.

A simple game will be called just a game. The set WG of winning coalitions of a game
G is completely determined by the set Wmin

G of its minimal winning coalitions. A player
which does not belong to any minimal winning coalitions is called a dummy. He can be
removed from any winning coalition without making it losing. A player who is contained in
every minimal winning coalition is called a vetoer. A game with a unique minimal winning
coalition is called an oligarchy. In an oligarchy every player is either a vetoer or a dummy. A
player who alone forms a winning coalition is called a passer. A game in which all minimal
winning coalitions are singletons is called anti-oligarchy. In an anti-oligarchy every player
is either a passer or a dummy.
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Definition 2. A simple game G is called weighted threshold game if there exist nonnegative
weights w1, . . . , wn and a real number q, called quota, such that

X ∈WG ⇐⇒
∑
i∈X

wi ≥ q. (1)

This game is denoted [q;w1, . . . , wn]. We call such a game simply weighted.

It is easy to see that the United Nation Security Council can be defined in terms of
weights as [39; 7, . . . , 7, 1, . . . , 1]. In secret sharing weighted threshold access structures were
introduced by [18, 2].

For X ⊂ P we will denote its complement P \X by Xc.

Definition 3. Let G = (P,W ) be a simple game and A ⊆ P . Let us define subsets

Wsg = {X ⊆ Ac | X ∈W}, Wrg = {X ⊆ Ac | X ∪A ∈W}.

Then the game GA = (Ac,Wsg) is called a subgame of G and GA = (Ac,Wrg) is called a
reduced game of G.

The two main concepts of the theory of games that we will need here are as follows.
Given a simple game G on the set of players P we define a relation �G on P by setting

i �G j if for every set X ⊆ P not containing i and j

X ∪ {j} ∈WG =⇒ X ∪ {i} ∈WG. (2)

In such case we will say that i is at least as desirable (as a coalition partner) as j. In
the United Nations Security Council every permanent member will be more desirable than
any nonpermanent one. This relation is reflexive and transitive but not always complete
(total) (e.g., see [3]). The corresponding equivalence relation on [n] will be denoted ∼G and
the strict desirability relation as �G. We will often omit the subscript G. Any game with
complete desirability relation is called complete. Any weighted game is complete.

We note that in (2) we can choose X which is minimal with this property in which case
X ∪ {i} will be a minimal winning coalition. Hence the following is true.

Proposition 1. Given a complete simple game G on the set of players P and two players
i, j ∈ P , the relation i �G j is equivalent to the existence of a minimal winning coalition X
which contains i but not j such that (X \ {i}) ∪ {j} is losing.

Proof. Suppose i �G j. Then there exist a coalition Y such that Y ∪ {j} is losing but
Y ∪ {i} is winning. We can take a minimal coalition Y with this property. Then Y is a
losing coalition, otherwise Y ∪ {j} would be also winning. We see now that X = Y ∪ {i} is
winning but becomes losing if any of its elements is removed. It also becomes losing if i is
replaced by j. So X is the coalition sought for. The converse is clear due to completeness
of G.

We recap that a sequence of coalitions

T = (X1, . . . , Xj ;Y1, . . . , Yj) (3)

is a trading transform [17] if the coalitions X1, . . . , Xj can be converted into the coalitions
Y1, . . . , Yj by rearranging players. This latter condition can also be expressed as

|{i : a ∈ Xi}| = |{i : a ∈ Yi}| for all a ∈ P .

It is worthwhile to note that while in (3) we can consider that no Xi coincides with any of
Yk, it is perfectly possible that the sequence X1, . . . , Xj has some terms equal, the sequence
Y1, . . . , Yj can also contain equal terms.

Elgot [4] proved (see also [17]) the following fundamental fact.
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Theorem 1. A game G is a weighted threshold game if for no integer j there exists a
trading transform (3) such that all coalitions X1, . . . , Xj are winning and all Y1, . . . , Yj are
losing.

Due to this theorem any trading transform (3) where all coalitionsX1, . . . , Xj are winning
and all Y1, . . . , Yj are losing is called a certificate of nonweightedness [9].

Completeness can also be characterized in terms of trading transforms [17].

Theorem 2. A game G is complete if no certificate of nonweightedness exists of the form

T = (X ∪ {x}, Y ∪ {y};X ∪ {y}, Y ∪ {x}). (4)

We call (4) a certificate of incompleteness. This theorem says that completeness is
equivalent to the impossibility for two winning coalitions to swap two players and become
both losing. This latter property is also called swap robustness.

A complete game G = (P,W ) can be compactly represented using multisets. All its
players are split into equivalence classes of players of equal desirability. If, say, we have m
equivalence classes, i.e., P = P1 ∪ P2 ∪ . . .∪ Pm with |Pi| = ni, then we can think that P is
the multiset

{1n1 , 2n2 , . . . ,mnm}.

A submultiset {1`1 , 2`2 , . . . ,m`m} will then denote the class of coalitions where `i players
come from Pi, i = 1, . . . ,m. All of them are either winning or all losing. We may enumerate
classes so that 1 �G 2 �G · · · �G m. The game with m classes is called m-partite.

If a game G is complete, then we define shift-minimal [3] winning coalitions as follows.
By a shift we mean a replacement of a player of a coalition by a less desirable player which
did not belong to it. Formally, given a coalition X, player p ∈ X and another player q /∈ X
such that q ≺G p, we say that the coalition (X \ {p}) ∪ {q} is obtained from X by a shift.
A winning coalition X is shift-minimal if every coalition strictly contained in it and every
coalition obtained from it by a shift are losing. A complete game is fully defined by its
shift-minimal winning coalitions.

Example 1 (Unipartite games). Let Hn,k be the game where there are n players and it
takes k or more to win. Such games are called k-out-of-n games. Alternatively they can be
characterised as the class of complete unipartite games, i.e., the games with a single class of
equivalent players. The game Hn,n is special and is called the unanimity game on n players.
We will denote it as Un. The game Hn,1 does not have a name in the literature. We will
call it anti-unanimity game and denote An.

