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Abstract

Positional scoring rules in voting compute the score of an alternative by summing the scores
for the alternative induced by every vote. This summation principle ensures that all votes con-
tribute equally to the score of an alternative. We relax this assumption and, instead, aggregate
scores by taking into account the rank of a score in the ordered list of scores obtained from the
votes. This defines a new family of voting rules, rank-dependent scoring rules (RDSRs), based
on ordered weighted average (OWA) operators, which include all scoring rules, and many oth-
ers, most of which of new. We study some properties of these rules, and show, empirically, that
certain RDSRs are less manipulable than Borda voting, across a variety of statistical cultures
and on real world data from skating competitions.

1 Introduction
Voting rules aim at aggregating the ordinal preferences of a set of individuals in order to produce
a commonly chosen alternative. Many voting rules are defined in the following way: given a vot-
ing profile P, a collection of votes, where a vote is a linear ranking over alternatives, each vote
contributes to the score of an alternative. The global score of the alternative is then computed by
summing up all these contributed (“local”) scores, and finally, the alternative(s) with the highest
score win(s). The most common subclass of these scoring rules is that of positional scoring rules:
the local score of x with respect to vote v depends only on the rank of x in v, and the global score of
x is the sum, over all votes, of its local scores. Among prominent scoring rules we find the Borda
rule as well as plurality, antiplurality and k-approval. However, there are occasionally undesirable
features of scoring rules.

Example 1 Four travelers have been asked to try six restaurants and to rank them for
TripAdvisor.com. The resulting profile is P = 〈acbde f ,bcade f ,dcaeb f ,ebad f c〉, where
〈acbde f 〉 means that the voter’s preferred alternative is a, followed by c etc. The organizers of
the competition feel that the highest and lowest ranks given to each alternative should count less
than median scores. Therefore, they feel that c should win, followed by b, followed by a, then d,
then by e, and finally by f . Neither Borda (which would elect a), nor k-approval for any k, gives this
exact ranking.

However, if we first compute the four local Borda scores of the six alternatives disregarding
the two most extreme scores for each, then we get the desired ranking. More generally, we can
weigh the scores according to their ranks in the ordered list of scores; for instance, the two extreme
scores may have a weight 1/6 each while the middle scores would have a weight 1/3 each. This rank
dependent weighting can be done in a natural way by coupling positional scoring rules together
with ordered weighted average operators (OWAs) [34], to create Rank Dependent Scoring Rules
(RDSRs). Each RDSR is characterized by the combination of a vector of both scores s,si ∈ s,≥ 0
and weights w,wi ∈ w≥ 0.

RDSRs constitute an important class of aggregation procedures that are used quite commonly
in everyday life. Artistic sports in the Summer and Winter Olympics, such as diving and skating,
are judged by first removing the high and low scores and averaging the remaining scores achieved.
Before recent changes, the London Interbank Offer Rate (LIBOR) inter-day bank rate, responsible
for setting interest rates for most financial markets in the world, was computed (and manipulated)
by soliciting 18 estimations of price, removing the high and low 4, and averaging the remaining



10 [1]. Biased aggregators such as RDSRs, a new area of study, are commonly used in internet
recommendation settings such as Yelp! and TripAdvisor, and may affect rating behavior [16].

Order weighted averages have been studied in the context of cardinal utilities. In this paper
we use OWAs to aggregate scores obtained by alternatives according to their ranks in the votes.
This requires us to export these rank dependent functions from cardinal settings to ordinal settings.
This allows us to apply rank dependent functions in setting where eliciting cardinal utilities is not
feasible or expressible. Casting these functions as voting rules allows us to study these aggrega-
tion procedures with the same tools and techniques we use to study voting rules in social choice.
Rank dependent functions have received much attention in multi-criteria decision making (see, e.g.,
Yager et al. [35]) and decision under uncertainty (see, e.g., Diecidue and Wakker [10]). OWAs have
scarcely been used in social choice, with the recent exception of work by Skowron et al. [29], where
they have been used in the context of proportional representation for multi-winner elections and
group recommendation. Skowron et al. use OWAs to allow the flexibility to give a different impor-
tance to an agent’s most preferred candidate/item among those that are selected, to her second most
preferred candidate/item, etc.

Because w can give less weight to more extreme ranks given to an alternative,1 we call these
vectors extreme-averse. We expect that rules obtained for such extreme-averse vectors will typically
be less frequently manipulable by small coalitions of voters than the corresponding rules obtained
for a uniform w. We confirm this expectation for a variety of statistical distributions and real world
data from skating competitions in Section 6.

In the next section we formalize the notion of combining positional scoring rules with OWAs to
create rank dependent scoring rules (RDSRs). We then provide background for and study axiomatic
properties of this new class of voting rules. Next, we focus on a particular subclass of RDSRs, called
the “Borda family”, obtained by fixing the scoring vector s to Borda, and allowing the OWA vector
to vary. Then we give experimental results that show that under several different distributions over
profiles, some typical members of the Borda family are less frequently manipulable by a single voter
than the Borda rule.

