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Abstract

Top-k voting is a common form of preference elicitation due to its conceptual sim-
plicity both on the voters’ side and on the decision maker’s side. In a typical setting,
given a set of candidates, the voters are required to submit only the k-length prefixes
of their intrinsic rankings of the candidates. The decision maker then tries to cor-
rectly predict the winning candidate with respect to the complete preference profile
according to a prescribed voting rule. This raises a tradeoff between the communi-
cation cost (given the specified value of k), and the ability to correctly predict the
winner.
We focus on arbitrary positional scoring rules in which the voters’ scores for the
candidates is given by a vector that assigns the ranks real values. We study the
performance of top-k elicitation under three probabilistic models of preference dis-
tribution: a neutral distribution (impartial culture); biased distributions, such as
the Mallows distribution; and worst-case (but fully known) distributions.

1 Introduction

The ongoing spread of large-scale, multi-user platforms has raised significant computational
problems. One obvious example that frequently shows up in the context of recommendation
and group decision making, is the need to efficiently aggregate user preferences. To elaborate
on this point, consider a scenario with n individual agents (which we call voters), having
preferences over a set C of candidates (or alternatives), in which a “consensus” (winning)
candidate should be selected according to some predetermined rule. The need for efficiency
sometimes dictates that we, the decision-makers, be judicious in the manner in which we
elicit the preferences of the users. Many of these settings raise algorithmic questions that
pertain to the extraction and aggregation of the votes, and to computing the correct winner.

We focus on the issue of efficient preference elicitation. In a system with a large col-
lection of candidates to choose from, requiring the voters to submit complete rankings of
the candidates is often ill-advised, and even infeasible, due to the resulting communication
and cognitive overhead. Therefore, the task of devising protocols for obtaining the voters’
preferences, while keeping the amount of communicated information down to a minimum,
is imperative.

To contrast general communication complexity results, which state that in the worst-case,
many voting rules require much information from the voters, empirical studies have shown
that in practice, some elections are amenable to efficient voting protocols (e.g., [8]). One
recent way of bridging this gap between the theoretical bounds and the empirical findings is
to take a belief-based approach, by assuming that the preferences are distributed according
to some specified prior. Given such probabilistic beliefs, the common goal is to design
protocols for efficiently eliciting parts of the voters’ preferences, and then deciding on the
winner with a reasonable degree of confidence.

One straightforward method of elicitation is the top-k voting method: given a set C of
m candidates, each of the n voters submits a ranking of their k most favored candidates
(i.e., the k-length prefix of their intrinsic ranking of the candidates C). The decision maker
then employs a prescribed voting rule for selecting a candidate based solely on the partially



reported preference. The immediate question that this setting raises is: what is a sufficient
bound on k that, would guarantee the selection of the correct candidate? (had he had the
complete preference profile).

In this paper, we present a technique for studying the performance of this elicitation
method based on a probabilistic analysis of the distribution of the scores. We primarily
focus on a particular class of voting rules known as positional scoring rules. Given a non-
increasing vector α ∈ Rm and a ranking of the candidates πi, corresponding to voter i’s
preferences, candidate c ∈ C receives a score of α(j) if c is ranked j’th in πi. The winning
candidate is the candidate with the maximal total score.

In the top-k voting scheme, each voter i reports only the k-length prefix of her intrinsic
ranking π−1i (1), . . . , π−1i (k). The decision maker, in turn, selects a candidate based solely
on this partial view of the preference profiles.

Contributions We begin by studying the performance of top-k voting under the neutral,
impartial culture distribution, in which the preferences are drawn uniformly at random
(Section 3). Our study aims to find, for a given positional scoring rule, a closed-form
criterion for the range of k for which it is possible to predict the winning candidate with high
probability given only the k-length prefixes of the rankings. We state our results in terms
of a measure we call the partition variability ratio, which is monotonically increasing in k.
When this ratio is small, we show that no algorithm can predict the winning candidate with
high probability. When the ratio crosses a certain threshold, we give a concrete algorithm
(Algorithm FairCutoff) that predicts the winning candidate with high probability.