Example 2 (Bipartite games). Here we introduce two important types of bipartite games.
A hierarchical disjunctive game H∃(n,k) with n = (n1, n2) and k = (k1, k2) on a multiset
P = {1n1 , 2n2} is defined by the set of winning coalitions

W∃ = {{1`1 , 2`2} | (`1 ≥ k1) ∨ (`1 + `2 ≥ k2)},

where 1 ≤ k1 < k2, k1 ≤ n1 and k2 − k1 < n2. A hierarchical conjunctive game H∀(n,k)
with n = (n1, n2) and k = (k1, k2) on a multiset P = {1n1 , 2n2} is defined by the set of
winning coalitions

W∀ = {{1`1 , 2`2} | (`1 ≥ k1) ∧ (`1 + `2 ≥ k2)},

where 1 ≤ k1 ≤ k2, k1 ≤ n1 and k2 − k1 < n2. In both cases, if the restrictions on n and k
are not satisfied the game becomes unipartite [8]).
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Example 3 (Tripartite games). Here we introduce two types of tripartite games. Let
n = (n1, n2, n3) and k = (k1, k2, k3), where n1, n2, n3 and k1, k2, k3 are positive integers.
The game ∆1(n,k) is defined on the multiset P = {1n1 , 2n2 , 3n3} with the set of winning
coalitions

{{1`1 , 2`2 , 3`3} | (`1 ≥ k1) ∨ [(`1 + `2 ≥ k2) ∧ (`1 + `2 + `3 ≥ k3)},

where
k1 < k3, k2 < k3, n1 ≥ k1, n2 > k2 − k1 and n3 > k3 − k2. (5)

These, in particular, imply n1 + n2 ≥ k2.

The game ∆2(n,k) is for the case when n2 ≤ k2 − k1, and it is defined on the multiset
P = {1n1 , 2n2 , 3n3} with the set of winning coalitions

{{1`1 , 2`2 , 3`3} | (`1 + `2 ≥ k2) ∨ [(`1 ≥ k1) ∧ (`1 + `2 + `3 ≥ k3)}.

where

k1 < k2 < k3, n1 + n2 ≥ k2, n3 > k3 − k2, and n2 + n3 > k3 − k1. (6)

These conditions, in particular, imply n1 ≥ k1 and n3 ≥ 2.
In both cases, if the restrictions on n and k are not satisfied the game either contains

dummies or becomes 2-partite or even unipartite (see a justification of this claim in the
appendix).

The games in these three examples play a crucial role in classification of ideal weighted
secret sharing schemes [1, 6].

3 The Operation of Composition of Games

The most general type of compositions of simple games was defined by [19]. We need a very
partial case of that concept here, which is in the context of secret sharing, was introduced
by [13].

Definition 4. Let G and H be two games defined on disjoint sets of players and g ∈ PG.
We define the composition game C = G ◦g H by defining PC = (PG \ {g}) ∪ PH and

WC = {X ⊆ PC | XG ∈WG or (XG ∪ {g} ∈WG and XH ∈WH)},

where XG = X ∩ PG and XH = X ∩ PH .

This is a substitution of a single element g of G by H. All winning compositions in
G not containing g remain winning in C. If a winning coalition of G contained g, then it
remains winning in C if g is replaced with a winning coalition of H.

Definition 5. A game G is said to be indecomposable if there does not exist two games H
and K and h ∈ PH such that min(|H|, |K|) > 1 and G ∼= H ◦h K. Otherwise, it is called
decomposable.

Example 4. Let G = (P,W ) be a simple game and A ⊆ P be the set of all vetoers in this
game. Let |A| = m. Then G ∼= Um+1 ◦u GA, where u is any player of Um+1. So any game
with vetoers is decomposable.

Example 5. Let G = (P,W ) be a simple game and A ⊆ P be the set of all passers in this
game. Let |A| = m. Then G ∼= Am+1 ◦a GA, where a is any player of Am+1. So any game
with passers is decomposable.
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Suppose G = (P,W ) and G′ = (P ′,W ′) be two games and σ : P → P ′ is a bijection. We
say that σ is an isomorphism of G and G′, and denote this as G ∼= G′, if X ∈W if and only
if σ(X) ∈W ′.

It is easy to see that if |H| = 1, then H ◦h K ∼= K and, if |K| = 1, then H ◦h K ∼= H.

Proposition 2. Let G,H be two games defined on disjoint sets of players and g ∈ PG.
Then

Wmin
G◦gH = {X | X ∈Wmin

G and g /∈ X}∪{X∪Y | X ∪ {g} ∈Wmin
G and Y ∈Wmin

H with g /∈ X}.

Proof. Follows directly from the definition.

Proposition 3. Let G,H,K be three games defined on disjoint sets of players and g ∈ PG,
h ∈ PH . Then

(G ◦g H) ◦h K ∼= G ◦g (H ◦h K),

that is the two compositions are isomorphic.

Proof. Straightforward.

Proposition 4. Let G,H be two games defined on disjoint sets of players. Then G ◦g H
has no dummies if and only if both G and H have no dummies.

Proof. Straightforward.

4 Decompositions of Weighted Games and Ideal Games

The following result was proved in [1] and was a basis for this new type of description.

Proposition 5. Let C = G ◦g H be a decomposition of a game C over an element g ∈ PG,
which is not a dummy. Then, C is ideal if and only if G and H are also ideal.

Suppose we have a class of games C such that if the composition G ◦g H belongs to
C, then both G and H belong to C. This proposition means that in any class of games C
with the above property we may represent any game as a composition of indecomposable
ideal games also belonging to C. The class of weighted games as the following lemma shows
satisfies the above property, Hence, if we would like to describe ideal games in the class of
weighted games we should look at indecomposable weighted games first.

Lemma 1. Let C = G ◦g H be a decomposition of a game C into two games G and H
over an element g ∈ PG, which is not dummy. Then, if C is weighted, then G and H are
weighted.

Proof. A simple proof using trading transforms is relegated to the appendix.

Corollary 1. Every weighted game is a composition of indecomposable weighted games.1

The converse is however not true. As we will see in the next section, the composition
C = G◦gH of two weighted games G and H is seldom weighted. Thus we will pay attention
to those cases where compositions are weighted. One of those which we will now consider is
when G is a k-out-of-n game. In this case all players of G are equivalent and we will often
omit g and write the composition as C = G ◦H.

1As usual we assume that if a game G is indecomposable, its decomposition into a composition of
indecomposable games is G = G, i.e., trivial.
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Theorem 3. Let H = Hn,k be a k-out-of-n game and G is a weighted simple game. Then
C = H ◦G is also a weighted game.

Proof. Let X1, . . . , Xm be winning and Y1, . . . , Ym be losing coalitions of C such that

(X1, . . . , Xm;Y1, . . . , Ym)

is a trading transform. Without loss of generality we may assume that X1, . . . , Xm are
minimal winning coalitions. Let Ui = Xi ∩ H, then Ui is either winning in H or winning
with h, hence |Ui| = k or |Ui| = k − 1. If for a single i we had |Ui| = k, then all of the sets
Y1, . . . , Ym could not be losing since at least one of them would contain k elements from H.
Thus |Ui| = k − 1 for all i. In this case we have Xi = Ui ∪ Si, where Si is winning in G.
Let Yi = Vi ∪ Ti, where Vi ⊆ H and Ti ⊆ G. Since all coalitions Y1, . . . , Ym are losing in C,
we get |Vi| = k − 1 which implies that all Ti are losing in G. But now we have obtained a
trading transform (S1, . . . , Sm;T1, . . . , Tm) in G such that all Si are winning and all Ti are
losing. This contradicts to G being weighted.