2 Formal Definitions
An election is a pair E = (C,P) where C is the set of candidates or alternatives {c1, . . . ,cm}, |C|= m,
and P is a profile consisting of a set of voters indexed by their preference orders, {�1, . . . ,�n},
|P|= n. Each voter is represented by a complete strict order (a vote) over the set of alternatives.

Many voting systems are positional scoring rules [30, 36], where there is a score vector s =
〈α1,α2, . . . ,αm〉, with α1 ≥ α2 ≥ . . . ≥ αm and α1 > αm, that assigns points, for each vote, to the
alternative placed at position αi in that vote. The winner(s) are the alternative(s) maximizing the
sum of points awarded over all the voters. Arguably the most famous positional scoring rules are
Borda and plurality, with sBORDA = 〈m−1,m−2, . . . ,m−m〉 and sPLURALITY = 〈1,0, . . . ,0〉.

To combine positional scoring rules with OWAs [34], we introduce a weight vector w =
〈w1,w2, . . .wn〉 that is normalized, (∑n

i=1 wi) = 1. Through this construction we are able to maintain
the property of anonymity in our voting rules while at the same time moderating the results based
on the given weight vector over the ranks of alternatives. Elkind et al. [12] introduced a family
of monotonic, non-homogenous rules, M-scoring rules, which are special cases of OWA operators
where M = m/2+1 entries equal to weight 1 and all other entries are weight 0.

We formally define RDSRs in Definition 2 as irresolute social choice functions, that output a
possibly empty set of (co)winners; as usual, irresolute rules can be made resolute by being combined
with a tie-breaking priority mechanism.2

1Though, we may also give more weight to more extreme ranks given to an alternative, which is arguably much less
desirable.

2As the composite scores also allow us to completely rank alternatives, RDSRs can also be defined as social welfare



Definition 2 Given a scoring vector s = 〈s1, . . . ,sm〉 and an OWA vector w = 〈w1, . . . ,wn〉, where
m is the number of alternatives and n the number of voters, we can define a voting rule Fs,w(P)3

associated with s and w.
Let P = 〈�1, . . . ,�n〉 be a profile. For each voter �i and alternative c j, let rank(c j,�i) be

the rank of c j in vote �i. Let r(c j,P) = 〈rank(c j,�1), . . . ,rank(c j,�n)〉 be the vector of ranks
received by alternative c j and r↑(c j,P) be the sorting of r(c j,P) in non-decreasing order such that
the elements r↑1 ≤ r↑2 ≤ . . .≤ r↑n.

For alternative c j we create a vector of the scores associated with the ranks in all the votes
to create the rank score vector, S(c j,P) = 〈srank(c j ,�1), . . . ,srank(c j ,�n)〉. In order to apply the OWA
operators we need to sort S(c j,P) in non-decreasing order. Thus let S↑(c j,P) be a reordering of
S(c j,P) where the elements S↑1 ≤ S↑2 ≤ . . .≤ S↑n.

We can now define the score for each alternative c j as:

Ts,w(c j,P) = w ·S↑(c j,P) =
n

∑
i=1

wi×S↑i(c j,P)

and Fs,w selects the alternative(s) maximizing Ts,w(x,P).

Thus, w1 is associated with the worst score that an alternative receives, w2 to the second worst
score, etc. We use Pareto dominance to compare two score vectors: a vector a = 〈a1, . . . ,an〉 domi-
nates another vector b = 〈b1, . . . ,bn〉 if, for all i, ai ≥ bi and ai > bi for some i.

Example 3 As in Example 1, let m = 6, n = 4 and P = 〈acbde f ,bcade f ,dcaeb f ,ebad f c〉. Now, let
s = sBORDA = 〈5,4,3,2,1,0〉, and w = 〈0,1/4,1/4,1/2〉.

w = 〈 0 1/4 1/4 1/2 〉 Ts,w(x)
S↑(a) = 〈 3 3 3 5 〉 4.0
S↑(b) = 〈 1 3 4 5 〉 4.25
S↑(c) = 〈 0 4 4 4 〉 4.0
S↑(d) = 〈 2 2 2 5 〉 3.5
S↑(e) = 〈 1 1 2 5 〉 3.25
S↑( f ) = 〈 0 0 0 1 〉 0.5

Therefore, the (unique) winner is b. If instead we choose w′ = wOLYMPIC = 〈0,1/2,1/2,0〉, then the
scores are respectively 3.0,3.5,4.0,2.0,1.5,0.0 and the winner is c (followed by b, a, d, e and f ).

