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Abstract

We study a framework for large-scale decision-making through small group interac-
tions. In this framework, a crowd of participants interact with each other through
a sequence of small group interactions, the composition of which are chosen by an
algorithm designer, or in some settings, by nature. We consider the problem of
finding the wisdom of the crowd, which we take to be the generalized median, in
two settings: opinion formation and strategic bargaining. In both cases, we find a
significant difference between groups of two and three.

When the small groups are of size two, we find that there is no sequence of pair-
wise interactions which can always converge to a non-trivial approximation of the
generalized median so long as the small group interactions satisfy a natural property
we call local consistency. This holds even in the simple case when participants come
from a line.

In contrast, when the small groups are of size three, we find that the generalized
median can be tightly and efficiently approximated when participants come from R%
under the /; norm or when they come from any median graph, a class of graphs
including squaregraphs, trees, and grids. Specifically, suppose that participants of
each small group either update their opinions to, or come to consensus on, the
generalized median of the group as a result of their interaction. Then by simply
choosing the sequence of triads uniformly at random, the process is able to find a
(140(4/ 2))-approximation of the global generalized median with high probability.
Moreover, this occurs after each participant has only participated in an average
of O(log®n) small group interactions. In the strategic setting, we also design a
mechanism for the entire extensive form game which implements this behavior under
a Nash equilibrium. When participants treat each small group interaction as a
separate game, we show that this can be improved to a strong Nash equilibrium.

1 Introduction

In 1907, Sir Francis Galton went to a carnival and observed a competition occuring in
which participants could guess the weight of an ox. As people made their estimates, Gal-
ton recorded them and observed that the median, which he called the voice of the people
(Vox Populi), was remarkably close to the correct answer [13]. Based on this observa-
tion, he hypothesized that an appropriate aggregation of a crowd’s preferences can produce
an extremely accurate estimate, an idea that later became known as “the wisdom of the
crowd” [30]. This idea has continued to develop and flourish under the umbrella of crowd-
sourcing, in which simple units of information such as labels, rankings, or predictions are
elicited from individuals, and aggregated together (e.g. [20][24][33]).

In the political arena, this idea has also taken root under the auspices of participatory
and deliberative democracy, in which decision-making is crowdsourced to the constituents
of a governing body through various democratic innovations (e.g. [29][2][22]). One key
difference, due to the democratic nature of the domain, is that deliberation, and not just
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mere information aggregation, has been sought after as an important component to such a
process[9][11].

Motivated by this, we consider large-scale decision-making through deliberative pro-
cesses. Due to the many known limitations of humans in interacting with large groups of
individuals or dealing with large amounts of information (e.g. [26][18][28]), we specifically
study large scale decision-making through small group interactions. In this framework, a
global result is achieved through a sequence of small group interactions, the compositions
of which are decided by an algorithm designer, or in some cases, by nature. Besides its
applicability to deliberative democracies, such a framework may also produce benefits for
crowdsourcing in general, in that it allows one to design algorithms which leverage the
unique human ability to communicate, bargain, learn, and make creative decisions.

This idea of using small group interactions, while new for information aggregation and
the design of algorithms, is a fundamental one in the opinion formation literature. In
this context, the sequence of groups can be random, such as in flocking[31], or due to an
underlying social network|[8].While these models have been studied for their ability to find
the wisdom of the crowd, they have either focused on deGroot-like dynamics of repeated
averaging for which the wisdom of the crowd is defined as the mean (average) opinion[16],
or on Bayesian dynamics, in which the wisdom of the crowd is measured in terms of some
ground truth[1]. Also, both of these settings have typically considered the one-dimensional
case, where opinions come from the real line. Notably absent from these studies is the case
of the median, the quantity which Galton preferred over the mean[13][12]. As he states:

“...the middlemost estimate express the vox populi, every other estimate being
condemned as too low or too high by a majority of the voters.”

and

“...it may not be sufficiently realized that the suppression of any one value in
a series can only make the difference of one half-place to the median, whereas if
the series be small it may make a great difference to the mean.”

In the first quote, Galton was expressing a concept known in the voting literature as the
Condorcet winner, a candidate who receives at least half the votes in any pairwise election.
When such a candidate exists, this naturally describes the voice of the people, and is also
the optimal choice under a maximum likelihood interpretation[34]. In the second quote,
Galton notes that the median is robust to outliers and noise, whereas the mean is not.

In this paper, we consider the ability of small group interactions to find the generalized
median when opinions come from either R¢ under the /; norm or when they come from any
median graph, a class of multi-dimensional metric spaces including squaregraphs, trees, and
grids. The generalized median is defined as the point which minimizes the sum of distances
to the original points, and coincides with the median in the special case when opinions come
from a line. It is also robust to outliers[23] and strongly related to the Condorcet winner
in that, for any median graph, if a Condorcet winner exists, then it must coincide with the
generalized median[27][6]. Our main conclusion is the following: if one would like to find
the generalized median through small group interactions, then it is necessary and sufficient
to use small groups of size at least three.

1.1 Results summary

We consider two settings, opinion formation and strategic bargaining. In opinion formation,
each small group interaction leads participants to update their opinion according to an
opinion formation function. In strategic bargaining, all participants start with k tokens,
and each small group interaction takes the form of a bargaining dynamic in which the group



is required to come to consensus on one participant to support. The chosen participant,
who does not have to be one of the small group members, then receives one token from each
member of the small group.

For both of these settings, we find a surprising difference when using small group inter-
actions of size two versus those of size three. In a sentence, the generalized median cannot
be found using natural pairwise interactions, but can be found in a scalable manner under
simple triadic interactions. Specifically, suppose that small groups are of size two and that
the small group interactions satisfy a natural property we call local consistency. Then there
is no sequence of small group interactions which is able to find a non-trivial approximation
of the generalized median even for the simple case when participants come from a line.

In contrast, suppose that small groups are of size three and that participants of a small
group either update their opinions to, or come to consensus on, the generalized median
of the group (in the case of strategic bargaining, this requires the additional assumption,
discussed further in Section 4, that the generalized median of every three participants is also
represented by a participant). Then by simply choosing the sequence of triads uniformly at
Inn
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median with high probability. Moreover, this process is scalable to large crowds in that each
participant only needs to participate in an average of O(log2 n) small group interactions to
achieve this approximation. This is significant in that the participant only ever talks to a
rapidly vanishing fraction of the total participants, preventing the cognitive overload that
would have been experienced if required to talk to all other participants. In the strategic
setting, we also design a mechanism for the entire extensive form game which implements this
behavior under a Nash equilibrium. When participants treat each small group interaction
separately, we show another mechanism which improves this to a strong Nash equilibrium.