5 Compositions of complete games

We will start with the following observation. It says that if g ∈ PG is not the least desirable
player of G, then the composition G◦gH is almost never swap robust, hence is almost never
complete.

Lemma 2. Let G,H be two games on disjoint sets of players and H is neither a oligarchy
nor an anti-oligarchy. If for two elements g, g′ ∈ PG we have g � g′ and g′ is not a dummy,
then G ◦g H is not complete.

This lemma shows that if a composition G◦gH of two weighted games is weighted, then
almost always g is one of the least desirable players of G. Theorem 4 shows that If G has no
dummies and we compose two weighted games over the weakest player of the first game, the
result will be always complete, however, as is shown in Subsection 12.3, it will not always
be weighted.

Theorem 4. Let G and H be two complete games, g ∈ G be one of the least desirable
players in G but not a dummy. Then for the game C = G ◦g H

(i) for x, y ∈ PG \ {g} it holds that x �G y if and only if x �C y.

(ii) for x, y ∈ PH it holds that x �H y if and only if x �C y.

(iii) for x ∈ PG \ {g} and y ∈ PH , then x �C y; if y is not a passer or vetoer in H, then
x �C y.

In particular, C is complete.

Proof. (i) Suppose x �G y but not x �C y. Then there exist Z ⊆ C such that Z∪{y} ∈WC

but Z ∪ {x} /∈ WC . We can take Z minimal with this property. Consider Z ′ = Z ∩ PG.
Then either Z ′ ∪ {y} is winning in G, or else Z ′ ∪ {y} is losing in G but Z ′ ∪ {y} ∪ {g} is
winning in G. In the latter case Z ∩ PH ∈ WH . In the first case, since x �G y, we have
also Z ′ ∪{x} ∈WG, which contradicts Z ∪{x} /∈WC . Similarly, in the second case we have
Z ′ ∪ {x} ∪ {g} ∈ WG and since Z ∩ PH ∈ WH , this contradicts Z ∪ {x} /∈ WC also. Hence
x �C y.

If x �G y, then there exists S ⊆ PG such that S ∩ {x, y} = ∅ and S ∪ {x} ∈ WG but
S∪{x} /∈WG. We may assume S is minimal with this property. If S does not contain g, then
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S is also winning in C and x �C y, so we are done. (ii) This case is similar to the previous
one. If S contains g, then consider any winning coalition K in H. Then (S \ {g})∪{x}∪K
is winning in C whille (S \ {g}) ∪ {y} ∪K is losing in C. Hence x �C y.

(iii) We have x �G g since g is from the least desirable class in G. Let us consider a
coalition Z ⊂ C such that Z ∩ {x, y} = ∅, and suppose there exists Z ∪ {y} ∈ WC but
Z ∪ {x} /∈ WC . Then Z must be losing in C, and hence Z ∩ PG cannot be winning in G,
but Z ∩PG ∪ {g} must be winning in G. However, since x �G g, the coalition Z ∩PG ∪ {x}
is also winning in G. But then Z ∪ {x} is winning in C, a contradiction. This shows that if
Z ∪ {y} is winning in C, then Z ∪ {x} is also winning in C, meaning x �C y. Thus C is a
complete game.

Moreover, suppose that y is not a passer or a vetoer in H, we will show that x �C y.
Since g is not a dummy, then x is not a dummy either. Let X be a minimal winning coalition
of G containing x. If g /∈ X, then X is also winning in C. However, X \ {x} ∪ {y} is losing
in C, since y is not a passer in H. Thus it is not true that y �C x in this case. If g ∈ X,
then consider a winning coalition Y in H not containing y (this is possible since y is not a
vetoer in H). Then X \ {g} ∪ Y ∈WC but X \ {x, g} ∪ {y} ∪ Y /∈WC , since X \ {x} is not
winning in G. Whence it is not true that y �C x in this case as well. Thus x �C y in case
y is neither a passer nor a vetoer in H.

6 Indecomposable unipartite games and uniqueness of
some decompositions

Theorem 5. A game Hn,k for n 6= k 6= 1 is indecomposable.

Proof. Suppose Hn,k is decomposable into Hn,k = K ◦g L, where K = (PK ,WK), L =
(PL,WL) with n1 = |PK | ≥ 2 and n2 = |PL| ≥ 2. If g is a passer in K, then it is the only
passer, otherwise if there is another passer g′ in K, then {g′} is winning in the composition,
contradicting k 6= 1.

We will firstly show that n2 < k. Suppose that n2 ≥ k, and choose a player h ∈ PK

different from g. Consider a coalition X containing k players from PL, then X is winning in
the composition without having any players from K, hence g is a passer in K. It is also the
case that X is a minimal winning coalition in L. Now replace a player x in X from PL with
h. The resulting coalition, although it has k players, is losing in the composition, because
h is not a passer in K, and k− 1 players from PL are losing in L. This contradiction shows
that k > n2.

The latter restriction implies |PK \ {g}| = n − n2 > k − n2 > 0. Let us choose any
coalition Z in PK \ {g} with k − n2 players. If it does not win in K with g, then Z ∪ PL is
also losing despite having k players in total, contradiction. Suppose Z ∪ {g} is winning in
K. Then |Z ∪{g}| = k−n2 + 1 < k and replacing g with any element x of L does not result
in a winning coalition. Hence all elements of L are not passers and, in particular, n2 > 1.
Since |PK \{g}| > k−n2, we can choose k−n2 +1 elements from PK \{g} and complement
it with any n2− 1 elements from L and get a winning coalition. This shows that any n2− 1
elements form a winning coalition in L hence L is not a unanimity game and no element of
it is a vetoer. By Theorem 4 (iii) we get x � y for any x ∈ PK \ {g} and any y ∈ L. This
however contradicts to the fact that Hn,k is unipartite.

If the first component of the composition is a k-out-of-n game, there is a uniqueness of
decomposition.

Theorem 6. Let Hn1,k1
and Hn2,k2

be two k-out-of-n games which are not unanimity
games. Then, if G = Hn1,k1 ◦ G1 = Hn2,k2 ◦ G2, with G1 and G2 having no passers, then
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n1 = n2, k1 = k2 and G1 = G2. If G = Un1 ◦G1 = Un2 ◦G2 and G1 and G2 does not have
vetoers, then n1 = n2 and G1 = G2.

Proof. Suppose that we know that G = H ◦ G1, where H is a k-out-of-n game but not a
unanimity game. Then all winning coalitions in G of smallest cardinality have k players, so
k in this case can be recovered unambiguously.

