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Abstract

We study voting games on possibly interconnected issues, where voters might hold a
principled opinion about a subset of the issues at stake while willing to strike deals
on the remaining ones, and can influence one another before casting their ballots
in order to obtain an individually more favourable outcome. We analyse voters’
rational behaviour in a two-phase game, allowing players to undergo a negotiation
phase before their vote, and showing under what conditions undesirable equilibria
can be removed as an effect of the pre-vote phase.

1 Introduction

Collective decision-making often requires the ability of compromising and striking deals. It
is therefore a dynamic process rather than a static one, as too often depicted in the literature
on social choice theory. Being able to formally describe the process leading to an agreement
facilitates the implementation of systems that can reach human-level collective decisions
and the analysis of human decision-making.

Voting is a collective decision procedure where persuasion can be an effective tool to
induce opinion change and settle for compromise solutions [5, 10]. Indeed, in strategic inter-
action pre-play negotiations are known to be effective in overcoming inefficient allocations
caused by players’ individual rationality [9]. When players are allowed to offer a part of
their gains at certain outcomes to influence the decisions of their opponents and have enough
resources for doing so, they can even overcome otherwise highly inefficient scenarios, such
as the Prisoners’ Dilemma [9].

But voting is a specific type of strategic interaction, where individuals may hold uncom-
promising opinions about certain issues at stake—think of discussions on nuclear energy
policies—and be therefore hard to persuade to change their behaviour. Moreover, collective
decisions are determined by voting rules—e.g, unanimous, majoritarian etc.—which directly
constrain the amount of compromise needed to reach consensus. In these situations, over-
coming paradoxical consequences typical of aggregation procedures [1], crucially depends on
how much, if anything at all, voters are willing to give up to accommodate the others.

In this paper we study pre-vote negotiations in voting games over logically interrelated
issues, where voters hold a special type of lexicographic preferences over the set of issues
at stake, i.e., hold a principled opinion about a subset of them while willing to negotiate
on the remaining ones, and can influence one another before casting their ballots by means
of monetary incentive in order to obtain an individually more favourable outcome. The
model will be abstract enough to generalise a variety of different pre-vote opinion change
phenomena such as: deliberation, negotiation, power and authority, bribery, etc. All these
phenomena will be studied as multi-agent processes whereby voters invest resources (e.g.,
persuasiveness, money, time, personal credibility, etc.) to influence one another.

Scientific context Our approach stems from a variety of existing lines of research in
social choice and game theory. Specifically, we build on three of them:

Judgment Aggregation. Judgment aggregation is the theory of collective decision-making
on logically interconnected issues [4, 7]. We take here the perspective of a society of voters
that express a yes/no opinion on several issues at stake and whose ballots need to stick to



a (possibly empty) set of integrity constraints [6]. With the exception of manipulability
considerations [12, 3], the fully fledged strategic issues involved in this type of voting setting
have, to the best of our knowledge, never been explored and will be our focus here. The
approach we take is related to the growing literature on voting games. Classical references
include the work of Dhillon and Lockwood [2] and Messner and Polborn [11].

Boolean games. We model decision strategies in judgment aggregation as Boolean Games
[8, 15], allowing voters to have control of a set of propositional variables, i.e., their ballot,
and to assign utilities to outcomes, with specific goal outcomes they want to achieve. In our
setting however goals of individuals are expressed on the outcome of the decision process,
thus on outcomes that do not depend on their single action. The dichotomy utility-goals,
typical of boolean games, allows us to encode a truly lexicographic preference relation, i.e.,
with goals representing outcomes satisfying non-negotiable standpoints and numerical values
modelling secondary (monetary) aspects.

Pre-play negotiations. We model pre-vote negotiations in Boolean Games in the frame-
work of Endogenous Boolean Games [14], which studies boolean games together with a
pre-play phase. In the spirit of Jackson and Wilkie [9] players are entitled to sacrifice a
part of the utility received at a certain outcome to convince their opponents to play certain
strategies, which in our case consist of voting ballots.