Beyond the results themselves, one of the most interesting contributions in our own eyes is
the idea of bringing small group interactions into the design of algorithms for crowdsourcing.
With the communication capabilities now available through the Internet, it is possible to
easily initiate small group interactions between arbitrary individuals in a crowd. The mode
of interaction, as well as the composition of groups can all be freely designed. Hopefully,
such an approach will produce interesting new algorithms as theoretical tools are brought
to bear on complex crowdsourcing tasks, and experimental insights and modeling (of small
group interactions) are simultaneously used to inform and motivate algorithm design.

random, the process is able to find a (14+O( ))-approximation of the global generalized

1.2 Other related work

We are not aware of other theoretical work on the design of crowdsourcing algorithms
through small group interactions. In practice, however, there exist crowdsourcing systems
such as the ESP game[32] which consist of a sequence of small group interactions. Even
though their small group interactions do not involve opinion formation or strategic bargain-
ing, one can also imagine modeling the interactions as a function of some participant state.
Currently, this game has been analyzed from a game-theoretic perspective[19].

There are also many experiments on decision-making in small groups. In [10], Fiorina
and Plott studied majority rule dynamics among groups of five in a euclidean space. They
found that the only consistently predictive theory was that when a Condorcet winner exists,
it is chosen. But more surprisingly, they show that even when the Condorcet winner does
not exist, participants are able to converge to a central point despite the chaos predicted by
McKelvey’s chaos theorem[25]. This experimental insight regarding a theoretical impossi-
bility result is illustrative of the benefits that experimental work can provide for the design
of algorithms via small group interactions.

Though small group interactions do not fall directly into social choice frameworks such
as rank or judgment aggregation, our goal is also to aggregate user opinions. As such, many



of our results and approaches are inspired from those of the social choice literature. These
include the axiomatic approach originating from Condorcet[34], impossibility results such as
Arrow’s impossibility theorem[3], the goal of reducing cognitive burden on participants[7],
and mechanisms to guard against strategic manipulation[14]. Most directly, the ideas of
this paper were initially inspired out of an attempt to understand preference elicitation for
rank aggregation, as described in Triadic Consensus[15].

1.3 Outline

Following a description of the model (Section 2), our results are divided into two major
sections. Section 3 defines a natural property called local consistency and demonstrates the
impossibility of finding the generalized median through any such pairwise interactions. In
contrast, Section 4 demonstrates that a simple triadic interaction can efficiently generate a
close approximation of the generalized median by simply using random interactions. It also
shows how one can implement the required triadic interactions under strategic equilibria.

2 Model

2.1 Median graphs and the generalized median

In our paper, we suppose that participants have opinions z1, x2,...,x, € X, where X’ can
be R? under the [; norm or any median graph. Define the interval I,, between points =
and y to be the set containing all points lying on a shortest path between x and y, i.e.
Iy = {w | d(z,y) = d(z,w) + d(w,y)}. A graph is a median graph if, for every z,y, 2,
Iy NI NI,.| =1, ie. there is exactly one point which lies on some shortest path between
xz and y, x and z, and y and z. See [5], [21], and [17] for surveys on the median graph
literature. Median graphs are interesting because they include many common graphs such
as trees, grids, and squaregraphs. We list well-known properties of median graphs which we
will use in Appendix A.

Our goal of finding the wisdom of the crowd is technically defined as finding the general-
ized median of the initial opinions, the point z* which minimizes D(z) = Y. d(z,z;). A
(14e€)-approximation of the generalized median is any point « for which D(z) < (14¢€)D(z*).
This definition for the wisdom of the crowd generalizes the median on a line (the concept
used by Galton), and also is strongly related to the concept of a Condorcet winner in that
any Condorcet winner must coincide with the generalized median (in median graphs).

2.2 Small group interactions

We consider a framework in which a sequence of small group interactions take place, during
which group “computations” occur. The computation that occurs in each small group
interaction is modeled as a function of the current state of the participant and those of the
group he interacts with. In this paper, the state of a participant is the current opinion,
x; € X, that is held. We consider two cases for the computation that occurs: opinion
formation and strategic bargaining. In the case of opinion formation, the computation
represents influence by the members of the group, and results in an updated opinion. In
the case of strategic bargaining, the computation represents a bargaining process in which
participants must jointly decide on a participant to support.

Definition 1 (Small group opinion formation). A small group opinion formation process
is represented by the function f : X x X* — Py, where X is the opinion space, k is the size
of the small group, and Px denotes a probability distribution over X .



f(x,8) is a function which takes an individual’s opinion = and the set of individuals
S in the small group, and outputs a probability distribution over the new opinion of the
individual. At each discrete time step, some small group of participants interact with
each other, during which each participant z updates their opinion by drawing from the
probability distribution f(z,S). The sequence of interacting participants could be the result
of an algorithm, or could arise from natural dynamics such as those existing in a social
network. One would like to identify sequences for which opinions are able to converge to
the generalized median.

Definition 2 (Small group bargaining). A small group bargaining process is represented by
the function g : X* — Py, where X is the opinion space, k is the size of the small group,
and Px denotes a probability distribution over X.

g(S) is a function which takes the set of individuals in the small group interaction S
and outputs a probability distribution over the joint opinion which the group decides on.
We consider such small group interactions in the setting where all participants start with k
tokens. At every point in time, some small group of participants is chosen (each of which
must have one token), and asked to come to consensus on a participant to support. The
chosen participant, who does not have to be one of the small group members, then receives
one token from each member of the small group, and the process repeats. One would like
to design a mechanism that results in a winner which is the generalized median.

We note that, for strategic participants who consider joint strategies that span multiple
small groups (an extensive form game), the function g could depend on factors outside of S
such as prior small group interactions. Our impossibility result will not apply to such cases.
Our possibility results will first consider a function ¢g(S) which achieves the generalized
median, and then how that we can implement the same function under a Nash equilibrium.

3 An impossibility result for pairwise interactions

In this section, we consider small group interactions of size two, and ask whether such
pairwise interactions can find the generalized median of the initial participant opinions.
We find a surprising result: for “natural” small group interactions, as formalized by a
mathematical property we describe as local consistency, no sequence of pairwise interactions
is able to always do better than a trivial (constant) approximation of the generalized median.
Our proof for this is constructive: we give a choice of initial participants opinions in R for
which any sequence fails to find a (1 + o(1))-approximation.