If G1 does not have passers, then n can be also recovered since the set of all players that
participate in winning coalitions of size k will have cardinality n− 1. So there cannot exist
two decompositions G = Hn1,k1

◦G1 and G = Hn2,k2
◦G2 of G, where k1 6= k2 with k1 6= n1

and k2 6= n2.
Suppose now G = U ◦G1, where U is a unanimity game. Due to Example 4 if G1 does

not have vetoers, then U consists of all vetoers of G and uniquely recoverable.

7 Indecomposable Ideal Weighted Simple Games

The following theorem was proved in [6] and is of a major importance to us.

Theorem 7 (Farràs-Padró, 2010). Any indecomposable ideal weighted simple game belongs
to one of the seven following types:

H̃: Simple majority or k-out-of-n games.

B̃1: Hierarchical conjunctive games H∀(n, k) with n = (n1, n2), k = (k1, k2), where k1 < n1
and k2 − k1 = n2 − 1 > 0. Such games have the only shift-minimal winning coalition
{1k1 , 2k2−k1}.

B2: Hierarchical disjunctive games H∃(n, k) with n = (n1, n2), k = (k1, k2), where 1 < k1 ≤
n1, k2 ≤ n2, and k2 = k1 + 1. The shift-minimal winning coalitions have the forms
{1k1} and {2k2}.

B3: Hierarchical disjunctive games H∃(n, k) with n = (n1, n2), k = (k1, k2), where k1 ≤ n1,
k2 > n2 > 2 and k2 = k1 + 1. The shift-minimal winning coalitions have the forms
{1k1} and {1k2−n2 , 2n2}.

T1: Tripartite games ∆1(n,k) with k1 > 1, k2 < n2, k3 = k1+1 and n3 = k3−k2+1 > 2. It
has two types of shift-minimal winning coalitions: {1k1} and {2k2 , 3k3−k2}. It follows
from (5) that k1 ≤ n1 and k3 − k2 ≤ n3.

T2: Tripartite games ∆1(n,k) with n3 = k3 − k2 + 1 > 2 and k3 = k1 + 1. It has two types
of shift-minimal winning coalitions: {1k1} and {1k2−n2 , 2n2 , 3k3−k2}. It follows from
(5) that k1 ≤ n1, k2 − n2 ≤ k1, and k3 − k2 ≤ n3.

T3: Tripartite games ∆2(n,k) with k3 − k1 = n2 + n3 − 1 and k3 = k2 + 1 and k2 − n2 >
k1, n3 > 1. It has two types of shift-minimal winning coalitions {1k2−n2 , 2n2} and
{1k1 , 2k3−k1−n3 , 3n3} (the case when k3 − k1 = n3 and n2 = 1 is not excluded). It
follows from (6) that k1 ≤ n1, k2 − n2 ≤ n1, and k3 − k1 − n3 < n2.

Farras and Padro [7] wrote these families more compactly but equivalently. However, we
found it more convenient to use their earlier classification. The list above contains some
decomposable games as we will now show.

Proposition 6. The game of type B1 for k2 − k1 = n2 − 1 = 1 is decomposable.

9



Proof. The decomposition is as follows: Assume k2 − k1 = n2 − 1 = 1, so n2 = 2 and k2 =
k1+1, then we have k = (k1, k1+1),n = (n1, 2), and the only shift-minimal winning coalition
here is {1k1 , 2}. Let the first game G = (PG,WG), be unipartite with PG = {1n1+1},
WG = {1k1+1}, and let the second game be H = (PH ,WH), PH = {22},WH = {2}. Then
the composition G ◦1 H over a player 1 ∈ PG gives two minimal winning coalitions {1k1+1}
and {1k1 , 2}, of which only {1k1 , 2} is shift-minimal. Hence the composition is of type B1.
This proves that a game of type B1 is decomposable in this case.

Proposition 7. The unanimity games Un and anti-unanimity An for n > 2 are decompos-
able. U2 and A2 are indecomposable.

Proof. We note that
Un ◦ Um

∼= Un+m−1

for any u ∈ Un. In particular, the only indecomposable unanimity game is U2. Similarly,

An ◦Am
∼= An+m−1

for any a ∈ An with the only indecomposable anti-unanimity game is A2.

Proposition 8. All games of type T2 are decomposable.

Proof. Let ∆ = ∆1(n,k) be of type T2. Then we have the following decomposition for it.
The first game will be G = (PG,WG), which is bipartite with the multiset representation on
{1n1 , 2n2+1} and shift-minimal winning coalitions of types {1k1} and {1k2−n2 , 2n2+1}. The
second game will be (k3− k2)-out-of-n3 game H = (PH ,WH), with the multiset representa-
tion on P̄H = {3n3} and shift-minimal winning coalitions of type {3k3−k2}. The composition
is over a player p ∈ PG from level 2. Then we can see that G◦pH has shift-minimal winning
coalitions of types {1k1} and {1k2−n2 , 2n2 , 3k3−k2}, hence is exactly ∆.

We now refine classes H̃ and B̃1 as follows:

H: Games of this type are A2, U2 and Hn,k, where 1 < k < n.

B1: Hierarchical conjunctive games H∀(n, k) with n = (n1, n2), k = (k1, k2), where k1 < n1
and k2 − k1 = n2 − 1 > 1.

The following of Theorem 7, is now an if-and-only-if statement.

Theorem 8. A game is ideal weighted and indecomposable if and only if it belongs to one
of the following types: H,B1,B2,B3,T1,T3.

Proof. Due to Theorem 7 and Propositions 6-8 all that remains to show is that the remaining
cases are indecomposable. We leave this routine work to the reader.

Let us compare this theorem with Theorem 7. We narrowed the class H, we excluded
the case n2 = 2 in B1 and removed class T2.

8 Compositions of indecomposable games

The key result that will lead us to the main theorem of this paper is the following.

Theorem 9. Let G be a game with no dummies which has a nontrivial decomposition
G = G1 ◦g G2, such that G1 and G2 are both ideal and weighted, and G1 is indecomposable.
Then G is ideal weighted if and only if either

10



(i) G1 is of type H, or

(ii) G1 is of type B2 and G2 is An and the composition is over a player g of level 2 of G1.

We will prove it in several steps. Firstly, we will consider all cases when g is from the least
desirable level of G1. Secondly, in Appendix, we will deal with the hypothetical remaining
cases. This is unfortunately needed since Lemma 2 still leaves a possibility that for some
special cases of G2 element g may not be in the least desirable class of G1.

We note that case (i) of Theorem 9 was treated in Theorem 3. Let us deal with case (ii).

Proposition 9. Let G1 = (P1,W1) be a weighted simple game of type B2, g is a player
from level 2 of P1, and G2 is An, then G = G1 ◦g G2 is a weighted simple game.