Paper contribution and outline The type of issues we can address in this framework
concern the effect of pre-play negotiations on the outcome of collective decisions, modelled
as pre-vote phase in a boolean game for judgment aggregation. In particular we will be able
to show under what conditions bad equilibrium outcomes—e.g., inefficient ones—can be
overcome, and dually good ones sustained, thanks to a pre-play phase. A typical showcase
will be those games guaranteeing goal-efficient profiles (the ones satisfying the goals of all
players) after pre-play negotiation.

We present our framework in three steps. First, we define voting games for judgment
aggregation using purely dichotomous preferences, without explicit utilities, analyzing the
properties of the equilibria (Section 3). Second, we add an explicit utility function to the pre-
viously defined structures, moving to a proper lexicographic (quasi-dichotomous) preference
relation, showing how undesirable equilibria can be removed by appropriate modifications
of the game matrix (Section 4). Third, we present a full-blown model of collective decisions
as a two-phase game, with a negotiation phase preceding the vote. We show how unde-
sirable equilibria can be removed—and, dually, desirable ones kept—by means of rational
negotiations (Section 5).

Even though only the last step is dedicated to the actual effect of pre-vote negotiations,
the first two illustrate the properties of collective decisions in their absence, and are therefore
necessary in order to understand the added value of having a pre-vote phase.

2 Preliminaries

We model situations of collective decision-making using a general framework for judgment
aggregation called binary aggregation with integrity contraints [6]. In this setting a finite set
of individuals express yes/no opinions on a finite set of binary issues, and these opinions are
then aggregated into a collective decision over each issue. This framework has been shown
to be general enough to account for classical settings such as preference aggregation and
judgment aggregation, and to be particularly effective in the study of paradoxes of collective
decision-making.



IC=(WA-F)—P
w F P

Party A 1 0 1
Party B 1 1 0
Party C 0 0 0
Majority 1 0 O

Table 1: An instance of the Discursive Dilemma

Definition 1 (BA structure). Let PS = {p1,...,pm} be a set of propositional atoms and
Lps be the propositional language constructed by closing PS under standard propositional
connectives. A binary aggregation structure (BA structure) is a tuple S = (N, Z,1C) where:

o N'={1,...,n} is a finite set of individuals;

e 7={1,...,m} is a finite set of issues;

e IC is a propositional formula of Lpg.

We denote D = {B | B:Z — {0,1}} the set of all possible binary opinions over the set of
issues Z and call an element B € D a ballot. The integrity constraint IC is a propositional
formula, e.g., py A p2 — ps, that can be interpreted on elements of D and can be thus used
to define the set of admissible ballots as the set Mod(IC) = {B € D | B |= IC}.

Example 1. A parliament composed by equally representative parties A, B,C is to decide
whether to build nuclear power plants (P) and develop atomic weapons (W). If importing
nuclear technology from abroad is not an option, the development of atomic weapons in-
volves the construction of nuclear power plants. We can model this situation as an integrity
constaint 1IC = (W — P), making ballot (P — 1,W +— 0)—in words, voting positively for
W and negatively for P—an inadmissible ballot.

An admissible profile B = (By,...,By,) is the choice of an admissible ballot for every
individual in A/. We write B; to denote the ballot of individual ¢ within a profile B. Thus,
B;(j) = 1 indicates that individual ¢ accepts issue j in profile B. Furthermore we denote
by ./\ij = {i € N'| B;(j) = 1} the set of individuals accepting issue j in profile B.

Definition 2 (Aggregation procedure). Given a BA structure S, an aggregation procedure
for S is a function F : Mod(IC)N — D, mapping every profile of admissible ballots to a
binary ballot in D. We denote with F(B); the outcome of the aggregation on issue j.