3.1 Locally consistent small group interactions

As currently defined, the functions f and g are too powerful in their generality. Since f
and g are the outputs of a small group interaction, one expects them to conform to certain
natural constraints. Before formally defining our notion of local consistency, we first give
two examples of unnatural behaviors which motivate our definition.

Consider participants on the real line. It would be unnatural for a participant whose
opinion lies in [50,100] to change his opinion to 0 after only interacting with participants
whose opinions also lie in [50,100]. Instead, one expects that any opinion update or con-
sensus point should be within the convex hull? of the opinions making up the small group.

Another unnatural function would be for a participant to update his or her opinion to
the point in the convex hull closest to some external point p (such as the global median).

2Define a set S to be convex if for any two points x,y in S, every shortest path between x and y also lies
in S. Define the convex hull of a set S to be the smallest convex set that contains S.
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Figure 1: Since the green, brown, and white participants on the left have the same rela-
tionship structure to the green, brown, and white participants on the right, they should be
expected to return the same participant under that structure, e.g. if yellow is returned with
75% probability on the left, then the corresponding yellow participant on the right should
also be returned with 75% probability. Note: the blue region is the convex hull of the green,
brown, and white participants.

This is unnatural because p is not part of the decision-making process. One would like to
encode the intuition that an opinion update should only depend on the structure of how the
opinions of a small group relate to an individual’s current opinion.

We encode this through the following mathematical notion which we call local consistency
(see Figure 1 for an illustration). Roughly speaking, it says that if two small groups S and
S’ are equivalent under a rigid “translation”, then the result of the bargaining function g
should also be equivalent under the same “translation”. Similarly, if the relationship of x to
S is equivalent to the relationship of ' to S’ under a rigid “translation”, then the opinion
formation function should also be equivalent under the “translation”.

Definition 3. Let S and S" be two sets of participants with convex hulls C(S) and C(S")
respectively. S and S’ are said to have the same relationship structure under 1 if there is a
distance preserving isomorphism 1 : C'(S) — C(S’) from the convex set C(S) to C(S’) that
maps the participants of S onto the participants of S'.

Definition 4. The opinion formation function f and the bargaining function g are said to
be locally consistent if, for any two sets of participants S and S’ with the same relationship
structure under 1, and for any participant x € S and 2’ = (x) € S,

1. f(z,S) and f(2',S") are contained in C(S) and C(S’) respectively, and are identical
under the isomorphism ).

2. g(S) and g(S’) are contained in C(S) and C(S") respectively, and are identical under
the isomorphism .

Example 1. Consider the opinion formation function in which x updates his opinion based
on a weighted average of his current opinion and the average group opinion. Specifically,
for any w € [0,1], let f(z,S) = wax+(1— w)l—é‘ Y ics®i- Then f is locally consistent. This
is essentially deGroot’s process, except that all other members of S are treated equally.

Example 2. Consider the opinion formation function in which x updates his opinion to a
random and uniformly chosen proposal in S. Specifically, for any y € S, let f(x,S) =y
with probability ﬁ Then f is locally consistent.



3.2 The impossibility result

If only two participants are drawn at each step, it turns out that no sequence of locally
consistent small group interactions is able to find a (1 + o(1))-approximation of the median
for all possible initial participant opinions. This is even true of opinions on the real line, for
which the median coincides with the concept of a Condorcet winner, the point preferred by
at least half of the participants to any other point. This means that one is unable to use
small group interactions of size two to find the wisdom of the crowd as measured by either
the median or the Condorcet winner. We state the theorem in terms of opinion formation
functions, but the results also hold for bargaining functions by noting that any bargaining
function g(S) can be interpreted as opinion formation functions f(z,S) where participants
move to the same point, i.e. f(z,5) = g(95).

Theorem 1. Consider a set of points x1, s, ..., T, € R, and a sequence of sets S1,S53, ...,
where S; C {1,2,...,n} and |S;| = 2. Let 29 = z;, and

‘ z! otherwise

.'L’t‘+1 — {f(xfﬂ St+]) ZfZ S St+1

where f is a locally consistent opinion formation function. Then there exists a choice of x;
such that 2>, E[D(z})] > (§ + o(1))D(x*) for all t, where z* is the median of the ;.

Proof. The first observation to make is that for any two points in R, their convex hull is
simply the interval between them. It is easy to then show that any pair of points z,y has
the same relationship structure as another pair of points found by translation or reflection.
In particular, the interval [z,y] is isomorphic to itself reversed, i.e. (t) = x +y —t. The
implication of invoking local consistency on this is that f(z, {z,y}) must be distributed as
the reflection of f(y,{z,y}) about the point % (z + y).

Suppose that n = 2k + 1 and let z; = for s = 1,2,...,k and x; = 0 otherwise. Then
the median z* = 0. Define X; = 7% >, «t and consider time ¢ 4 1 for which S;11 = {j1, j2}-
Then, nE[Xyy1 | o' = Bt | 2] = (Sigs,, of) + Bl | 2] + Blaff! | a'] =

J1
and for any time t, E[X;] = Xy. Noting that D(z) is convex, we can apply Jensen’s
inequality to get E [2 3", D(2!)] > D (E[2 3, 2!]) = D(Xy). It is not hard to verify that

D(Xy) = (% + 0(1))D(z*) which concludes our proof. O

(Zigstﬂ :z:f) +E[2iH | 2]+ E[z! +af, — 2! | 2] = nX,. Therefore, X; is a martingale,

For the x; chosen in the above proof, we point out that the median opinion is initially rep-
resented by a strict majority (over half the participants). In other words, (locally-consistent)
pairwise interactions are actually destroying the remarkable consensus that existed initially.

4 Finding the median quickly through triads

In this section, we show a stark contrast to the impossibility results of the previous section
when using small group interactions of size three. First, for opinions in R? under the I;
norm or in any median graph, we show that a simple policy for choosing triadic interactions
(uniform random sampling), and a simple locally-consistent opinion update or bargaining

function (the generalized median of S), is able to find a (14 O(y/®22))-approximation of the

generalized median in an average of O(log2 n) interactions per participant. For the strategic
bargaining setting, we remind the reader that small groups must choose a participant to
support. The results, therefore, assume that the generalized median of S is represented by a



(a) (b)

Figure 2: If the three orange squares are sampled, then the red circle is their generalized
median.

participant, which is equivalent to assuming that the participant opinions themselves form
a median graph (as opposed to simply belonging to one).

Second, we show that these results are obtainable under strategic equilibria. Specifically,
we design a mechanism which has a Nash equilibrium over the entire extensive form game
and where each triad chooses to support the generalized median of the small group. When
participants are myopic in that they treat each small group as a separate game, then we
show another mechanism which achieves this under a strong Nash equilibrium and show
that any strong Nash equilibrium must satisfy this property.