Proof. Since g is a player from level 2 of P1, then G is a complete game by Theorem 4. Also,
recall that shift-minimal winning coalitions of a game of type B2 are {1k1} and {2k1+1}. We
shall prove weightedness ofG by showing that it cannot have a certificate of nonweightedness.
In the composition, in the multiset notation, G has the following shift-minimal winning
coalitions {1k1}, {2k1 , 3}. So all shift-minimal winning coalitions have k1 players from P1 \
{g}. Also, since G1 has two thresholds k1 and k2 such that k2 = k1 + 1, then any coalition
containing more than k1 players from P1 \ {g} is winning in G1, and hence winning in G.
Suppose now towards a contradiction that G has the following certificate of nonweightedness

(X1, . . . , Xn;Y1, . . . , Yn), (7)

where X1, . . . , Xn are shift-minimal winning coalitions and Y1, . . . , Yn are losing coalitions
in G. Let the set of players of An be PAn . It is easy to see that at least one of the coalitions
X1, . . . , Xn in (7) is not of the type {1k1}, so at least one of these winning coalitions has
a player from the third level, i.e. from An. But since each shift-minimal winning coalition
in (7) has k1 players from P1 \ {g}, then each losing coalition Y1, . . . , Yn in (7) also has
k1 players from P1 \ {g} (if it has more than k1 then it is winning). Moreover, at least
one coalition from Y1, . . . , Yn, say Y1, has at least one player from PAn

. It follows that
(Y1∩P1)∪{g} ∈W1 and Y1∩PAn is winning in An. Hence Y1 is winning in G, contradiction.
Therefore no such certificate can exist.

The analysis of the remaining of compositions G = G1 ◦ G2 in terms of G1, where the
composition is over a player from the least desirable level of G1, show that none of them
are weighted (see the appendix).

9 The Main Theorem

All previous results combined give us the main theorem:

Theorem 10. G is an ideal weighted simple game without dummies if and only if it is a
composition

G = H1 ◦ . . . ◦Hs ◦ I ◦g An (s ≥ 0); (8)

where Hi is an indecomposable game of type H for each i = 1, . . . , s. Also, I, which is
allowed to be absent, is an indecomposable game of types B1, B2, B3, T1 and T3, and An

is the anti-unanimity game on n players. Moreover, An can be present only if I is either
absent or it is of type B2; in the latter case the composition I ◦An is over a player g of the
least desirable level of I. Also, the above decomposition is unique.

The following proposition will be useful to show the uniqueness of the decomposition of
an ideal weighted game.

11



Proposition 10. Let H be a game of type H, B be a game of type B2 with b being a player
from level 2 of B, G be an ideal weighted simple game, and An be an anti-unanimity game.
Then H ◦G � B ◦b An.

Proof. We note that by Theorem 4 both compositions are complete. Recall that isomor-
phisms preserve Isbell’s desirability relation [3, ]. An isomorphism preserves completeness
and maps shift-minimal winning coalitions of a complete game onto shift-minimal winning
coalitions of another game.

Let H = Hk,n. Consider first the composition H ◦G. Any minimal winning coalition in
this composition will have either k or k − 1 players from the most desirable level.

Now consider B ◦bAn. Let the two types of shift-minimal winning coalitions of B are of
the forms {1`} and {2`+1}, then there will be a minimal winning coalition in B ◦bAn which
has ` players from the second most desirable level and an element of level 3 with no players
of level 1. The two games therefore cannot be isomorphic.

Proof of Theorem 10. This proof is now easy since the main work has been done in Theo-
rem 9. Either G is decomposable or not. If it is not, then by Theorem 8 it is either of type
H or one of the indecomposable games of types B1, B2, B3, T1, and T3. So the theorem is
trivially true. Suppose now that G is decomposable, so G = G1 ◦G2. Then by Theorem 9
there are only two possibilities:

(i) G1 is of type H;

(ii) G1 is of type B2, and also G2 = An such that the composition is over a player of level
2 of G1.

By Proposition 10 these two cases are mutually exclusive. Suppose we have the case (i).
By Theorem 6 G1 is uniquely defined and we can apply the induction hypothesis to G2. It
is also easy to see that in the second case G1 and G2 are uniquely defined.

We finally note that the absence of dummies in access structures is normally implicitely
assumed in secret sharing. It is easy to add them and give meaningless shares anyway.

10 Conclusion and Further Research

Game-theoretic techniques proved to be useful in charaterisation of secret sharing schemes.
Using the machinery of simple games, this paper provides a complete characterisation of
weighted ideal simple games in terms of the operation of composition of games. The next
step would be to extend this characterisation to the class of roughly weighted simple games
[9]. Since hierarchical simple games are always ideal, the first step towards this goal has been
made in [11] where all hierarchical roughly weighted games were characterised. Hameed [10]
constructed a four-partite roughly weighted ideal simple game but there is a hypothesis that
there do not exist five-partite ones.

There are interesting algorithmic questions related to the main result of this paper. It
would be interesting to estimate the complexity of the determination of whether or not a
particular game is indecomposable and finding a decomposition of it is decomposable.

11 Acknowledgements

The authors thank Carles Padro for a number of useful discussions. We are very grateful
to Sascha Kurz for a very useful feedback on the early draft of this paper. We also thank
anonymous referees for useful comments and suggestions.

12



References

[1] A. Beimel, T. Tassa, and E. Weinreb. Characterizing Ideal Weighted Threshold Secret
Sharing. In: Theory of Cryptography. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, Volume 3378/2005: 600–619, 2005.

[2] G.R. Blakley. Safeguarding cryptographic keys. Proceedings of the National Computer
Conference 48: 313–317, 1979.

[3] F. Carreras and J. Freixas. (1996) Complete simple games. Mathematical Social Sci-
ences, 32(2):139–155.

[4] C.C. Elgot. Truth Functions Realizable by Single Threshold Organs, Proc. of the Second
Annual Symposium on Switching Circuit Theory and Logical Design, 225–245, 1961.
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12 Appendix

12.1 A canonical representation of ∆1 and ∆2.

Proposition 11. The game ∆1(n,k) is tripartite game without dummies if and only if
conditions (5) are satisfied.

Proof. It is easy to see from the definition that this game is complete and 1 �G 2 �G 3.
Suppose we actually have 1 �G 2 �G 3 so that the game is tripartite. If the condition
k1 ≤ n1 is not satisfied the condition `1 ≥ k1 has no solution and 1 becomes equivalent to
2. So we assume k1 ≤ n1. If k2 ≥ k3, then the condition `1 + `2 ≥ k2 is redundant which
implies 2 ∼ 3 and the game is bipartite so we assume k2 < k3. If k1 ≥ k3, then the coalition
`1 + `2 + `3 ≥ k3 is redundant and 3 is a dummy. Hence we assume k1 < k3. If we only had
n2 ≤ k2 − k1, then `1 + `2 ≥ k2 can be satisfied only if `1 ≥ k1 is satisfied. So in this case
{1k1} is the only minimal winning coalition, which implies 2 ∼ 3. So n2 > k2 − k1. Finally,
if n3 > k3 − k2 is not satisfied, then `1 + `2 + `3 ≥ k3 implies `1 + `2 ≥ k2, in which case
the minimal winning coalition must satisfy either `1 = k1 or `1 + `2 + `3 = k3. We get in
this case 2 ∼ 3, which is impossible. Hence if ∆1(n,k) is tripartite and has no dummies,
the conditions (5) are satisfied.