Examples of aggregation functions include the issue-by-issue majority rule (maj) which
accepts an issue if and only if there is a majority of voters accepting it.

Aggregation rules are classified by means of axioms that bind the properties of the
outcome in certain profiles. A prime example is the axiom of unanimity, which demands that
the outcome of aggregation coincide with the individuals’ judgments in case of consensus.
In the remainder of the paper we shall consider aggregation games with the majority rule,
however many of our results can be generalised to arbitrary aggregation procedures that
satisfy a number of relevant axioms. Due to space restrictions, we refer the reader to the
relevant literature for a formal treatment of axiomatic properties [6].

Given a BA structure S, an aggregation procedure F is said to be collectively rational with
respect to S if the outcome F(B) is an admissible ballot for every admissible profile B. The
profile in Table 1 shows that the majority rule is not always collectively admissible.



3 Aggregation Games

In this section we present the simplest model of strategic reasoning by players involved in
a collective decision-making problem on binary issues. The players’ strategies consist of all
admissible binary ballots and players’ preferences are expressed in the form of a goal that
is interpreted on the outcomes of the aggregation (i.e., the collective decision).

Definition 3 (Aggregation games). An aggregation game is a tuple A =
<N, 7,1C, F, {%}ieN> such that:

e (N,Z,1C) is a binary aggregation structure;

e F is an aggregation procedure for (N, Z,1C);

e cach ~y; is a propositional formula in Lpg which is consistent with 1C;

All individuals share the same set of admissible strategies, namely the set of admissible
ballots Mod(IC). A strategy profile is therefore a profile of (admissible) binary ballots, and
will be denoted with B. Preferences in aggregation games are only formulated in terms of
goal satisfaction. We will refer to an aggregation game A = <J\f, Z,IC, F, {%}ie/\f> where
F = maj as an an aggregation game for maj (or for the majority rule).

Definition 4 (Preferences in aggregation games). Let A = (N, Z,1C,F,{7i};cn;) be an
aggregation game. For all profiles B, B' and i € N, the preference relation =7 is such that
B =B & F(B') |~ or F(B) = ;.

It clearly follows that tg“ is a total preorder. Following standard terminology from voting
theory we call a strategy (or ballot) B € Mod(IC) truthful for agent i if it is in accordance
with i’s preferences, that is, if it satisfies i’s goal ;. We call a game consistent if the
conjunction of all individual goals A, 7; is consistent with IC.

Definition 5. Given an aggregation game A, we call a strategy profile B = (B1,...,B,):
truthful if oll B; are truthful;

IC-consistent if F(B) = 1C;

goal-efficient if F'(B) = A, vi;

goal-inefficient if F(B) = ; for alli € N.

3.1 Equilibria in Aggregation Games

In this section we explore the existence and the properties of pure Nash equilibria (NE) in
aggregation games and their properties, paying special attention to NE that are truthful,
goal-efficient and IC-consistent. We rely on standard game-theoretic terminology from [13].
We start with the following proposition:

Proposition 1. If A is an aggregation game for maj then every truthful strategy for i is
(weakly) dominant.

Proof. Let B} be a truthful strategy for agent 4 in A and let B any non-truthful strategy for
i. We want to show that for each strategy profile B_; we have that (B_;, B}) =/ (B_;, B)).
We have four cases. If both maj(B_;, B}) and maj(B_;, Bl) satisfy ; or both do not satisfy
it, then B} weakly dominates B]. If maj(B_;, Bf) satisfies v; and maj(B_;, B}), then B}
strictly dominates Bj. Finally, if maj(B_;, B}) satisfies ; but maj (B_;, B}) does not, then
the majority for 4, is larger in (B_;, B}) then in (B_;, B}), against the assumption that B*
is truthful. Hence B is weakly dominant. O

Corollary 2. Every aggregation game for the majority rule has a pure strategy Nash equi-
librium.