The strength of the approximation is illustrated in the following example, in which the
participants are uniformly distributed in a three-dimensional grid. In this case, the small
group interaction is able to select the exact global generalized median with high probability.

Example 3 (A n x n x n grid). Consider n3 participants which make up a n X n x n
grid, so that each point (i,j,k) for 1 < i,j,k < n has one participant with that opinion.
The global generalized median of all participants is the point (I + 1,1+ 1,1+ 1), where we
assume for simplicity that n is odd and that n = 21l + 1. Suppose that groups of three are
uniformly selected at random to interact, and that they update their opinions according to
f(z,S) = generalized-median(S). Then every participant will converge to the exact global
generalized median with probability at least 1 —e™ ™.

4.1 Why would triads choose their generalized median?

Before stating our results, we briefly discuss the question of why one might expect individuals
to update their opinion to, or choose to support, the generalized median of the triad.

Theorem 2. For every x,y, z which come from either R under the Iy norm or from any
median graph, let m denote the generalized median of these three points. Then m is also the
Condorcet winner for the preference profiles of x, y, and z. That is, for any other point p
in the space, m is closer to at least two of x,y,z as compared to p.

Proof. See Appendix B for the proof. O

Since the generalized median of three participants is a Condorcet winner, it is the clear
theoretical choice for bargaining situations. Moreover, as mentioned in the related work,
experiments have shown that majority rule dynamics do tend to converge to the Condorcet
winner when it exists[10]. In the opinion formation setting, updating to the generalized
median can be interpreted as a participant who is swayed by any majority opinions.



4.2 Convergence and approximation when triads return their local
generalized median

Definition 5 (Triadic process). Define a triadic process on points x1,Z2,...,T, € X as
follows. Let Sy, Sa, ... denote a sequence of (random) multi-sets where each S; is independent
and consists of three points in {1,2,...,n} drawn uniformly at random with replacement.
Let 29 = x;, and

t+1
i

X

. b
x! otherwise

{f(xfastﬂ) if i € Sp1

where f(x,S) = generalized-median(S).

Theorem 3. Consider the triadic process described in Definition 5, where X is a median
1
graph with m nodes. Fort = O(cnlog?n), and with probability at least 1 — &fm} xt will

have converged to a single point w which satisfies

D(z*) < D(w) < <1 +0 (,/ le”)) D(z*)

where z* is the median of the x;. When X is R? with the i norm, then the same results
hold with probability at least 1 — %.

The proof of this theorem essentially uses a property that can be derived for median
graphs (Lemma 1) to reduce the triadic process (Definition 5) to at most mlogm urns,
for which we can derive convergence properties using the theorems of [15] and probabilistic
recurrences (Lemma 2). These lemmas are then used along with more properties of median
graphs to prove our final result. We sketch the proof of Lemma 2 here. Detailed proofs of
Lemma 1, Theorem 3 and Lemma 2 can be found in the appendix.

Lemma 1. Consider any edge e = (u,v) of a given median graph. Let U denote the set
of modes closer to u, and V' denote the set of nodes closer to v. Then for any three nodes
x,y, z, their generalized median m must belong to the set (U or V) which contains at least
two of x,y, z.

Lemma 2. Consider the triadic process described in Definition 5, where X is a median graph
with m nodes. Consider any edge e = (u,v) of the median graph and let U and V denote
the set of nodes closer to u and v respectively. Let T denote the number of triads selected
until all balls left either belong to U or V, and w denote the opinion that all participants
eventually converge to. Then,

privev)= (1) > ("2)) (@.1)

j=1
E[T] <nlnn+ O(n) (4.2)
Pr[T > cnln?n] < O(n™°)

Proof. Equations (4.1) and (4.2) are derived in [15]. We prove (4.3) using probabilistic
recurrences in the appendix. The essential observation needed (a generalization of the proof
in [15]) is that this process can be represented as a random walk on the integers 0, 1, ...,
n. Let X; denote the number of balls in U after ¢t samples. By Lemma 1, whenever two or
more of the sampled balls belong to U, the generalized median will belong to U. Similarly,



ALGORITHM 1: Triadic Consensus
Input: k tokens per participant
Output: A winning participant
while the tokens belong to more than one participant do
Sample tokens x,y, z uniformly at random with replacement;
if two or more of x,y, z have the same label then
‘ w = the majority participant;
else
L w = TriadicMechanism(z, y, 2);

Give all the sampled tokens to the winning participant w;

return the participant who has all the tokens;

whenever two or more of the sampled balls belong to V', the generalized median will belong
to V. This means that,

BXPX) A=

PriX, 1= X, + Al = 300X A -
X=Xt A =

4.3 Implementation under strategic equilibria

In our analysis of strategic bargaining thus far, we abstracted the bargaining dynamics of the
triad into a function g(S) and showed that choosing g(S) = generalized-median(S) results
in quick convergence to a tight approximation of the global generalized median. In this
section, we analyze this process from a game-theoretic perspective and consider how one
can design a mechanism which induces participants to support the generalized median under
a strategic equilibrium. For concreteness, the bargaining process is codified in Algorithm 1,
with the exception of a TriadicMechanism, which will be designed in the following sections.

4.3.1 Myopic participants

We will first consider participants who are strategic, but short-sighted in that they treat
each triadic round as a separate game in which they try to make the supported participant as
close to themselves as possible (as opposed to making the overall winner close to themselves).

Consider using Majority Rule as the TriadicMechanism (Algorithm 2). In Majority Rule,
an arbitrary participant is chosen by the mechanism to be the initial winner. Participants
of the small group then take turns suggesting to either replace the current winner with an
alternate participant or to conclude the process. Each time a participant is suggested, a
vote is then taken between the suggested participant and the current winner. If at least two
of the three small group participants prefer the suggested participant, then it becomes the
current winner. Similarly, if a suggestion is made to conclude the process, a vote is taken for
or against that suggestion. If two of the three participants agree, then the process concludes
and the current winner is returned as the supported participant. If the number of rounds
taken exceeds some given parameter T (think of this as large), the process is halted, and
the current winner is returned as the supported participant.

Formally, each triadic mechanism is modeled as an independent extensive form game
in which each node of the gametree corresponds to either a participant’s turn to make a
proposal or to vote on another participant’s proposal (see Appendix C.1).