So far, we have used weight vectors where we drop some extreme rankings. RDSRs are much
more general than this. There are several interesting cases that occur based on settings to w. We
define two families of OWA vectors and then discuss a few specific cases of induced voting rules.

k-Uniform Interval (wk-INTERVAL): Given parameter k, we drop k scores at the beginning
and ending of the OWA operator: w = 〈01, . . . ,0k,1/n−2k, . . . ,1/n−2k,01, . . . ,0k〉. This is a proper
generalization of wOLYMPIC and allows us to capture other rules that are used in practice such
as the LIBOR interest rate setting aggregation rule [1]. As specific cases of k-uniform intervals
we have: the uniform vector wAVERAGE = 〈1/n, . . . ,1/n〉, obtained for k = 0; the Olympic Average
wOLYMPIC〈0,1/n−2, . . . ,1/n−2,0〉; and the median (wMEDIAN) wn+1/2 = 1 when n is odd and w(n/2)+1 = 1
when n is even, with wi = 0 for all other i. Using wAVERAGE leads to recovering classical positional
scoring rules.

k-Median (wk−MEDIAN): Given k ∈ {1, . . . ,n}, let

wk−MEDIAN = 〈01,02, . . . ,0k−1,1k,0k+1, . . . ,0n〉.

functions, that produce a set of weak orders on the set of alternatives.
3We will often omit P when it is clear from context.



When k = n, then under the condition s1 > s2, we get the nomination rule where the co-winners
are the alternatives that are ranked first (and thus have highest score) by at least one voter. More
generally, if s1 = . . . = si > si+1, then the co-winners are the alternatives ranked among the top i
alternatives by some voter. Note that Fs,wNOMINATION

= Ft,wNOMINATION
for any two scoring vectors s, t

such that s1 > s2 and t1 > t2.
When k = 1, we recover a rule sometimes called “maximin” [7], that we prefer to call “maximin-

score” (so that it is not confused with the Simpson-Kramer rule, which is also often called “max-
imin”), where all co-winners maximize the least score they receive, or equivalently, minimize the
largest rank they receive. Note that this is independent of the setting of s, that is, for any two strictly
decreasing scoring vectors s, t, we have Fs,wMAXIMIN

= Ft,wMAXIMIN
.

When n is odd, for k = n+1
2 we obtain again the median rule, that for which the co-winners maxi-

mize their median rank; again, this is “almost” independent of the setting of s (and fully independent
of the setting of s under the restriction that all scores of s are distinct).

When k = b n
2c and s = sBORDA, and more generally for any strictly decreasing scoring vector,

we recover the Bucklin winner(s). Under the Bucklin rule, the alternative receiving a strict majority
(> b n

2c) of votes in the first round is declared the winner. If no alternative has a strict majority, then
the alternative(s) receiving > b n

2c votes including the first place and second place votes is declared
the winner(s). This procedure, adding the votes in the next position, continues until some set of
alternatives is declared the winner. With k = b n

2c and s = sBORDA note that any alternative receiving
a majority of first place votes will be the only alternative with m points in the k = b n

2c position of
his sorted score vector (S↑). If no alternative has this score, then the set of alternative(s) which have
m− 1 points in the k = b n

2cth position of S↑ will be those alternatives who have a strict majority
of votes placing them in first or second place, and on for the eventual Bucklin winner, in whatever
“round” it may appear. Thus, With k = b n

2c and s = sBORDA we recover the Bucklin voting rule.
The median rank rule is reminiscent of the majority judgment rule proposed by Balinski and

Laraki [2]. However, there is a crucial difference: majority judgment is defined for a cardinal profile
where each voter gives a score to each alternative. In RDSRs we map from ordinal profiles, as it is
common in voting — this is important, especially when it comes to position our voting rules with
respect to others.

M -scoring rules: Taking

wM = 〈11,12, . . . ,1bn/2+1c,0bn/2+2c, . . . ,0n〉

we obtain the family of M -scoring rules defined in [12].

3 Properties of RDSRs
There are many properties surveyed in the social choice literature. A rule is said to have or obey a
property if the property holds for all possible profiles. We focus on properties important to us, and
refer the reader to texts in the literature for a more comprehensive survey, e.g., [23].

Some basic fairness criteria that most sensible voting rules obey are: anonymity, insensitivity to
permutations of the set of voters in a profile P; neutrality, insensitivity to permutations of the set of
alternatives C; and universal domain, every alternative in C can be a winner.

Condorcet consistency states that, when one alternative is majority pair-wise preferred to all
other alternatives, that alternative is the unique winner. Monotonicity states that, given a profile P
and winning alternative x, if we modify any set of votes in P to produce P′ where the only change is
promoting x, then x is still the winner of the election run on the profile P′.

Other properties concern the behavior of voting rules when splitting, combining, and expanding
the given profiles. Reinforcement states, given two disjoint profiles P1 and P2, if F(P1)∩F(P2) 6= /0
then F(P1∪P2) = F(P1)∩F(P2). Homogeneity states, given a profile P, multiplying all voters in the
profile any number of times should not change the result.