We demonstrate the use of our criterion on several scoring rules. This part of our work can
be thought of as a direct extension of key aspects of the model studied by Oren et al. [15], in
which we offer a more unified and general approach to top-k voting. In particular, we show
that for the Borda scoring rule, no top-k can determine the correct winner w.h.p. unless
k = Ω(m). This gives a logm-factor improvement over the Ω(m/ logm) bound previously
proved by Oren et al.

In Section 4, we further illustrate our general approach by providing a similar analy-
sis for the Copeland voting rule (though the details differ significantly from the proof of
Theorem 3.1). This results in a lower bound of Ω(m/

√
logm) (Theorem 4.1).

In Section 5, we proceed to analyze the limiting behavior of top-k voting under positional
scoring rules and a class of biased distributions over preferences, in which there is a candidate
that dominates all other candidates.

In Section 6, we take an adversarial learning approach, by considering arbitrary prefer-
ence distributions (but fully known to the decision maker). We obtain a lower bound of
k = Ω(m) for the harmonic positional scoring rule, where the score associated with rank
i is 1/i, by constructing an appropriate distribution over preferences. This contrasts our
logarithmic bound for the impartial culture. We also show that under any preference dis-
tribution, an exponentially decaying score vector requires only k = O(logm) for correct
winner determination, for sufficiently large m, and n.

In Section 7, we empirically demonstrate the efficacy of our top-k elicitation method, and
illustrate the bounds obtained by our criteria.

Previous work There has been a growing body of literature in computational social
choice that studies worst-case objectives pertaining to partial preference elicitation. These
studies typically focus on heuristics for determining potential winners (the so-called possible
winners) and the necessary winners; i.e., candidates who are guaranteed to win irrespective
of any complete extension of the preferences (see e.g., [9, 16]). Baumeister et al. [2] have
studied these complexity issues in the context of top-k voting.

A number of studies have shown that in the worst case, many of the common voting



rules may require the voters to communicate a significant amount of information about
their preferences for predicting the correct winner with absolute certainty; either in the
communication complexity sense, or with respect to concrete elicitation protocols (e.g.,
[6, 16, 5]). This implies that top-k voting is ineffective for arbitrary preference profiles.

On the other hand, the practical efficacy of methods for these objectives, including top-k
voting, has been empirically demonstrated by Kalech et al. [8]. This prompts the adoption
of a probabilistic approach in which the votes are assumed to be drawn according to a proba-
bilistic model. An important example of such a model is the Mallows φ-distribution [13, 14].
The so-called impartial model assumption, is a special case of the Mallows distribution, in
which the preferences are assumed to be drawn uniformly at random from the complete set
of rankings.

Lu and Boutilier [10, 11] adopted this approach, in settings where they took a regret-
minimization towards optimizing the score of the selected candidate.

Our work is as a continuation of a model studied by Oren et al. [15], which provided
an analysis of the top-k elicitation scheme under a distributional assumption on both the
preferences, and the availability of the candidates, for predicting the correct Borda winner.
They showed a lower bound of Ω(m/ logm) on k under the impartial culture assumption
(improved in this paper). We generalize their probabilistic argument to handle arbitrary
scoring rules.

In a recent study, Caragiannis et al. [4] studied the ability of scoring rules to reconstruct
the underlying “true” ranking, based only on noisy rankings. Some of our results on biased
distributions make similar generalizations of distributions such as the Mallows distribution,
and employ similar techniques. They show that in the limiting case (where n goes to
infinity), broad classes of scoring rules can correctly determine the underlying ranking.

2 Preliminaries

We consider a setting with a set C = {c1, . . . , cm} of m candidates. Let L the set of all
possible ordinal preferences of C, where an ordering π ∈ L is a permutation π : C → [m],
mapping candidates to ranks. That is, for a preference π and 1 ≤ j < j′ ≤ m, we say that
π−1i (j) is preferred over π−1i (j′) by a voter with preference π.