On the other hand, if (5) are satisfied, then the game has two shift-minimal winning
coalitions {1k1} and either {2k2 , 3k3−k2} in case k2 ≤ n2 or {1k2−n2 , 2n2 , 3k3−k2} in case
k2 > n2. In both cases 1 � 2 � 3 by Proposition 1.

Proposition 12. The game ∆2(n,k) is tripartite game without dummies if and only if
conditions (6) are satisfied.

Proof. Suppose ∆2(n,k) is tripartite. Like in Proposition 11 we find that k1 < k3 and
k2 < k3. However, we also know that k2 − k1 ≥ n2 > 0. Hence we assume k1 < k2 < k3.
If n1 + n2 ≥ k2 is not satisfied, then `1 + `2 ≥ k2 is ineffectual and 2 ∼ 3. So we assume
n1 +n2 ≥ k2. In this case we have a shift-minimal winning coalition C = {1k2−n2 , 2n2} and
secures that 2 � 3 (as k2 < k3). If n3 > k3 − k2 is not satisfied, then `1 + `2 + `3 ≥ k3 is
redundant and 3 is a dummy. Since k3 > k2 we have n3 ≥ k3 − k2 + 1 ≥ 2. Since ∆2(n,k)
is defined for the case n2 ≤ k2 − k1, we have k1 ≤ k2 − n2 ≤ n1 and n1 ≥ k1 follows.
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Now, if the coalitions {1k1} and {2k3−k1−n3+1} exist, then a replacement of 1 with 2 in a
winning coalition {1k1−1, 2k3−k1−n3+1, 3n3} results in a losing coalition {1k1 , 2k3−k1−n3 , 3n3}.
As the conditions (6) imply k1 ≤ n1, the first coalition exists. The second coalition exists
since k3 − k1 − n3 < n2 is equivalent to k3 − k1 < n2 + n3. This implies 1 � 2.

Now, since n1 +n2 ≥ k2 and k2 < k3, there exists a minimal winning coalition {1`1 , 2`2}
with `1 + `2 = k2 and `2 ≥ 1. A replacement of 2 here with a 3 leads to a losing coalition,
hence 2 � 3.

12.2 Proofs of two Lemmata

Proof of Lemma 1. Suppose first that C is weighted but H is not. Then we have a certificate
of nonweightedness (U1, . . . , Uj ;V1, . . . , Vj) for the game H. Let also X be any minimal
winning coalition of G containing g (since g is not a dummy, it exists). Let X ′ = X \ {g}.
Then

(X ′ ∪ U1, . . . , X
′ ∪ Uj ;X

′ ∪ V1, . . . , X ′ ∪ Vj)

is a certificate of nonweightedness for C. Suppose now that C is weighted but G is not.
Then let (X1, . . . , Xj ;Y1, . . . , Yj) be a certificate of nonweightedness for G and W be a fixed
minimal winning coalition W for H. Define

X ′i =

{
Xi \ {g} ∪W if g ∈ Xi

Xi if g /∈ Xi

and

Y ′i =

{
Yi \ {g} ∪W if g ∈ Yi
Yi if g /∈ Yi

Then, since |{i | g ∈ Xi}| = |{i | g ∈ Yi}|, the following

(X ′1, . . . , X
′
j ;Y

′
1 , . . . , Y

′
j )

is a trading transform in C. Moreover, it is a certificate of nonweightedness for C since all
X ′1, . . . , X

′
j ; are winning in C and all Y ′1 , . . . , Y

′
j are losing in C. So both assumptions are

impossible.

Proof of Lemma 2. As g is more desirable than g′, there exists a coalition X ⊆ PG, con-
taining neither g nor g′ such that X ∪{g} ∈WG and X ∪{g′} /∈WG. We may take X to be
minimal with this property, then X ∪ {g} is a minimal winning coalition of G. Since g′ is
not dummy, there exist a minimal winning coalition Y containing g′. The coalition Y may
contain g or may not. Firstly, assume that it does contain g. Since H is not an oligarchy
there exist two distinct minimal winning coalitions of H, say Z1 and Z2. Then we can find
z ∈ Z1 \ Z2. Then the coalitions U1 = X ∪ Z1 and U2 = (Y \ {g}) ∪ Z2 are winning in
G ◦g H and coalitions V1 = (X ∪ {g′}) ∪ (Z1 \ {z}) and V2 = Y \ {g, g′} ∪ (Z2 ∪ {z}) are
losing in this game since Z1 \ {z} is losing in H and Y \ {g′} = Y \ {g, g′} ∪ {g} is losing
in G. Since V1 and V2 are obtained when U1 and U2 swap players z and g′, the sequence of
sets (U1, U2;V1, V2) is a certificate of incompleteness for G ◦g H.

Suppose now Y does not contain g. Let Z be any minimal winning coalition of H that
has more than one player (it exists since H is not an anti-oligarchy). Let z ∈ Z. Then

(X ∪ Z, Y ;X ∪ {g′} ∪ (Z \ {z}), Y \ {g′} ∪ {z})

is a certificate of incompleteness for G ◦g H.
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12.3 Nonweighted compositions of the irreducible ideal weighted
games

Here we will consider two cases:

1. G2 has at least one minimal winning coalition with cardinality at least 2.

2. G2 = An, where n ≥ 2.

We will start with the following general statement which will help us to resolve the first
case.

Definition 6. Let G = (P,W ) be a simple game and g ∈ P . We say that a coalition X is
g-winning if g /∈ X and X ∪ {g} ∈W .

Every winning coalition is of course g-winning but not the other way around.

Lemma 3. Let G be a game for which there exist coalitions X1, X2, Y1, Y2 such that both
X1 and X2 do not contain g,

(X1, X2 ; Y1, Y2) (9)

is a trading transform, X1 is winning X2 is g-winning and Y1 and Y2 are losing in G. Let
also H be a game with a minimal winning coalition U which has at least two elements, then
C = G ◦g H is not weighted.

Proof. If X2 is winning in G, then there is nothing to prove since (9) is a certificate of
nonweightedness for C, suppose not. Let U = U1 ∪ U2, where U1 and U2 are losing in H.
Then it is easy to check that

(X1, X2 ∪ U ; Y1 ∪ U1, Y2 ∪ U2)

is a certificate of nonweightedness for C. Indeed, X1 and X2∪U are both winning in C and
Y1 ∪ U1 and Y2 ∪ U2 are both losing.