Reinforcement and homogeneity concern variable electorates and are not immediately applica-
ble to RDSRs, which are defined for a fixed value of n. However, they apply to families of rules
{w(n),n ≥ 1} of vectors (one for each possible number of votes), exactly like properties that con-
cern variable sets of alternatives need scoring rules (typically defined for a fixed m) to be defined as
families of rules for a varying m.

All RDSRs satisfy anonymity and neutrality. We show that monotonicity (satisfied by all scoring
rules) extends to rank-dependent scoring rules.

Proposition 4 For every w and s, Fs,w is monotonic.

Proof. Let P be a profile and x ∈ Fs,w(P). Let P′ be obtained by raising x from rank i to rank
i− 1 in one of the votes, leaving everything else unchanged. Let j be the number of votes in P
who rank x in the first i− 1 positions. Then S↑(x,P) = 〈S↑1, . . . ,S↑n− j, . . . ,S↑n〉, with S↑n− j = si,
and S↑(x,P′) = 〈S↑′1, . . . ,S↑

′
n− j, . . . ,S↑

′
n〉 with S↑′k = S↑k for all k 6= n− j and S↑′n− j = si−1. Because

si−1 ≥ si, S↑(x,P′) weakly Pareto-dominates S↑(x,P′), therefore Ts,w(x,P′) ≥ Ts,w(x,P). Similarly,
Ts,w(x′,P′)≤ Ts,w(x′,P) for any x′ 6= x; therefore, the score of x remains maximal when moving from
P to P′, and x ∈ Fs,w(P). q

The following example shows that RDSRs do not necessary fulfill reinforcement nor homogene-
ity, even for natural collection of scoring vectors and OWA vectors; a similar result was shown for
M -scoring rules in [12].

Example 5 Set wOLYMPIC and sBORDA. Let C = {a,b,c,d,e} and P = 〈abcde,bcade,deacb〉. This
gives us S↑(a,P) = 〈2,2,4〉, S↑(b,P) = 〈0,3,4〉, S↑(c,P) = 〈1,2,3〉, S↑(d,P) = 〈1,1,4〉, and
S↑(e,P) = 〈0,0,3〉, thus, Ts,w(a,P) = 2, Ts,w(b,P) = 3, Ts,w(c,P) = 2, Ts,w(d,P) = 1, Ts,w(e,P) = 0,
and the winner is b.

Now, let 3×P be the 9-voter profile obtained by replacing each vote in P by three identical
votes. We now have S↑(a,P) = 〈2,2,2,2,2,2,4,4,4〉, S↑(b,P) = 〈0,0,0,3,3,3,4,4,4〉, etc. Thus,
Ts,w(a,P) = 18/7, Ts,w(b,P) = 17/7, Ts,w(c,P) = 16/7, Ts,w(d,P) = 11/7, Ts,w(e,P) = 6/7, and the winner
is a.

Example 5 shows that some natural RDSRs are not homogeneous, and, a fortiori, do not satisfy
reinforcement. This implies that the class of RDSR contains elements that are not generalized
scoring rules [33].

Proposition 6 For every m≥ 3 and n≥ 5, no rule Fs,w is Condorcet-consistent.

Proof. Assume n≥ 5 and n 6= 8. Let X = {x1, . . . ,xm}. Let k = b n
3c and q = n−3k (note that q≤

2); let P be the following profile: we have k votes x1 � x2 � . . .� xm, k votes xm � x1 � . . .� xm−1
and n−2k = k+q votes x2 � . . .� xm−2 � x1 � xm. Because n≥ 5 and n 6= 8, we have 2k > n

2 and,
a fortiori, 2k+q > n

2 , therefore x1 is a Condorcet winner. Now, the nondecreasingly reordered score
vector for x1 is 〈n−2k× sm−1,k× s2,k× s1〉 and that of x2 is 〈k× s3,k× s3,n−2k× s1〉, therefore
the scores of x1 and x2 are

Ts,w(x1) = ∑
k+q
i=1 wism−1 +∑

2k+q
i=k+q+1 wis2 +∑

n
i=2k+q+1 wis1

Ts,w(x2) = ∑
k
i=1 wis3 +∑

2k
i=k+1 wis2 +∑

n
i=2k+1 wis1.

and Ts,w(x1)−Ts,w(x2)

= ∑
k
i=1 wi(sm−1− s3)+∑

k+q
i=k+1 wi(sm−1− s2)

+∑
2k
i=k+q+1 wi(s2− s2)+∑

2k+q
i=2k+1 wi(s2− s1)

+∑
n
i=2k+q+1 wi(s1− s1).



None of the five terms can be strictly positive, therefore Ts,w(x1)−Ts,w(x2) ≤ 0, which entails
Fs,w(P) 6= {x1}, which shows that whatever the value of w and s, Fs,w(P) is not Condorcet-consistent.
The proof for n = 8 is similar, but taking 2 votes x1 � x2 � . . .� xm, 3 votes xm � x1 � . . .� xm−1,
and 3 votes x2 � . . .� xm−2 � x1 � xm. q

This result generalizes the known result from Fishburn [15] and Moulin [23] that no scoring rule
is Condorcet-consistent.