ALGORITHM 2: Majority Rule mechanism

Input: Participants z,y, z from a set of n participants
Output: A participant to support
Initialize w to z and ¢ to O;
while ¢t < T do
/* Take turns proposing starting from x, then y, then z, etc... */
The participant whose turn it is chooses w’ from any of the n — 1 participants not equal to w,
or suggests to end (0);
if w’' # 0 and at least two people vote for w' over w then
| w=uw;
else if w' = 0 and at least two people vote to end the process then
L return w;

| t=t+1;

return w;

Theorem 4. Consider using Majority Rule (Alg. 2) as the mechanism which decides which
participant a small group supports. Suppose that the n participants form a median graph,
and that they are myopic. In other words, participants consider how to maximize their utility
for the participant supported by the current small group. Then the following strategy finds
the generalized median and is resistant to deviations from coalitions of any size, i.e. a strong
Nash equilibrium:

1. If it is your turn, propose the median if it is not the current winner, and propose to
end the process otherwise.

2. If you need to vote between proposals, vote for the median if it is one of the proposals,
and vote truthfully otherwise.

3. If you need to vote on ending the process, vote to end if the current winner is the
median, and vote to continue otherwise.

Moreover, all strong Nash equilibria must produce the median as the output.

Proof. The proof rests on the fact that the generalized median of any three participants
is also a Condorcet winner (Theorem 2) and the fact that “majority rules”. The detailed
proof can be found in Appendix C.1. [

In practical crowdsourcing applications, participants may not be aware of all the possible
participants from the beginning, implying that the model should be generalized further to
consider the set of proposals available to each participant over time. In any modification for
which the participants are able to identify the median before time 7' (that is, the median
becomes available as an action before time T'), a slight modification of the above strategy
is also able to find the median under a strong Nash equilibrium.

4.3.2 Participants with complete knowledge

When participants have complete knowledge, the strategic possibilities become complex. We
consider a variant of the Majority Rule, which we call the Chooser-Proposer mechanism (Al-
gorithm 3). In this mechanism, two participants are arbitrarily assigned to be “proposers”
and the remaining participant is assigned to be the “chooser”. At the start of the small
group, one of the proposers is chosen to be the current winner, and the other proposer starts
by suggesting an alternate proposal. If the chooser accepts this proposal, then it replaces



ALGORITHM 3: Chooser-Proposer TriadicMechanism

Input: Participant x,y, z from a set of n proposals
Output: A winner from the set of all proposals
Let x be the “chooser”, and let y and z be the “proposers”;
Initialize the current winner w to z;
while true do
/* y and z take turns proposing starting from y x/
The participant whose turn it is chooses w’ from any proposal not equal to w, or passes (0);
if w’' # 0 and the chooser accepts w’' then
| w=uw;
else
L return w;

the past proposal as the current winner, and the other proposer is now given a chance to
suggest an alternative. This process repeats until the chooser decides not to accept the
given suggestion or until the proposer whose turn it is decides to pass. We define the entire
bargaining process formally in the Appendix as an infinite-horizon extensive form game.
To prove the Nash equilibrium result, we start by showing that we can reduce this
problem to a simpler one. Our method is to show that, if some strategy ¢t defined for a
single small group has certain properties (defined below), then the extensive form strategy
consisting of playing ¢ in every small group is a Nash equilibrium (proof in Appendix C).

Lemma 3. Consider a TriadicMechanism and a strategy t for the extensive form game.
Suppose that the (local) generalized median is produced in each small group when all players
follow t. Now, consider the supported participant m' produced in some given small group if
a single agent x deviates from t. If the generalized median of the small group always lies on
some shortest path from x to m’, no matter what deviation x makes, then the strategy t is
a Nash equilibrium.

Proof. The proof involves coupling two urns together: one in which every agent follows the
strategy ¢, and the other in which some agent deviates. We then show that the outcome
produced in the non-deviating urn is at least as good as the outcome produced in the
deviating urn for every coupled history, which gives us our desired result. O

The above Lemma essentially says that if we can find a mechanism and corresponding
strategy that 1) produces the generalized median in each small group, and 2) ensures that
any deviation by one player would result in a “strictly further” outcome, then this strategy
is a Nash equilibrium for the overall urn process.

Theorem 5. Consider using the Chooser-Proposer mechanism (Alg. 3) as the TriadicMech-
anism in Triadic Consensus (Alg. 1). Suppose that the n participants form a median graph.
Then the following strategy finds the generalized median in each round and is also a Nash
equilibrium for the overall urn process:

1. If you are the chooser, accept if you prefer the suggested alternative, and reject other-
wise.

2. If you are the proposer, suggest the proposal closest to yourself that is between the
current winner and the chooser. If this is identical to the current winner, then pass.

Proof. Our proof involves showing (Lemmas 8, 9) that Algorithm 3 satisfies the properties
specified in Lemma 3, which gives us our result. Details are in Appendix C. O



5 Conclusion and future directions

We introduced the framework of small group dynamics and applied it to the problem of
finding the generalized median of a set of points. In doing so, we found a stark contrast
between the possibility of obtaining our goal when using pairwise or triadic interactions. It
would be interesting to perform experiments to verify whether such a stark difference really
occurs, and whether triadic interactions can be helpful for aggregating opinions.

Many exciting directions also remain with regards to the use of the small group frame-
work for the design of algorithms for complex crowdsourcing tasks.

A Median Graphs

Define a set S to be convex if for any two points z,y in S, every shortest path between z
and y also lies in S. Define the convex hull of a set S to be the smallest convex set that
contains S. The following properties on median graphs are used in various proofs in this

paper.

Lemma 4. Any convex set S in a median graph is gated. That is, for any x in the graph,
there exists some gate g(x) € S such that for any node y € S, some shortest path from x to
y goes through g(z).

Lemma 5. The interval I, between any two nodes x and y in a median graph is convex.

Lemma 6. For any edge e = (u,v), define the win sets Wy, = {w € V | d(w,u) < d(w,v)}
and Wy, = {w € V | d(w,v) < d(w,u)} to be the set of nodes that are closer to u or v
respectively. Then,

1. Wy, and Wy, are convex sets that partition the nodes.
2. For any two unique nodes, there exists at least one edge that partitions them.

3. For a median graph with n nodes, there are at most n edges that uniquely partition the
nodes.

4. Let E' denote a mazimal set of edges that uniquely partition the graph. Then the
distance between two nodes x and y is equal to the number of edges in E’ that separate
T and y.