We also let N = {1, . . . , n} denote the set of voters, such that with each voter i ∈ N ,
there is an associated preferences πi ∈ L. We let P = {πi}i∈N ∈ Ln denote the preference
profile; i.e., the set of all voter preferences. It is commonly assumed that n� m, and that
the preferences are drawn according to some probabilistic model. We will describe some of
these models below.

Another key component of our setting is a voting rule v, which is a function that selects a
“winning” candidate based on the preference profile. Formally, we have that v : Ln × 2C →
C (in the literature, this is sometimes referred to as a social welfare function). We are
particularly interested in a broad class of voting rules called score based rules. Given the
preference profile P , a score based scoring rule relies on a function sc : Ln → R that assigns
a score to each of the candidates. The election winner under such a rule is the candidate
having the maximal score.

Positional Scoring rules A positional scoring rule is characterized by a score vector
α ∈ Rm≥0 of non-increasing scores: α(j) ≥ α(j + 1) for 1 ≤ j ≤ m − 1. The score given by
a voter i ∈ N for a candidate c ∈ C, ranked j’th in πi, is α(j) = α(πi(c)). We denote the
average score of a candidate c ∈ C, by scα(c) = 1

n

∑
i∈N α(πi(c)). When the score vector

is known from context, we omit the subscript α, for notational convenience. The winner of
the election is the candidate with the highest average score: arg maxc∈C sc(c).



Examples of positional scoring rules include (1) the Borda scoring rule, for which the
score vector is αB = (m − 1,m − 2, . . . , 0), (2) the plurality (majority) scoring rule, in
which corresponding score vector is αP = (1, 0, 0, . . . , 0), (3) the k-approval rule, which is
characterized by the score a vector with a prefix of k 1’s followed by zeros; this allows each
voter to specify which set of k candidates he “approves”.

We also study the (non-positional) Copeland rule, which can be defined as follows. We
say that ci beats cj in a pairwise election if the number of votes in P , in which ci precedes
cj is larger than the number of votes in P which cj precedes ci. The score of a candidate c,
sc(c), is the number of candidates that she beats. As with all scoring rules, the candidate
with maximal score wins the election. The Copeland scoring rule is tightly related to the
notion of Condorcet compatible voting rules: the winning candidates receives the majority
of the votes in a pairwise election with any other candidate. Indeed, a Condorcet winner is
always a Copeland winner.

Top-k elicitation For a given integer k between 1 and m, the decision maker asks the
voters to report only the k-length prefixes of their preference rankings, (π−1i (1), . . . , π−1i (k)),
for every i ∈ N , and has to make a decision based only on these prefixes. The goal of the
decision maker is to recover the true winner given only the k-length prefixes.

Given the distribution of the preferences and a prescribed voting rule, we would like to
determine the range of k for which the decision maker can predict the winner with high
probability, that is with probability tending to 1 as m grows.

Distributional models of preferences We consider various models of distributions over
preferences. Many of these models are characterized by an underlying “canonical” prefer-
ence, the probabilities of the different preferences decaying monotonically with their dissim-
ilarity to the canonical preference, as measured by some distance function.

A common such distance metric for permutations is the Kendall tau distance, defined
by dKT (π1, π2) = |{c, c′ : π−1

1 (c) < π−1
1 (c′) and π−1

2 (c) > π−1
2 (c′)}|. The popular Mallows

distribution is specified by a fraction φ ∈ [0, 1], in addition to the reference ranking, and
the probability of a preference decreases exponentially with its distance to the reference
ranking: Pr[π] = φdKT (π,π̂)/Zm, where Zm is a normalizing term.

Whenever we state that the preferences are distributed according to a Mallows distribution
D(π̂, φ), we mean that the preferences are drawn i.i.d. from D(π̂, φ).

A heavily used special instance of the Mallows distribution is the case φ = 1, in which
the preferences are sampled uniformly at random from L by each of the voters. This is also
known as the impartial culture assumption (or succinctly, IC). We focus on this distribution
in Section 3.