4 The Borda Family
This section focuses on the subclass of RDSRs obtained by fixing the scoring vector to match the
Borda scoring vector sBORDA = 〈m−1,m−2, . . . ,m−m〉. Maximizing an OWA applied to scores is
equivalent to minimizing an OWA applied to ranks, hence this family (all RDSRs realizable using a
Borda scoring rule) is particularly meaningful (besides the importance of the Borda rule in voting).
A first question is, are there any positional scoring rules, apart from Borda, which belong to the
Borda family? The answer is, somewhat surprisingly, positive, when n and m are both fixed.

Proposition 7 Let n and m be fixed, and define:

wLEXIMIN = 〈mn−1/W ,mn−2/W , . . . ,m/W ,1/W〉

and
wLEXIMAX = 〈1/W ,m/W , . . . ,mn−2/W ,mn−1/W〉,

where W = 1+m+ . . .+mn−1. Then FsBORDA ,wLEXIMIN and FsBORDA ,wLEXIMAX are classical scoring rules,
associated with the scoring vectors:

sLEXPL = 〈nm−1,nm−2, . . . ,n2,n,1〉

and
sLEXAPL = 〈nm−1,nm−1−n, . . . ,nm−1−nm−2,0〉.

Proof. Let us start with FsBORDA ,wLEXIMIN . For any profile P and integer k, let Ak(x,P) be the number
of votes in P in which x is ranked in position k, and Bk(x,P) = ∑ j≤k Ak(x,P) be the number of
votes in P in which x is ranked in position at most k. Recall: ri(x) is the ith best rank given to x,
and m− ri(x) the ith best Borda score given to x. Note that we have ri(x) = k if and only if (1)
Bk−1(x,P)< i and (2) Bk(x,P)≥ i.

We claim that (1) for any x,y, we have TsBORDA ,wLEXIMIN(x)> TsBORDA ,wLEXIMIN(y) if and only if there
is a k ≤ m−1 such that (a) for all i < k, Ai(x,P) = Ai(y,P) and (b) Ak(x,P)> Ak(y,P).

Assume (a) and (b) hold for some k. Let i∗ = Bk(y,P) + 1. Then
we have ri∗(x) = k and ri∗(y) ≥ k + 1, and for all i ≤ i∗, ri(x) = ri(y).

Now, TsBORDA ,wLEXIMIN(x)−TsBORDA ,wLEXIMIN(y)
= 1

W ∑
n
i=1 mn−i(m− ri(x))− (m− ri(y))

= 1
W ∑

n
i=1 mn−i(ri(y)− ri(x))

= 1
W

(
mn−i∗(ri∗(y)− ri∗(x))+∑i>i∗mn−i(ri(y)− ri(x))

)
≥ 1

W

(
mn−i∗ −∑i>i∗mn−i(m−1)

)
> 0.

Conversely, if (a) and (b) do not hold then for all k, we have Bk(x,P) ≤ Bk(y,P), therefore, for
all i, ri(x)≥ ri(y), which implies TsBORDA ,wLEXIMIN(x)≤ TsBORDA ,wLEXIMIN(y).

Now, we claim that (2) the total score according to the scoring rule associated with sLEXPL,
TsLEXPL(x)> TsLEXPL(y) if and only if there is a k≤m−1 such that (a) for all i < k, Ai(x,P) = Ai(y,P)
and (b) Ak,P(x)> Ak,P(y).



Assume (a) and (b). We have TsLEXPL(x) = ∑
m
i=1 Ai(x,P) · nm−i. Note that, for any i, |Ai(x,P)−

Ai(y,P)| ≤ n.
Then TsLEXPL(x,P)−TsLEXPL(y)
= ∑

m
i=1 Ai(x,P) ·nm−i−∑

m
i=1 Ai(y,P) ·nm−i

= (Ak(x,P)−Ak(y,P))nm−k +∑
m
i=k+1(Ai(x,P)−Ai(y,P))nm−i

≥ nm−k +(n) ·nm−k+1

> 0.
Conversely, if (a) and (b) do not hold then for all k ≤ m− 1, we have Ak(x,P) ≤ Ak(y,P); this

means that either there is a k≤m−1 such that (a) for all i≤ k, Ai(x,P) = Ai(y,P) and (b) Ak(y,P)>
Ak(x,P), in which case TsLEXPL(y)−TsLEXPL(x,P) ≥ 0, or that for all k, Ak(x,P) = Ak(y,P), in which
case TsLEXPL(y)−TsLEXPL(x)≥ 0 as well.