5. l'e-l—yz = x € Wy, ifyazGWuv and x € Wy, ify»ZGWvu'

The above properties follow from a stronger property stating that the win sets of E’
provide an isometric embedding of the median graph into a hypercube of dimension at most
n. Specifically, every edge e = (u, v) corresponds with one dimension of the hypercube. If a
node falls in the partition W,,,,, then label it with 0 in that dimension. Otherwise, if it falls
in the partition Wy, then label it with 1 in that dimension. It will often be more convenient
to use this representation. We will use the following notation in proofs:

Definition 6. Given a set of participants p1,pa, ..., DPn,

1. Let p;; denote the j-th bit of the embedding of p; into the hypercube, i.e. the label
corresponding to the partition that p; belongs to for the j-th edge.

2. Let N(b,j) denote the number of participants whose j-th bit is equal to the bit b, i.e.
for partitions induced by the win sets of edge j, N(b,j) is the number of participants
belonging to the partition with label b.



B Approximation and convergence

(Proof of Lemma 1). Without loss of generality, suppose that z,y € U. By known proper-
ties of median graphs (Lemma 4), U is a gated set. That is, for any point p and gated set
U, there exists a gate g(p) € U such that for every ¢ € U, there exists a shortest path from
p to ¢ that goes through g(p). Let g(m) denote the gate of m into U. Then,

d(m,x) + d(m,y) + d(m, z)
= [d(m, g(m)) + d(g(m),z)] + [d(m, g(m)) + d(g(m),y)] + d(m, z)
> d(m, g(m)) +d(g(m), z) + d(g(m),y) + d(g(m), 2)

where the inequality comes from the triangle inequality. If m € V, then d(m,g(m)) > 0
since g(m) € U. But then the sum of distances from g(m) to z,y, z would be less than that
of the generalized median, which is impossible by definition. Therefore, m belongs to U. [

(Proof of Theorem 2). Recall that by the definition of median graphs, for every z,y, z, there
is a unique point that lies on a shortest path between x and y, x and z, and y and z. Call
this point m. We will show that m is the only node satisfying all the remaining properties
of Theorem 2, which shows their equivalence.

We first show that m is the unique generalized median of z, y, and z. Consider any
other node m’. Since m is the unique node lying on the shortest paths of each pair, there
must be one pair (z and y WLOG) such that m’ does not lie on a shortest path between
them. Then,

2D(m') = 2(d(m’, z) + d(m’,y) + d(m’, 2))
= (d(z,m") +d(m',y)) + (d(z,m’) + d(m’, 2)) + (d(y,m’) + d(m’, 2))
> (d(z,m) + d(m,y)) + (d(z,m) + d(m, 2)) + (d(y,m) + d(m, 2))
=2D(m)

where the inequality comes from the fact that m lies on a shortest path between each pair.
Therefore, m is the unique generalized median.

Now we show that m is the unique point closest to £ among the points lying between y
and z. By Lemma 5, the set of points lying on a shortest path between y and z is convex.
By Lemma 4, this means that it is a gated set, and the point closest to & must be the
(unique) gate of z into I,,. But by the definition of the gate, it must lie on a shortest path
between x and y, and x and z. Also, since it belongs to I, it must also lie on a shortest
path between y and z. By the definition of median graphs, m is the only node for which
this can be true.

Finally, we show that m is the Condorcet winner. Consider any other node m’/. As
argued before, there must be one pair (z and y without loss of generality) such that m’ does
not lie on a shortest path between them. Therefore, d(z, m) + d(m,y) < d(x,m’) +d(m’,y)
and at least one of x and y will prefer m over m’ by the pigeonhole principle. Let this
node be x without loss of generality. If neither of y or z is closer to m’ than m, then m
clearly beats m’ in a pairwise election. Now suppose one of y or z is closer to m’ than m (y
without loss of generality). Since m lies on a shortest path between y and z, we know that
d(y,m) +d(m,z) < d(y,m') +d(m', z). But then if y is closer to m’ than m, it must follow
that z is closer to m than m’ and m still beats m’ in a pairwise election. Therefore m beats
every other node m’ in a pairwise election, which means he is the Condorcet winner. O

(Proof of Theorem 3). We will first prove that all opinions will have converged in O(n log® n)
triads. For any given edge, Lemma 2, Eqn. 4.3 tells us that O(cn log? n) triads is sufficient
for ensuring that all opinions are closer to one side of the edge with probability at least



1 —n7¢ Since median graphs have at most mlogm unique partitions (Lemma 6, Eqn.

3), a union bound tells us that O(cnlog®n) triads is sufficient for ensuring that, for every
edge-based partition, all opinions will belong to the same partition with probability at least
1— %. Since any two unique nodes must have one partition separating them (Lemma 6,
Eqn. 2), this means that all opinions are on the same node, and the process has converged.
For points in R¢ with the [; norm, there are at most nd unique partitions, which gives us
the analogous result for this case.

The lower bound of the approximation result, D(w*) < D(w), follows directly from the
definition of the generalized median. We now prove the upper bound. We will use notation
from Section A on median graphs. Suppose that for an edge e = (u,v) there are less than
n

% —Venlnn nodes in one of its partitions (W, without loss of generality). Then by Lemma

2, we know that

1 n—15—Venlnn n_1
Priw € W,,] < (2) Z ( . 1)
= M7
(2
< exp —1 n 7cnlnn (B.1)
29 n/2
_1
=

where (B.1) is found by interpreting the expression in terms of coin flips and applying
Chernoff’s bound. Then by applying the union bound to each edge (of which there are
at most mlogm by Lemma 6(3)), we know that every win set w belongs to will have at

1
least & — venlnn members in it with probability at least 1 — miogm

n
corresponding to the hypercube embedding of the median graph (Definition 6),

. In the notation

1
nc—l

Pr[N(wj, j) > g —Venlnn, Vj]>1-—

All we need to show is that this condition implies that w is an approximate generalized

median. Let d denote the number of dimensions in the hypercube embedding, i.e. the

number of edges that uniquely partition the graph. From Lemma 6(4), we know that the
d

distance d(x,y) from z to y can be written as d(z,y) = Z 14,4y, This means that,

n n d d
D(:L‘) = Zd('r7pi) = ZZ ]1$j7épij = Z(n - N(xj,]»

Since w satisfies N(wj,j) > § — Venlnn, then it must be true that for any bit b,

n/2+Venlnn

n= N(wg,d) < (0= NG9 - 0 — s



and

Ay 1/2+ Venlnn
SE; N n/2 —+venlnn

( 2venInn + vVenlnn >D(w*)

d

<.