3 Top-k voting for positional scoring rules and a neutral
prior

We begin with the model in which the preferences are assumed to be drawn from the uniform
distribution over rankings L. Our main goal is to provide a direct method for “mechanically”
obtaining either upper or lower bounds on the minimum value of k necessary for determining
the correct winning candidate, with higher probabilities.

Given the top-k part of the votes, our goal is to choose a candidate who will win with
probability close to 1, if there is such a candidate. The “optimal” algorithm will compute (or
estimate, if computational efficiency is required) the probability that each candidate wins,
and choose the candidate with the maximal chance to win. However, such an algorithm
doesn’t seems to readily lend itself to systematic analysis. Instead, we consider the following



Algorithm FairCutoff: The top-k algorithm for positional scoring rules.

Input: Top-k votes: (πk1 , . . . , π
k
n), where πki denotes the top-k ranking of voter i over

a set of k candidates. A score vector α.
1 foreach c ∈ C do

2 Set scTi (c) =

{
α(πi(c)) if πi(c) ≤ k,

1
m−k

∑m
j=k+1 α(j) otherwise.

3 return arg maxc∈C
∑n
i=1 sc

T
i (c).

simple approach. For each candidate c, the top-k score that corresponds to voter i’s vote, is
the original score given in vector α, if the candidate is in i’s top-k ranking. Otherwise, we
assign it a score that corresponds to the expected score of c, had it been positioned uniformly
at random in one of the bottom m− k positions. The algorithm then selects the candidate
with the maximal total score. The full details are given in Algorithm FairCutoff.1 For
the purpose of analysis, we define the complementary “bottom” score, given by: scB(c) =
1
n

∑
i∈N sc

B
i (c) where

scBi (c) =

{
0 if πi(c) ≤ k,
α(πi(c))− 1

m−k
∑m
j=k+1 α(j) otherwise.

We note that sc(c) = scT (c) + scB(c).
We now present the main theorem of this section.

Theorem 3.1. Define

VT =
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

− 1

m2

(
m∑
i=1

α(i)

)2

,

VB =
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

Furthermore, define the k-partition variability ratio to be rk = VT /VB.
Lower bound. If rk = o(logm) then no algorithm for predicting the overall winner given

the top-k votes succeeds with probability 1− om(1), when taking the limit n→∞. (That is,
for each m we analyze the success probability for large enough n.)

Upper bound. If rk = ω(log4/3m) then cmax, i.e., the candidate with the maximum
score based on Algorithm FairCutoff, is the overall winner with probability 1 − om(1), for
large enough n.

VT measures the uncertainty coming from the top-k part of the votes (corresponding
to scT ), while VB measures the uncertainty coming from the bottom part of the votes
(corresponding to scB). When VT /VB is small, the bottom uncertainty dominates the top-k
information, and so the winner cannot be determined given only the top-k part. When
VT /VB is large, the top-k part dominates the “noise” coming from the bottom part of the
votes. We defer the proof of the theorem to Subsection 3.2.

Theorem 3.1 gives a threshold phenomenon: as long as VT /VB � logm, the winner cannot

be predicted, while for VT /VB � log4/3m, Algorithm FairCutoff predicts the winner with

1We show that in practice, using our simulation results (Section 7), that the performance of the FairCutoff
algorithm is quite comparable to the optimal algorithm.



high probability. Lemma 3.1 given below, shows that as k increases, the top uncertainty VT
grows while the bottom uncertainty VB shrinks, and so the ratio VT /VB is increasing in k,
implying that there has to exist such a threshold.

Lemma 3.1. Let VT (k), VB(k) be the quantities defined in Theorem 3.1. Then

VT (k) + VB(k) =
1

m

m∑
i=1

α(i)2 − 1

m2

(
m∑
i=1

α(i)

)2

,

and VT (0) = 0, VB(m−1) = 0. If furthermore the scores α(1), . . . , α(m) are non-increasing
then VT (k) is non-decreasing and VB(k) is non-increasing.