In what follows we show a positive result stating the existence of truthful and goal-efficient
equilibria in any aggregation game for the majority rule in which goals are consistent:

Proposition 3. Every consistent aggregation game for maj has an I1C-consistent NE that
is truthful and goal-efficient.

Proof. Since A is consistent, then there exists an admissible ballot B* such that B* = A, v;.
Let B* = (B*,...,B*), i.e., B* is a unanimous profile where each individual votes for B*.
Since the profile is unanimous, maj(B*) = B*. Clearly maj(B™) satisfies A, v; and IC, and
each individual votes truthfully. Hence B* is a NE by Proposition 1. O

Proposition 3 has a negative counterpart: the existence of consistent aggregation games
with undesirable equilibria.

Proposition 4. There exist:

e consistent aggregation games for maj with an 1C-consistent NE that is truthful and
goal-inefficient,

e and consistent aggregation games for maj with a truthful and goal-inefficient NE that
is 1C-inconsistent.

p1 P2 P3
Voter 1 1 0 0
Voter 2 0 1 0
Voter 3 0 0 1
Majority 0 0 O

Table 2: IC-inefficient equilibria

Proof. For the first statement, let A be an aggregation game for maj such that ~; = p;,
let IC = T and let B* be the profile illustrated in Table 2. We can observe that B* is a
truthful profile — therefore a NE by Proposition 1 — for which however the outcome of the
aggregation satisfies no individual goals, although satisfying IC. For the second statement,
consider a different game A’ with the same individual goals but IC' = p; V pa V p3. Then
B” is a truthful NE which is both goal-inefficient and IC-inconsistent. O

Example 2. Consider the judgment aggregation structure of the discursive dilemma as
presented in Table 1 and assume each party has goals equivalent to a full admissible ballot:

y1=WA-FAP
Yo =WAFA-P
v3 =W A-F A=P

The strategies available to player i are all valuations for the three issues W, F' and P. There
is however only one truthful strategy for each voter, which is weakly dominant, and which
corresponds to her goal. The discursive dilemma profile is therefore a dominant strategy
equilibrium—hence a NE—uwhich is truthful, goal-inefficient and 1C-inconsistent.



4 Aggregation Games with Utility

This section refines the model of aggregation games, introducing an explicit utility function
for each player i, yielding to ¢ a real number at each profile and encoding, intuitively, the
amount of resources that he would receive, should that profile of votes occur.

Definition 6 (A™ games). An aggregation game with utility is a tuple <.A, {Wi}ie/\f> where
A is an aggregation game and T; : Mod(IC)N — R is a utility function assigning to each
admissible profile a real number denoting the utility of player i in that profile.

Intuitively, goals represent uncompromising positions upon which players are not willing to
negotiate. Still, players are able to compare any two states, which both satisfy or both falsify
their own goals, by looking at the value yielded by the utility function. This is technically
called a quasi-dichotomous preference relation [15]:

Definition 7 (Preferences in A™ games). Let (A, {m;},.\) be an A™-game, B, B’ be two
ballot profiles and i € N a player. The preference relation =T for each i € N is such that
B =T B iff:

o [F(B') % and F(B) =] o

e [F(B) £  F(B) = 7] and 7i(B) > 7(B)).

In other words, a profile B is preferred by player i to B’ if either F(B) satisfies i’s goal and
B’ doesn’t or, if both satisfy i’s goal or neither do, F(B) yields to i a better utility than
F(B').

A natural class of A™-games is that of games where the individual utility only depends
on the outcome of the collective decision, that is, for all i € N, m;(B) = m;(B’) whenever
F(B) = F(B'). We call these games uniform.

Games with uniform utility are the simplest generalisation of aggregation games, in which
the preference defined by the individual goals is refined by introducing a utility function that
is defined on the outcome of the aggregation. For convenience, we assume that in uniform
AT™-games the utility function is defined directly on outcomes, i.e., w; : D — R.