<

1+
n/2 —VenInn 4+ Venlnn

_ <1+6 Cl“”) D(w*)
n

and we are done. The proof for points in R* with the {; norm is similar. O

(Proof of Lemma 2). Equations (4.1) and (4.2) are derived in [15]. (4.3) follows from (4.2)
through the use of common techniques in probabilistic recurrences (see, for example, [4]).
Let T),(7) denote the time it takes for all balls to belong to either U or V' given i initial balls
in U (X =14). Then T,(¢) satisfies the probabilistic recurrence

where p;, q;,7; are the probabilities of having one more ball in U, one less ball in U, or no
change. From Equation 4.2, we have that E[T},(i)] < T* for all 4, and for T* = nlnn+0(n).

By Markov’s inequality, Pr[T,, (i) > oT*] < é, for any o > 0. By conditional probability,
Pr([T,(i) > 2aT*] = Pr[T,,(i) > 2aT* | T,(i) > oT*|Pr[T, (i) > aT*]. But note that
Pr[T,(i) > 2aT* | T,,(i) > oT;] < L since the remaining random walk conditioned at the
point when T,,(i) = oT™* is just distributed as T}, (¢') for some i’. Repeating this logic gives
Pr[T,, (i) > kaT*] < o. Choosing o = e and k = clnn gives us our desired result. Note
that the point at which T, (i) = oT™ exists for any T* chosen such that o™ is an integer
since T),(4) increases in integer increments. O

C Strategic behavior and Nash equilibria

C.1 Myopic participants

The majority rule extensive form game (Algorithm 2) can be defined formally as follows:
Let yo, y1, y2 denote the three participants in the small group. Then,

1. The set of players in the game is N = {yo, y1, Y2}

2. The entire set of actions is A = X U {0,Y, N}. Actions a € X and @ are played at
proposing nodes and represent a suggestion for a as an alternate participant to support
or suggestion to conclude the process respectively. Actions Y and N are played at
voting nodes and represent yes or no votes respectively.

3. Before defining the game tree, we need to define a voting tree V(G1, Ga, .. ., Gg) which
will be used as a subtree in our definition. This voting tree takes eight gametrees
G1,...,Gg as inputs which represent the remainder of the game after the conclusion
of the eight possible voting outcomes.

(a) The root node is a nonterminal choice node, played by yo, and with actions
{Y,N}.

(b) The two nodes at height one are nonterminal choice nodes, played by y;, and
with actions {Y, N}. Both of these nodes are a single information set.



(¢) The four nodes at height two are nonterminal choice nodes, played by ys and
with actions {Y, N}. All four of these nodes are a single information set.

(d) The eight nodes at height three are the root nodes for the gametrees
G1,Ga,...,Gg. Specifically, G1,Gs,...,Gg are located at the nodes resulting
from actions NNN, NNY, NYN, NYY, YNN, YNY, YYN, and YYY re-
spectively. Note that the GG; can potentially include terminal nodes.

4. We can now define the game tree G(T,y,) as a function of the parameter 7' (number
of rounds) and the root node player y, (the starting participant). Define ' = (r 4 1)
mod 3 (think of this as the next proposer) and G’ = G(T — 1, y,) (think of this as the
remainder of the game). Let — denote a gametree which has only a single terminal
node as its root.

(a) The root node is a nonterminal choice node, played by y,, and with actions
X U {0}. This represents a decision to propose an alternate candidate or to
propose to end the process.

(b) Each node at height one resulting from an action a € X is the root node for the
voting tree V(G',G’,...,G’).

(c) Each node at height one resulting from the action a = ) is the root node for the
voting tree V(G',G',G',—,G',—, —, —).

(d) For any node at height # =0 (mod 4), the winner w is found by calculating the
votes leading up to the node. If this node is a terminal node, then assign utility
to player p equal to any u,(w) which decreases as the distance d(p, w) increases.

(Proof of Theorem 4). If all participants follow this strategy, it is easy to see that the winner
will be the median. If only one person deviates, it is also easy to see that he cannot change
the outcome (since majority rules so that once it is another participant’s turn, the median
will be proposed and voted for). If two or more people deviate, it is possible to get a winner
that isn’t the median; however, since the median is a Condorcet winner, at least one of the
deviating participants must prefer the median to the resulting winner, which means that
the deviation does not benefit every member of the coalition. Therefore, the strategy is a
strong Nash equilibrium.

Similarly, for any set of strategies that doesn’t produce the median, there must be
two participants who prefer the median over the resulting winner since the median is a
Condorcet winner. Then these two participants could deviate to the above strategy to
achieve the median, which means that the original set of strategies cannot be a strong Nash
equilibrium. O

C.2 Participants with complete knowledge

The strategic bargaining game (Algorithms 1 and 3) for participants with complete knowl-
edge can be defined formally as follows:

1. The set of players in the game is N = {1,2,...,n, R}, where R represents the random
choice of a small group played by nature (in our setting, the moves by nature are
known by each player, i.e. they are separate information sets).

2. The actions available are X3 U X U {0,Y, N}. Actions S € X3 are played at nature
nodes and represent the triad that is selected to participant in the small group. Actions
a € X and ) are played by the proposers and represent a suggestion for a as an alternate
participant to support or a decision to pass respectively. Actions Y and N are played
by the chooser and represent accepting or rejecting the proposal.



3. The game G is defined recursively as follows.

(a) The root node is a nonterminal choice node, played by nature (R), and with
actions S € X3. This represents the next small group that is chosen to interact.
Note that the fact that nature chooses this action uniformly at random is known.

(b) Each node at height one resulting from an action S = (z,y,z) € X3 is the root
node for the chooser-proposer tree CP(z,y, z, G), which is a subtree representing
the small group interaction.

4. The chooser-proposer tree CP(c, po, p1, G) is an infinite horizon game tree which takes
as input the chooser ¢, proposers pg,p;, and a game tree G which represents the
remainder of the game after the end of this small group.

(a) The root node is a nonterminal choice node, played by py, and with actions
X U{0}. This represents a decision to propose an alternate candidate or to pass.

(b) Each node at height one resulting from an action a € X is played by ¢, and with
actions {Y; N}. This represents a decision to accept or reject the proposal.

(¢) The node at height one resulting from the action () represents a conclusion of this
small group from a pass action. The token distribution at this node is calculated
from the actions since the start of the game. If it results in all tokens given to
one player, then this node is a terminal node. Otherwise, this node is the root
node of the subtree G.

(d) Each node at height two resulting from an action Y contains the subtree
CP(¢,p1,p0,G). In other words, the same process repeats with p; as the first
proposer.

(e) Each node at height two resulting from an action N represents a conclusion of
this small group from a reject action. The token distribution at this node is
calculated from the actions since the start of the game. If it results in all tokens
given to one player, then this node is a terminal node. Otherwise, this node is
the root node of the subtree G.