Proof. A straightforward calculation gives the formula for VT (k) + VB(k) and shows that
VT (0) = VB(m−1) = 0. Suppose now that the scores are non-increasing. Since VT (k)+VB(k)
is independent of k, it is enough to show that VB(k) is non-increasing. We have

m(VB(k − 1)− VB(k)) = α(k)2 − 1

m− k + 1

(
m∑
i=k

α(i)

)2

+
1

m− k

(
m∑

i=k+1

α(i)

)2

.

Let S(k) =
∑m
i=k+1 α(i). Then

m(VB(k − 1)− VB(k)) = α(k)2 − α(k)2 + S(k)2 + 2α(k)S(k)

m− k + 1
+
S(k)2

m− k

=
m− k

m− k + 1
α(k)2 +

S(k)

m− k + 1

[
S(k)

m− k
− 2α(k)

]
.

Since S(k) ≤ (m− k)α(k),

m(VB(k − 1)− VB(k)) ≤ m− k
m− k + 1

α(k)2 +
(m− k)α(k)

m− k + 1
[−α(k)] = 0.

3.1 Application to common scoring rules

We now demonstrate its implications to the efficacy of the top-k voting method, when
applied to different scoring rules. We begin with the Borda scoring rule. The following
bound strengthens the bound given in [15]:

Theorem 3.2. Suppose that the underlying election is held using the Borda voting rule.
Then the top-k elicitation method requires k = Ω(m), in order to determine the correct
Borda winner, with probability 1− om(1), as as n→∞.

Proof. We use the criterion given by Theorem 3.1. Calculating VT and VB , we obtain

VT =
1

m

k∑
i=1

(m− i)2 +
1

m(m− k)

(
m∑

i=k+1

(m− i)

)2

− 1

m2

(
m∑
i=1

(m− i)

)2

=
k(k2 + 3m(m− k)− 1)

12m
,

VB =
1

m

m∑
i=k+1

(m− i)2 − 1

m(m− k)

(
m∑

i=k+1

(m− i)

)2

=
(m− k + 1)(m− k)(m− k + 1)

12m
.

Assuming k ≤ m/2, we have VT = Θ(km) and VB = Θ(m2), so that VT /VB = Θ(k/m) =
o(logm). Therefore, no top-k algorithm succeeds with probability at least 1− om(1).



Our next case study is the harmonic scoring rule, which was first proposed by Boutilier
et al. [3].

Definition 1 (The harmonic scoring rule). The harmonic scoring rule is defined by the
m-dimensional vector αh, such that for i ∈ [m], αh(i) = 1/i.

As we now show, the harmonic tends to be quite amenable to efficient elicitation via our
top-k elicitation method.

Theorem 3.3. Consider the harmonic scoring rule. If k = ω(log4/3m) then FairCutoff
selects the correct winner with probability 1−om(1), for large enough n. On the other hand,
if k = o(logm), no top-k algorithm can select the correct winner with probability 1− om(1).

Proof. We first calculate the two specified terms given in Theorem 3.1, assuming k = o(m):

VT =
1

m

k∑
i=1

1

i2
+

1

m(m− k)

( m∑
i=k+1

1

i

)2
− 1

m2

( m∑
i=1

1

m

)2
=
π2/6−Θ( 1

k )

m
+

Θ(log2(mk ))

m(m− k)
− Θ(log2m)

m2
= Θ(

1

m
),

where the first equality follows from the elementary identities
∑t
i=1

1
i = log t ± Θ(1) and∑t

i=1
1
i2 = π2

6 −Θ( 1
t ). For the second equality we only used the fact that k = o(m).

We similarly derive the second term:

VB =
1

m

m∑
i=k+1

1

i2
− 1

m(m− k)

(
m∑

i=k+1

1

i

)2

=
Θ( 1

k )−Θ( 1
m )

m
−

Θ(log2(mk ))

m(m− k)
= Θ(

1

mk
).

Therefore when k = o(m), we obtain rk = VT /VB = Θ(k). The bounds follow by an
application of Theorem 3.1.