The only exception in this case is when H consists of passers and dummies. We will
have to consider this case separately.

Lemma 4. If G is of type B1, B2 or B3, g is any element of level 2, and H has a minimal
winning coalition X which has at least two elements, then G ◦g H is not weighted.

Proof. Suppose G is of type B1. Then let us consider the following trading transform

({1k1 , 2k2−k1}, {1k1 , 2k2−k1−1} ; {1k1−1, 2k2−k1+1}, {1k1+1, 2k2−k1−2})

(note that k2− k1 + 1 = n2 and k1 + 1 ≤ n1 so there is enough capacity in both equivalence
classes to make all coalitions involved legitimate). It is easy to check that the first coalition
in this sequence is winning, the second is g-winning and the remaining two are losing. By
Lemma 3 the result holds.

Suppose now G is of type B2, then k2 = k1 + 1 ≤ n2. Let k1 = k. Then we can apply
Lemma 3 to the trading transform

({1k}, {2k} ; {1b k2 c, 2d k2 e}, {1d k2 e, 2b k2 c}),

where {1k} is winning, {2k} is g-winning and the remaining two coalitions are losing.
If G is of type B3, then n2 < k2 = k1 + 1. We again let k = k1. In this case we can

apply Lemma 3 to the trading transform

({1k}, {1k−2, 22} ; {1k−1, 2}, {1k−1, 2}),

where the first coalition is winning, the second is g-winning (we use n2 ≥ 3 here) and the
two remaining coalitions are losing.
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Lemma 5. If G is of type T1 or T3, g is any element of level 3, and H has a minimal
winning coalition X which has at least two elements, then C = G ◦g H is not weighted.

Proof. If G is of type T1. Then let us consider the following trading transform

({1k1}, {2k2 , 3k3−k2−1} ; {1k1−1, 2}, {1, 2k2−1, 3k3−k2−1}).

Lemma 3 is applicable to it so C is not weighted.
Suppose G is of type T3. Then let us consider the following trading transform

({1k2−n2 , 2n2}, {1k1 , 2n2−1, 3n3−1} ; {1k2−n2 , 2n2−1, 3}, {1k1 , 2n2 , 3n3−2}).

Since n3 > 1 all coalitions exist. Lemma 3 is now applicable and shows that C is not
weighted. This proves the lemma.

We will now deal with the second case. Denote players of An by PAn
.

Proposition 13. Let G1 be an ideal weighted indecomposable simple game of types B1, B3,
T1, and T3, and g be a player from the least desirable level of G1, then G = G1 ◦g An is
not weighted.

Proof. Let G1 be of type B1. The only shift-minimal winning coalition of G1 is of the form
{1k1 , 2k2−k1}, where n1 > k1 > 0, k2 − k1 = n2 − 1 > 1. Composing over a player of level
2 of G1 gives shift-minimal winning coalitions of types {1k1 , 2k2−k1} and {1k1 , 2k2−k1−1, 3}.
Thus the game is not weighted due to the following certificate of nonweightedness:

({1k1 , 2k2−k1}, {1k1 , 2k2−k1−1, 3}; {1k1−1, 2k2−k1+1, 3}, {1k1+1, 2k2−k1−2}).

Since in a game of type B1 we have k2−k1 + 1 = n2 and k1 + 1 ≤ n1, then all the coalitions
in this trading transform exist.

Now consider B3. Its shift-minimal winning coalition have types {1k1}, {1k2−n2 , 2n2}.
Composing over a player of level 2 of G1 gives the following types of winning coalitions
{1k1}, {1k2−n2 , 2n2−1, 3} in G. The game is not weighted due to the following certificate of
nonweightedness:

({1k2−n2 , 2n2−1, 3}, {1k2−n2 , 2n2−1, 3}; {1k2−n2+1, 2n2−2}, {1k2−n2−1, 2n2 , 32}).

Note that k2 − n1 + 1 < k1 ≤ n1 and n2 > 2 in B3, so all the coalitions in this transform
exist.

Now consider T1. Since its levels 2 and 3 form a subgame of type B1, composing it with
An over a player of level 3, as was proved, will result in a nonweighted game.

Let us consider T3, where the shift-minimal winning coalition are {1k2−n2 , 2n2},
{1k1 , 2k3−k1−n3 , 3n3}. If we compose over a player of level 3 of G1, then the resulting game
will have shift-minimal coalitions of the following type {1k1 , 2k3−k1−n3 , 3n3−1, 4}, where now
elements of G2 = An will form level 4. Then we can show that the composition G1 ◦G2 is
not weighted due to the following certificate of nonweightedness:

({1k1 , 2k3−k1−n3 , 3n3−1, 4}, {1k1 , 2k3−k1−n3 , 3n3−1, 4};

{1k1+1, 2k3−k1−n3 , 3n3−2}, {1k1−1, 2k3−k1−n3 , 3n3 , 42}).
The coalition {1k1+1, 2k3−k1−n3 , 3n3−2} is losing because in T3 we have k3−k1−n3 = n2−1
and also k2−n2 > k1, meaning (k1+1)+(k3−k1−n3) = k1+1+n2−1 ≤ k2−n2+n2−1 =
k2−1 Also in total it contains less than k3 elements. The coalition {1k1−1, 2k3−k1−n3 , 3n3 , 42}
is easily seen to be losing as well.

Now all that remains for the proof of Theorem 9 is to consider the cases when g is not
from the least desirable level of G1 which may happen only when it is of types T1 and T3.
These cases are similar to those that have been already considered and we delegate them to
the Appendix.

17



12.4 End of proof of Theorem 9

Here we have to deal with the hypothetical possibility that G does not fall into categories
(i) and (ii). Then we know that G1 has at least two desirability levels and g is not from the
least desirable level. Also Lemma 2 implies that in this case G2 = An or G2 = Un for some
n ≥ 2. Let us deal with G2 = An first. We need the following

Lemma 6. Let G = (P,W ) be a game where player g is strictly more desirable than player
g′. Suppose also that we can find two coalitions X1 and X2 in G such that

g′ /∈ X1, X1 ∪ {g} ∈W, X1 ∪ {g′} ∈ L; (10)

g′ ∈ X2, X2 ∪ {g} ∈W, X2 \ {g′} ∪ {g} ∈ L. (11)

Then the composition C = G ◦g An, n ≥ 2, is not complete.

Proof. Let a, b ∈ An. We have the following certificate of incompleteness:

(X1 ∪ {a}, X2 ∪ {b}; X1 ∪ {g′}, X2 \ {g′} ∪ {a, b}).