The definition of truthful strategies, as well as Definition 5, still applies to this setting.

4.1 Equilibria in Games with Uniform Utility

The set of NE for a uniform A7-game (A, {m;}icpn) is a subset of the NE of A. This is a
straightforward consequence of our definition of quasi-dichotomous preferences. Moreover,
uniform A™-games for the majority rule do not necessarily have dominant truthful strategies:

Proposition 5. There exist uniform A7 -games for maj in which truthful strategies are not
dominant.

Proof. Consider the set of issues {p,q,t} and a set N' = {1,2,3}. Let moreover 7, = T
for i = 1,2 and 3 = t. Define the utility function as follows, let 7;(B) = 1 for i« = 3 and
B =(0,1,0), and 0 otherwise. Take the following profiles: B; = ((0,1,0),(0,0,0),(0,0,1))
and By = ((0,1,0),(0,0,0),(0,1,0)). Since maj(B1) = (0,0,0) and maj(B2) = (0,1,0),
we have that By >~% B; and that Bj, unlike By, comprises a truthful strategy by 3. O

The fact that truthful voting is not always a domaint strategy for JA games with utility
might seem counterintuitive, especially when the utility is required to be uniform across
profiles leading to the same outcome. It is however sufficient to recall that when a player
is in the position of changing the outcome of the decision from a certain profile—because
of being, for example, a veto player — this does not necessarily mean he has the power to
satisfy his goal, but he might simply choose the outcome he prefers because of the utility.



Despite the negative result in Proposition 5, a straighforward adaptation of the proof
of Proposition 3 to the case of dichotomous preferences with uniform utilities proves the
following:

Proposition 6. Fvery consistent uniform A™-game for maj has an 1C-consistent NE that
is truthful and goal-efficient.

Observe that aggregation games can be modelled as a special subclass of A7-games where
each 7; is a constant function for each ¢ € . Therefore the negative results expressed in
Proposition 4 still hold in this case. In particular, we can still find undesirable equilibria
(goal-inefficient and IC-inconsistent).

4.2 Equilibria in Games with Non-Uniform Utility

Despite the previous observations, we can use non-uniform utilities to rule out goal-inefficient
NE, as shown next:

Proposition 7. For every consistent uniform A™-game (A, {m;}icn) for maj there ex-
ist utility functions {m}}ien such that n' is a redistribution of utilities given by w, i.e.,
YienTi(B) = > ey mi(B) for every profile B, and (A, {7;}icn) has no goal-inefficient
NE.

Proof. Let B* be a ballot such that B* = A,~;. We now construct a redistribution of
utilities in which player 1 gives all other players an incentive to play B*, turning it into a
weakly dominant strategy. Let M — 1 be the maximal utility difference that some player
can obtain between two outcomes in the game (A, {m;}ien). The desired utility function
is constructed as follows. For all j # 1 define 7%(B) = 7;(B) + M for all profiles B
with B; = B*, and 7;(B) = 7;(B) otherwise. Let finally 7} (B) = m1(B) — (34, m,(B) —
> k21 Te(B)). Observe that the construction of n’ ensures that 3,y mi(B) = ieN i (B),

for every profile B. Now let B be a goal-inefficient NE of the new game. Take an arbitrary
player j such that B; # B* (such a player always exists due to maj and the fact that B is

goal inefficient). By construction of 7r;-, player j has an incentive to deviate to B*, hence B
cannot be a NE. O

The proposition says that a utility function exists which eliminates a goal-inefficient NE in
an original, uniform, A™-game, while keeping the sum of players’ utilities constant. The
new utility function can be thought of as an offer of utility that a player has made to the
others, incentivising them to deviate to a more favourable outcome.