(1) and (2) together imply that FsBORDA ,wLEXIMIN is the scoring rule associated with scoring vector
sLEXPL. The proof that FsBORDA ,wLEXIMAX is the scoring rule associated with scoring vector sLEXAPL is
similar. q

Example 8 Let m = 4, n = 6, and the profile P be composed of two votes x � t � z � y, 2
votes y � t � x � z, one vote z � y � x � t and one vote t � z � x � y. The vectors of
ranks, reordered non-decreasingly, are r↑(x) = 〈1,1,3,3,3,3〉; r↑(y) = 〈1,1,2,4,4,4〉; r↑(z) =
〈1,2,2,2,4,4〉; r↑(t) = 〈1,2,2,3,3,4〉. We have A1(y,P) = A1(x,P) and A2(y,P)> A2(x,P), there-
fore TsLEXPL(y) > TsLEXPL(x); and we have A1(y,P) > A1(z,P) and A1(y,P) > A1(t,P), therefore
TsLEXPL(y) > TsLEXPL(z) and TsLEXPL(y) > TsLEXPL(t): the winner for sLEXPL is y. We can also check
that the winner for sLEXAPL is x.

Note that if n is not fixed, then FsBORDA ,wLEXIMIN and FsBORDA ,wLEXIMAX are not scoring rules in the
usual sense, because all weights but one would have to be infinitesimals.

Therefore, when n and m are fixed, at least three rules are in the intersection of the family of
scoring rules and the Borda family (Borda, lexicopraphic plurality and lexicographic antiplurality),
whereas when only m is fixed, only Borda is known to be both in the family of scoring rules and in
the Borda family. We conjecture that the intersection (on both cases, n fixed and n not fixed) do not
contain any other rules than these, but did not come up with a proof.

5 RDSRs and Fairness
The use of the OWA operator in RDSRs allows an election designer to favor a fair distribution of
satisfaction among voters, whenever this is desirable. The score Ts,w(c j,P) can act as an inequal-
ity measure (see, e.g., [32]) taking into account the distribution of scores srank(c j ,�k),k = 1, . . . ,n
whenever weights satisfy w1 > w2 > .. . > wn > 0.

The intuition behind choosing strictly decreasing weights can be given as follows: one puts
more weight on the least satisfied voter (smallest score), then on the second least satisfied voter
and so on. This is a natural extension of the min and leximin operators. These operators allow for
more compensation between scores assigned to alternatives by the voters. With a proper choice of
weights, there remains some possibility for the election designer to compensate the dissatisfaction
of one agent by the satisfaction of some others, while still preserving a somewhat egalitarian notion
of fairness by favoring alternatives that have a well-balanced scoring profile. Specifically, we want
to favor alternatives whose vectors of scores do not contain too many extreme scores.

This can be stated more formally using transfers that reduce societal inequality, also known as
Pigou-Dalton tranfers [24], by the following proposition.

Proposition 9 Let P=(�1, . . . ,�n) be a preference profile and c an alternative such that rank(c,�k
) < rank(c,�i) for some pair of voters (i,k). Then for any alternative c′ such that vector r(c′,P)



and r(c,P) satisfies:
srank(c′,�k) = srank(c,�k)− ε

srank(c′,�i) = srank(c,�i)+ ε

srank(c,� j) = srank(c′,� j), ∀ j ∈ N \{i,k}

for some ε ∈ (0,sk− si), then Ts,w(c′,P)> Ts,w(c,P) whenever w is strictly decreasing.

Proof. Let L and L′ be the two vectors of Rn defined by L j = ∑
j
k=1 S↑k(c,P) and L′j =

∑
j
k=1 S↑k(c′,P) for all j ∈ N. Since we pass from S↑(c,P) to S↑(c′,P) using a Pigou-Dalton transfer

of size ε from component srank(c,�k) to component srank(c,�i) then we know that L′ Pareto-dominates
L [19, 28].

Now, let w′ be the vector derived from w by setting: w′n = wn and w′j = w j −w j+1 for j =
{1, . . . ,n−1}, we observe that Ts,w(c,P) = w′ ·L and Ts,w(c′,P) = w′ ·L′. Then, due to the strictly
decreasing property on w, we know that w′j > 0 for all j ∈ N. Hence w′j ·L′j ≥ w′j ·L j for all j ∈ N,
one of these inequalities being strict by Pareto dominance. Hence w′ · L′ > w′ · L and therefore
Ts,w(c′,P)> Ts,w(c,P). q

Hence, when using strictly decreasing weights, an alternative c maximizing an OWA score
Ts,w(c,P) over the set of alternatives has a scoring vector S↑(c,P) that cannot be improved in terms
of Pigou-Dalton transfer by another vector S↑(c′,P). This is a way of rewarding fairness in score
aggregation as illustrated in the following Example.