Indeed, both X1 and X2 win with g in G and both {a} and {b} are winning coalitions in
H, so X1 ∪ {a} and X2 ∪ {b} are winning in C. On the other hand X1 ∪ {g′} and X2 ∪ {g′}
are losing in G and the latter even losing with g so X1 ∪{g′} and X2 \ {g′}∪{a, b} are both
losing in C. This proves the lemma.

Lemma 7. Let G be an indecomposable simple game of one of the types B1, B2, B3, T1,
and T3, and let g be a player of G which is not from the least desirable level. Then the
composition G ◦g An is not complete for all n ≥ 2.

Proof. Let us first consider the case where g is from the most desirable level of G. We will
apply Lemma 6 to show that G ◦g An is not complete. So in what follows we show that for
each case there exists g, g′ ∈ P and coalitions X1 and X2 of G which satisfy the conditions
of Lemma 6. In the following three cases, g is a player of level 1 and g′ is a player of level 2.

(i) B1: X1 is of type {1k1−1, 2k2−k1}, and X2 is of type {1k1−1, 2k2−k1};

(ii) B2: X1 is of type {1k1−1}, and X2 is of type {2k1};

(iii) B3: X1 is of type {1k1−1}, and X2 is of type {1k2−n2 , 2n2−1}.

And for the following three cases, g is a player of level 1 and g′ is a player of level 3.

(iv) T1: X1 is of type {1k1−1}, and X2 is of type {2k2 , 3k3−k2−1};

(v) T3: X1 is of type {1k2−n2−1, 2n2}, and X2 is of type {1k1−1, 3k3−k1}.

All is left is to consider composing games of the T types over a player of level 2. We
start with T1. As we know any game of type T1 contains a subgame of type B1 when
we restrict it to lavels 2 and 3 only. For that subgame 2 is the most desirable player so
noncompleteness follows from (i).

Finally we look at T3 and suppose now g is a player of level 2 and g′ is a player of level
3. Here X1 can be taken of type {1k2−n2 , 2n2−1}. Indeed, if we add g to X1 it becomes
winning but it loses with g′. Then X2 can be taken of type {1k1 , 2k3−k1−n3 , 3n3−1}. We can
add g to X2 since n2 ≥ k3− k1−n3 + 1 and it becomes winning. We can add g and remove
g′ from it since n3 ≥ 2. X2 will remain losing after that. So we can again apply Lemma 6
to conclude that the composition is not complete. This completes the study of compositions
where G2 is the anti-unanimity game An, such that the compositions are not over the least
desirable level of G1.
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Finally, we consider compositions where G2 is the unanimity game Un. It turns out that
none of these compositions give a weighted game either, which is what we show next.

Lemma 8. Let G1 = (P,W ) be a simple game of one of the types B1, B2, B3, T1, and
T3 and let g ∈ P be a player not from the least desirable level of G1. Then the composition
G = G1 ◦g Un is not weighted.

Proof. Let Un be defined on PUn , and let Z = PUn . We start with G1 being of type B1. A
shift-minimal winning coalition of G1 has the only form {1k1 , 2k2−k1}, where k1 < n1. We
compose over level 1 of G1. Then G is nonweighted by Lemma 3 applied to the following
trading transform

({1k1 , 2k2−k1}, {1k1−1, 2k2−k1}; {1k1 , 2k2−k1−1}, {1k1−1, 2k2−k1+1}).

This is because the first coalition is winning, the second coalition is 1-winning and the
remaining two are losing. Note that k2 − k1 + 1 = n2 ≥ 2 in a game of type B1, so the
coalition {1k1−1, 2k2−k1+1} is allowed.

Now let G1 be of type B2. The shift-minimal winning coalitions of G1 here are
{1k1}, {2k1+1}, and if we compose with Un over level 1 of G1, then G is nonweighted by
Lemma 3 applied to the following trading transform:

({2k1+1}, {1k1−1}; {1k1−1, 2}, {2k1}).

This is because the first coalition is winning and the second is 1-winning. The remaining
two are losing.

Now let G1 be of type B3. Recall that in a game of type B3 we have k1 ≤ n1, and also
k2 − n2 < k1. So the shift-minimal winning coalitions of G1 are {1k1}, {1k2−n2 , 2n2}. If
we compose with Un over level 1 of G1, then G is nonweighted by Lemma 3 applied to the
following trading transform:

({1k2−n2 , 2n2}, {1k1−1}; {1k2−n2 , 2n2−1}, {1k1−1, 2}).

This is because the second coalition is 1-winning.
Next we look at the games T1, and T3. Since they have three levels each, then we need

to consider what happens when composing over level 1 and when composing over level 2
separately. Let us start with T1.

The shift-minimal winning coalitions of G1 are {1k1} and {2k2 , 3k3−k2}. Here we need
to consider two compositions, one over level 1, and one over level 2.
Case (i). If we compose with Un over level 1 of G1 then G is nonweighted by Lemma 3
applied to the following trading transform:

({1k1−1}, {2k2 , 3k3−k2}; {1k1−1, 2}, {2k2−1, 3k3−k2}).

This is because the first coalition is 1-winning, the second is winning and the remaining two
are losing.

Case (ii). If we compose with Un over level 2 of G1, then G is nonweighted by Lemma 3
applied to the following trading transform:

({1k1}, {2k2−1, 3k3−k2}; {1k1−1, 2}, {1, 2k2−2, 3k3−k2}).

This is because the first coalition is winning, the second coalition is 2-winning and the
remaining two are losing.

Finally, let G1 be of type T3. The shift-minimal winning coalitions of G1 are
{1k2−n2 , 2n2} and {1k1 , 2k3−k1−n3 , 3n3}. Here we again need to consider two compositions,
one over level 1, one over level 2.
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Case (i). If we compose G1 with Un over level 1 of G1, then since k1 ≤ n1, the game G
is nonweighted by Lemma 3 applied to the following trading transform:

({1k1 , 2k3−k1−n3 , 3n3}, {1k1−1, 2k3−k1−n3 , 3n3}; {1k1 , 2k3−k1−n3−1, 3n3}, {1k1−1, 2k3−k1−n3+1, 3n3}).

This is because the first coalition is winning, the second coalition is 1-winning and the two
remaining ones are losing. Note that k3 − k1 − n3 + 1 ≤ n2 in a game of type T3 (see
Theorem 7), so the last coalition exists.

Case (ii). If we compose with Un over level 2 of G1, then G is nonweighted by Lemma 3
applied to the following trading transform:

({1k2−n2 , 2n2−1}, {1k1 , 3k3−k1}; {1k2−n2 , 2n2−1, 3}, {1k1 , 3k3−k1−1}).

Indeed, by (6) k2 − n2 ≤ n1 and k2 < k3. Thus the first coalition exists and is 2-winning,
the second is winning and the remaining two are losing.

We see that none of the six games above produce a weighted game when composed with
Un over a player not from the least desirable level of the first game.
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