5 Endogenous Aggregation Games

In this section we introduce the full-fledged model of pre-vote negotiations. In a nutshell,
the game has two phases (in line with Jackson and Wilkie [9]):
e A pre-vote phase, where, starting from a uniform A™-game, players make simultaneous
transfers of utility to their fellow players;
e A wvote phase, where players play the original A™-game, updated with transfers.
We call these extended voting games endogenous aggregation games (henceforth AT -games).

Definition 8 (AT-games). An endogenous aggregation game is defined as a tuple
(A, {miYiens {Titien) where (A, {m;}ienr) s a uniform A™-game, and each T; is the set
of all transfer functions 7; : Mod(IC)N x N — R,



Expressions such as 7;(B,j) encode the amount of utility that a player i gives to player
J should a certain profile of votes B be played. We call 7 € [[,T; a transfer profile,
denoting 7° the woid transfer where at every profile every player gives 0 to the others.
So by T(A™) = (A, {wg}ieN> we denote the aggregation game with utility obtained from
A™ where 7/ is updated according to the transfer profile 7 [9]. AT-games are analysed
as extensive form games with perfect information and simultaneous moves. The solution
concept of choice will therefore be subgame perfect equilibrium. Strategies of player ¢ consist
of sequential choices of a transfer 7; and an admissible ballot B;. Preference relations are
naturally defined between tuples of the form (7, B): for two profiles of ballots B, B, the
expression (1, B) =T (7/, B") denotes the fact that player i prefers B after 7 has been played
in the pre-vote phase, to B’ after 7/ has been played in the pre-vote phase.

It is important to notice that transfers do not preserve the uniformity of utilities. There
is actually always a transfer that turns a uniform A™-game into a non uniform one. In
particular, while we know that a uniform consistent game for majority always has a Nash
equilibrium, this may no longer be the case after a transfer. To overcome this limitation,
rather than allowing mixed strategies, we simply assume that any deviation to a game 7(.A)
with mo pure strategy Nash equilibrium is never profitable for a player. This might seem a
rather demanding limitation, as there might be infinitely many transfer functions that lead
to games with no pure strategy Nash equilibria. However, we have already seen that uniform
consistent A™-games for majority always have pure strategy equilibria (cf. Proposition 6)
and the questions we are interested in answering concern the sustainability of those equilibria
or their replacement with new ones after the pre-vote phase.

Given a AT-game (A, {m;}icn, {Ti }ien) we call a Nash equilibrium B of (A, {m;}icn)
a surviving Nash equilibrium if there exists a transfer function 7 and a subgame perfect
equilibrium (cf. [13]) of AT where (7, B) is played on the equilibrium path. In our case,
subgame perfect equilibria are constructed selecting (¢) a pure strategy Nash equilibrium af-
ter each transfer profile, whenever it exists, and (i7) a transfer profile, such that no profitable
deviation exist for a player by changing her individual transfer function.

Surviving equilibria identify those electoral outcomes that can intuitively be rationally
sustained by an appropriate pre-vote negotiation.

5.1 Equilibria in Endogenous Aggregation Games

Pre-vote negotiations have desirable consequences for the players, in particular goal-efficient
NE of a A™-game are all surviving in the induced endogenous aggregation game.

Proposition 8. Let AT = (A, {m;}ien, {Ti}ien) be an endogenous aggregation game with
more than two players. Every goal-efficient NE of (A, {m;}icn) s a surviving NE.

Proof (sketch). Let B be a goal-efficient NE of (A, {m;}icar). We want to find a transfer
function 7* such that (7%, B) is a subgame perfect equilibrium of A7. Let M — 1 be the
maximal utility difference, as defined in the proof of Proposition 7. For all i, let 7 (B, j) =
2M if B! # B;, and 77 (B’, j) = 0 otherwise. In words, each player i is committing to play
the ballot B; by offering the others 2M in case she deviates. The fact that (7*, B) is a
subgame perfect equilibrium in the two-phase game follows from the fact that B is goal-
efficient (i.e., all deviations are utility based) and from the standard argument for pre-play
negotiations with more than two players ([9], Theorem 4). O

Notice that Proposition 8 carries through independently of the voting procedure adopted in
the underlying aggregation game. A stronger result holds for maj:

Proposition 9. Let AT = (A, {m;}ien, {Ti }ien) be an endogenous aggregation game for
maj such that A is consistent. Every surviving NE of AT is goal-efficient.