Example 10 Let m = 4, n = 3, P = 〈acbd,cbad,dbac〉, s = sBORDA, and w = 〈1/2,1/3,1/6〉.

w = 〈1/2 1/3 1/6 〉 Ts,w(x)
S↑(a) = 〈 1 1 3 〉 8/6
S↑(b) = 〈 1 2 2 〉 9/6
S↑(c) = 〈 0 2 3 〉 7/6
S↑(d) = 〈 0 0 3 〉 3/6

Here b is the winner whereas a,b,c would remain indifferent under the Borda rule, while the
maximin-score rule (cf. Footnote 4) would also be indifferent between a and b. Note that the Leximin
refinement of the maximin-score rule would yield the same ranking b � a � c � d as Ts,w, but this
is not always the case. Consider the scoring vectors S↑(x) = 〈0,3,3〉 and S↑(y) = 〈1,1,1〉. We get
Ts,w(x) = 3/2 whereas Ts,w(y) = 1. In such drastic cases where fairness is strongly conflicting with
overall efficiency (measured by the sum of scores), RDSRs allow the election designer the possibility
of sacrificing a minority of opinions so as to preserve a high average score, thus departing from the
Leximin refinement of the maximin-score rule.

6 Manipulation: Empirical Experiments
We conjecture that RDSRs that drop the extreme ranks may be, on average, less manipulable than
standard scoring rules. Since all voting rules are manipulable we can only hope that by dropping
some of the extreme ranks we have defined a class of voting rules that is manipulable less often in
expectation. Since RDSRs are used in practice in situations with small numbers of voters, such as
Olympic artistic scoring and interest rates, we investigate settings that contain one manipulator and
just a handful of voters.

Commonly, manipulation in computational social choice is defined so its computational com-
plexity can be studied cleanly as a decision problem [4]: “given a profile, and an alternative x, can
the voter change her vote so that x is the winner?” Here we use the definition of manipulation
from classical social choice [3]: “given a profile, can the manipulator change her vote so that the
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Figure 1: Graphs showing the frequency of manipulation for OWAs using the wk-INTERVAL weight
vector versus normal Borda scoring for instances with 10 voters. Generally, as we increase k (the
number of dropped ranks) towards the median we have less opportunity for manipulation. This
relationship becomes particularly strong as we increase the correlation among the votes.

outcome is better than with her original, sincere, vote?” This requires lifting preferences over alter-
natives to sets of alternatives. We use the definition from Duggan and Schwartz [11] known as the
optimistic manipulator assumption (also known as the non-unique winner model in computational
social choice). Formally, a manipulation by voter i exists if if there is a vote �′i and alternative x
such that x ∈ Fs,w({P\ �i}∪ �′i) and rank(x,�i)> rank(x,�i) for all j ∈ Fs,w(P).

Worst-case results about the hardness of manipulation abound in social choice [4,8,14] but these
results may not reflect the cost in practice to compute manipulations [21, 26, 31]. The complexity
of manipulation for the Borda rule, which we study here, is polynomial for a single manipulator but
NP-complete for two or more manipulators [4, 9] Many such analyses assume that all preferences
are equally likely, but that is not supported by studies in behavioral social choice [25, 27] or studies
on real data [20, 27]. In order to understand how the manipulability RDSRs changes with respect to
the underlying distribution of votes we use five generative statistical cultures to create profiles for



our testing as well as testing on real world data.

6.1 Synthetic Data
We study manipulation under several assumptions about the distribution of preferences over the
m alternatives. The Impartial Culture (IC) assumes the probability of observing any of the m!
preference orders is equally likely for each voter; namely p = 1

m! . This culture is a kind of worst
case assumption, we do not know anything about the feelings of the underlying voters so we assume
there is no bias in the generation process. The Impartial Anonymous Culture (IAC) is a strict
generalization of IC which assumes the probability of observing any probability distribution over
the m! possible orders is equally likely. That is, each vector of length m! that has sum 1, describing
the distribution over the m! possible votes, is equally likely to occur.

The Mallows Mixture Models (MM) makes the underlying assumption that there is a true
ranking and that individuals deviate from the ground truth with decreasing probability as the ranking
moves away from the reference. Given reference rankings σ1, . . .σn, probabilities φ1, . . . ,φn, and
mixture model (discrete probability distribution) π1, . . . ,πn, we generate rankings that have a Kendall
Tau distance τ = (σ ,σ ′) from the reference ranking that is proportional to φ τ

i . We select among the
n models by selecting one randomly from the given probability distribution [17, 18]. We use two
flavors of Mallows Models in our experiments: a pure Mallows model with one reference order and
a Mallows Mixture with five.

Finally we examine a distribution which creates a correlation between the shape of the individual
preference profiles. The Single Peaked Impartial Culture (SPIC) assumes that each single peaked
preference profile compatible with m alternatives is equally likely. Single-peakedness is is an im-
portant domain restriction introduced by Black [5] and is widely studied in the computational social
choice community for its strategic [13] and empirical properties [20]. Intuitively, single-peakedness
is the idea that all voters have a point along a shared axis where they would be happiest, and rank
alternatives farther from this point worse.