5. For any terminal node, assign utility to player p equal to any wu,(w) which decreases
as the distance d(p,w) increases. Assign utility —oo to the case when the game does
not end (Note: any utility can be assigned here without changing the results).

To prove Lemma 3, we first introduce a definition and an intermediate lemma.

Definition 7. Given two urns R and S with n balls labeled r,r2,...,7, and s1,82,..., 8y
respectively, R x-dominates S if ry € I, for alli.

In other words, R z-dominates S if for every pair of balls 7;,s; there is some shortest
path from x to s; which contains r;.

Lemma 7. Suppose that R x-dominates S. Then the generalized median of r;, 7,7y, must
be on some shortest path from x to the generalized median of s;, 55, si.

Proof. Let m, denote the generalized median of s;,s;,s;. Let m, denote the generalized
median of 7;,7;,7,. Now fix any edge e in the median graph and consider the partitions
induced by its win sets. By Lemma 1, we know that mg is in the same win set as x if and
only if at least two of s;, s;, 53, are in the same win set as . By Lemma 6(5), we know that
this must imply that at least two of r;, 7,7 are in the same win set as z, which means that
m, must also be in the same win set as x (again, by Lemma 1).

Therefore, for every edge, whenever mg is in the same win set as x, m, is also in the
same win set. By Lemma 6(5) this implies that m, lies on a shortest path from = to ms,
which concludes our proof. O



(Proof of Lemma 3). Since we are proving a Nash equilibrium result, we can assume that
all other agents are playing according to the strategy ¢. Our proof strategy will be to use a
coupling argument. We consider two urns R and S. In urn R, x plays according to the given
strategy t. In urn S, x plays according to any other strategy. In the initial configuration,
we index each ball in R as r{,7r9,...,7, and each ball in S as s, ss,...,5,. We index it
in a way such that each pair of balls r;,s; correspond to the same participant. We now
couple the balls drawn in Alg. 1 so that when r;,7;,r; are randomly drawn from urn R,
balls s;, 55, s will be drawn from urn S..

Suppose that at some time, R z-dominates S and then each undergoes a coupled Tri-
adicMechanism where balls r;,7;, 71 are selected from R and s;, s;, s;, are selected from S.
After the TriadicMechanism conclude, we show that the resulting urns R’ and S" must still
satisfy R’ xz-dominates S’.

Case 1: x is drawn twice in urn S. Since R x-dominates S, it must be true that z is
also drawn twice in urn R. Then all the balls r;, 7;, 7% and s;, 55, s, will simply be relabeled
with z automatically, so R’ trivially z-dominates S".

Case 2: x is not drawn in urn S. Suppose that r;,r;,r; are drawn from urn R and
8;,55, Sk are drawn from urn S. Since x is not drawn in urn S, and all other agents follow
the strategy ¢, the returned ball in urn S is the generalized median of s;, s;, s;. Also, since
all agents follow ¢ in urn R (including x), it must be true that the returned ball is the
generalized median of r;,7;,r,. Then by Lemma 7, R’ must still z-dominate S’.

Case 3: x is drawn once in urn S. Suppose that r;,7;, 7, are drawn from urn R and
8;,55, Sk are drawn from urn S. Let m denote the winner in urn S which is returned if x
follows strategy ¢ and m’ denote the winner in urn S which is returned given some deviation.
By our reduction assumption, it must be true that m lies on some shortest path from x to
m’. Since all agents follow ¢ in urn R, we know that the winner in urn R must be the median
of r;,r;,7,. By Lemma 7, the winner in urn R must lie on some shortest path from z to m.
But this also means that the winner in urn R lies on some shortest path from z to m’, so
R’ must still xz-dominate S’.

Finally, we note that before any TriadicMechanism take place, R and S are identical,
which means that initially, R z-dominates S. Then, the winner of R must also z-dominate
the winner of S, which means that urn R is better for z in every coupled history. [ [

Lemma 8. Suppose that three participants in a round of the Chooser-Proposer TriadicMech-
anism (Algorithm 3) all follow the strategy described in Theorem 5 as their strategy. Then
the winner returned will be the generalized median of these participants.

Proof. Let ¢ denote the chooser, and pi,ps denote the proposers. Let p; denote the first
proposer, which means that the current winning proposal will be set to ps at the beginning
of the mechanism. If ps is the generalized median of ¢, p1, p2, then the closest point to p;
which lies between p, and ¢ will just be ps, and he will pass, which results in ps being
returned. Otherwise, p; will propose the closest point to him that lies in the interval from
¢ to pa, which is simply the generalized median of py, ¢, and ps by Theorem 2.

Now, in pso’s turn, there cannot be any other alternatives that are closer to both ¢ and ps
since the generalized median of py, ¢, p2 is a Condorcet winner of the three points. Therefore,
p2 will pass, and the process ends. O

Lemma 9. Suppose that three participants in a round of the Chooser-Proposer TriadicMech-
anism (Algorithm 3) all follow the strategy described in Theorem 5 as their strategy, except
for one participant who deviates. Then the generalized median of these participants will lie
on a shortest path between the deviating participant and the resulting winner.



Proof. Let ¢ denote the chooser, and pi,ps denote the proposers. Let p; denote the first
proposer, which means that the current winning proposal will be set to ps at the beginning
of the mechanism.

Case One: The chooser (c) deviates. If ¢ deviates in the first round when p; proposes
the generalized median, then the resulting winner will be po, which has a shortest path
containing the generalized median by Theorem 2. If ¢ does not deviate in the first round,
then the TriadicMechanism will end in the second round since ps will pass, so ¢ does not
have any other opportunities to deviate.

Case Two: One of the proposers deviates. Let ps denote the deviator, and p; denote the
other proposer. We will show that, regardless of what ps does, the process will converge and
the winner will be some proposal that is in the interval of p; and c¢. Since the generalized
median is the gate of p, into the interval of p; and ¢, it follows that the generalized median
lies on a shortest path between p; and the winner.

Consider a proposal by ps which is accepted by ¢ and not in the interval of p; and c.
Then p; will propose the closest point to himself that is also between the current winner
and c. This point is just the gate of current winner to the interval p, and ¢, which must
be unique from the current winner. This means that ¢ will also accept the new proposal.
Now, consider a proposal by ps, which is accepted by ¢ and is in the interval of p; and c.
Then p; will simply pass and that proposal will be returned as the winner. Finally, note
that whenever pg starts his turn, the current winning proposal will always be in the interval
of p; and c. Therefore, if the process ever converges, the winner must be from the interval
of p; and c¢. Since each accepted proposal must be higher on ¢’s preference list, the process
must converge, which finishes our proof. O
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