Proof. Let B* be a NE that is goal-inefficient, i.e., such that maj(B*) [~ ~; for some
individual 7, and assume for the sake of contradiction that B™* is a surviving equilibrium.
Therefore there exists a subgame perfect equilibrium of A7 such that (7%, B*) is played
on the equilibrium path. We now construct a profitable deviation from 7*, leading to
contradiction. By consistency of A there exists a ballot B' such that B’ |= A\ ;. 75, hence
in particular B’ |= 7;. Let now 4 deviate to a transfer profile 7/ = (7/,7*,) such that she
offers an amount M—as defined in the proof of Proposition 7—to all other players if they
vote for ballot B’. This transfer will make B’ a dominant strategy for all players. Consider
now the updated game 7/(A™). Because of maj, B’ will be the outcome of every NE, and
one NE, e.g., the unanimous vote for B’, always exists. Hence 7’ is a profitable deviation
for i since +; is satisfied in every such NE. O

Summing up, pre-vote negotiations are a powerful tool players have to overcome the
inefficiencies of aggregation procedures. In particular, when players’ goals can be satis-
fied, pre-vote negotiations allow players to engineer side-payments leading to equilibrium
outcomes that satisfy them, ruling out all the others. We want to point out that players’
equilibrium strategies in the two phase game remain individually rational strategies and the
game remains non-cooperative throughout, even when equilibrium strategy end up sustain-
ing efficiency.

With pre-vote negotiations we can also look at classical paradoxes such as the discursive
dilemma in a new light.

Example 3. Consider again Table 1 and let the parties’ goals be: vy = W,y = —F, vy =
N. Let m be a uniform utility function such that the discursive dilemma is a NE. This
equilibrium is not surviving because party C could transfer enough utility to party B for it
to vote for N and be better off in the resulting game.

With respect to this, it is also worthwhile to note the following direct consequence of
Proposition 6 and Theorem 8:

Corollary 10. Every consistent A™-game for maj has an 1C-consistent NE that is truthful,
goal-efficient and survives in AT = (A™ {T;}ien)-

In consistent aggregation games equilibria that give rise to a voting paradox may not survive
(Example 3), whereas equilibria avoiding such paradoxes are always sustained by a pre-vote
negotiation phase (Corollary 10).

6 Conclusions

We have shown the effect of having a pre-vote phase before an aggregation game. Voters
may hold a principled opinion about a subset of the issues at stake while willing to strike
deals on the remaining ones and can influence one another before casting their ballots in
order to obtain an individually more favourable electoral outcome.

We have seen how undesirable equilibria, i.e., where players’ goals are not satisfied, can
be eliminated if players’ goals are consistent by appropriate transfers, while desirable ones,
i.e., where players’ goals are satisfied, can be rationally sustained. We believe our model
can be applied to the study of a variety of opinion change phenomena, albeit at a high
level of abstraction, such as: deliberation, negotiation, power and authority, bribery, etc.,
where voters invest resources (e.g., persuasiveness, money, time, personal credibility, etc.)
to influence one another.

The model lends itself to pursue several lines of research. First of all, it will be important
to study results concerning the survivability of equilibria in games that are not consistent.



Second, integrity constraints have not been a central focus of the current paper but lie at the
heart of aggregation problems. In future work we want to investigate further how pre-vote
negotiation can effectively support collectively rational aggregation. Finally, the model can
be enriched along several dimensions in order to make it more realistic. In this respect the
addition of budgets for players’ transfers seems to be a natural extension of the model.
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