In Figures 1 we compare the manipulability of the Borda scoring vector with OWAs using vari-
ants of the wk-INTERVAL weight vectors. For each of the statistical cultures mentioned, we generate
1000 random instances and test, via brute force search, whether a single agent that is randomly drawn
from the set of voters can successfully manipulate the instance. Any election where the outcome is
the same as the manipulator’s honest preference was discarded and a new instance generated. Thus,
in all 1000 elections, the results are never the same as the manipulators true preference.

We see that, as we induce more correlation between the voters, we decrease the opportunities for
manipulation. Thus, in the limit for a fixed dispersion parameter, a Mallows Mixture with a large
number of reference orders tend more towards the IC model (all orders are increasingly, equally
likely), while a Mallows model with a single reference will have a more tightly correlated set of
votes, tending towards profiles that exhibit the Single-Peaked domain restriction.

Even with the decreased opportunities for manipulation in these correlated models, RDSRs do
better when we drop a small percentage of the extreme ranks. This is probably because, in these
small settings, one extreme voter can move a particular alternative up or down based on an extreme
rank. If a particular alternative is receiving 1’s and 2’s on average and we give him a 9, then this
score is very out of line with the feelings of the group. However, using wk-INTERVAL vectors we can
downplay these extreme scores and move more towards the median view of all the voters. Similar
results were shown by Cervone et al. [6] in their work on voting rules that use the mediancenter to
aggregate preferences.

We ran the same experiment for settings with 20 and 30 voters. As with most results on ma-
nipulation, as the pool of voters grows larger, the opportunities for manipulation decrease. In the
uncorrelated models there is still a (relatively) large chance for manipulation; when we go to the
correlated models we eliminate these opportunities. This may be why variants of wk-INTERVAL are
used for artistic sports in the Olympics and other places where there is some general consensus



Figure 2: Graphs showing the frequency of manipulation for OWAs using the wk-INTERVAL weight
vector versus normal Borda scoring for instances with 10 voters redrawn from various datasets in
ED-00006 [22]. The results on the real-world data are even more striking than the synthetic data.
Only dropping the top and bottom ranks (as is often the case in Olympic artistic sports) virtually
eliminates the opportunities for manipulation by a single voter

about technical ability with small perturbations in the final orderings of the individual voters. In
these settings, as we can see from our experiments, mixing scoring rules with OWA vectors can help
to eliminate incentives for individuals to misreport their preferences.

6.2 Olympic Skating Data
In order to test if our results about manipulation hold in the real world we decided to test against real
world data. As the basis for this experiment we use the Skate dataset (ED-00006) from PrefLib [22].
This dataset contains figure skating rankings from various competitions during the 1998 season
including the World Juniors, World Championships, and the Olympics. These data sets have 10–25
alternatives (skaters) and 8–10 judges (voters).



In order to make the results computable and comparable with our results on the synthetic data
we perform resampling on these data sets. Using techniques from bootstrap sampling in behavorial
social choice [25, 27] we redraw, with replacement, 10 votes from the distribution of votes given
by the empirical data. We then project these votes down to the required number of alternatives by
randomly removing a set of alternatives from all the votes. We repeat this with independent draws
for 1000 samples per setting to k, m, and n. This process gives us information about the replicability
of observing an event — the more times we observe an event happening due to small perturbations
in the data, the more likely it may occur in practice.

As for the synthetic data, we discard (redraw) any instance that is strategy proof. In this exper-
iment we ended up discarding and redrawing a large number of instances (occasionally requiring
10,000 samples to draw 1,000 instances for testing) because the votes are highly correlated, so there
was often no manipulation possible. We tested with only those datasets from ED-00006 where there
was a strict linear order over all the alternatives (20 total distributions).

The results of the experiment for 6 of the 20 datasets is shown in Figure 2. The results are
even more striking than those for the synthetic data. There is almost no replicability of manipulable
instances when we drop just the high and low ranks. When using regular Borda scoring, manipulable
instances are drawn with high replicability, and thus may occur often in practice. The results for the
other 14 distributions are similar to those seen in Figure 2. The highest replicability for manipulation
for the Borda rule is ≈ 40% with an average of ≈ 33% while dropping just the two most extreme
ranks reduces the replicability of manipulation to a maximum of ≈ 13% with an average of ≈ 5%.

7 Conclusion
We have defined and analyzed a broad class of voting rules that take into account the weighted rank
that an alternative receives in the ordered list of scores obtained from a profile of voters. This new
family of voting rules, RDSRs, include many frequently used rules, including positional scoring
rules and Olympic style scoring. We have shown that some of these rules, which drop some extreme
ranks, appear to be less manipulable in practice than traditional scoring rules. We would like to have
a complete axiomatic characterization of this class of rules so that we can correctly position it with
respect to traditional scoring rules and other families of aggregation procedures.
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