Our final case study is geometric scoring rules.

Definition 2 (Geometric scoring rules). The geometric scoring rule with parameter ρ is
given by the m-dimensional vector αρ(i) = ρi.

Theorem 3.4. Consider the geometric scoring rule with parameter ρ (not depending on m).
If k = ω(log logm) then FairCutoff selects the correct winner with probability 1− om(1), for
large enough n. On the other hand, if k = o(log logm), no top-k algorithm can select the
correct winner with probability 1− om(1).

Proof. We calculate the specified terms given in Theorem 3.1, assuming k ≤ m− 2:

VT =
1

m

k∑
i=1

ρ2i +
1

m(m− k)

(
m∑

i=k+1

ρi

)2

− 1

m2

(
m∑
i=1

ρi

)2

=
Θ(1)

m
+

Θ(ρ2k)

m(m− k)
− Θ(1)

m2
=

Θ(1)

m
,

VB =
1

m

m∑
i=k

ρ2i − 1

m(m− k)

(
m∑

i=k+1

ρi

)2

=
Θ(ρ2k)

m
− Θ(ρ2k)

m(m− k)
=

Θ(ρ2k)

m
.



Therefore VT /VB = Θ(ρ−2k). The bounds follow from an application of Theorem 3.1.

3.2 Proving Theorem 3.1

Before proceeding with the proof of the theorem, we define a few pieces of notation. Given a
set of pre-defined random variables, x1, . . . , xm, we let xmax, and x2max denote highest and
second highest xi values, respectively (note that they may be equal). Similarly, we abuse
our notation a bit, by letting cmax and c2max denote the candidates with the highest and
second highest scT (·) values, among the candidates in C. Similar notations will be used for
other sets of variables.

At a high-level, our approach is the following: For two distinct candidates c, c′ ∈ C,
let DT (c, c′) = scT (c) − scT (c′); i.e., the difference in their top-k scores (note that
DT (cmax, c2max) is always non-negative). We will first aim to characterize the limiting
behaviour of DB(cmax, c2max), for sufficiently large voter populations. Then, we will pro-
vide a similar characterization on the analogously defined DB(cmax, c2max) = scB(cmax) −
scB(c2max). Our bounds will then follow as a result of bounding the probability of the event
in which DT (cmax, c2max) + DB(cmax, c2max) < 0. The first step in the proof is estimating
DT (cmax, c2max). The strategy (due to Yury Makarychev [12]) is to reduce this to a question
regarding the difference between the two largest elements in a vector of i.i.d. normal random
variables.

We start by computing the mean, variance and covariance of the scores due to a single
voter, and the corresponding data for the aggregated scores.

Lemma 3.2. Define

ET =
1

m

m∑
i=1

α(i),

VT =
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

− 1

m2

(
m∑
i=1

α(i)

)2

.

The mean, variance and covariance of the scores of a single voter i are E[scTi (c)] = ET ,
Var[scTi (c)] = VT and Cov(scTi (c), scTi (c′)) = −VT /(m− 1).

The mean, variance and covariance of the aggregated scores are E[scT (c)] = ET ,
Var[scT (c)] = VT /n and Cov(scT (c), scT (c′)) = −VT /(n(m− 1)).

Proof. The average score is

E[scTi (c)] =
1

m

(
k∑
i=1

α(i) + (m− k)
1

m− k

m∑
i=k+1

α(i)

)

=
1

m

m∑
i=1

α(i).

In order to compute the variance, we first compute the second moment:

E[scTi (c)2] =

1

m

 k∑
i=1

α(i)2 + (m− k)

(
1

m− k

m∑
i=k+1

α(i)

)2


=
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.



The formula for the variance now immediately follows.
As for the covariance, let σ = Cov(scTi (c), scTi (c′)) for any c 6= c′, and note that

Cov(scTi (c), scTi (c)) = VT . Since
∑
c∈C sc

T
i (c) is constant,

0 = Cov

(∑
c∈C

scTi (c),
∑
c′∈C

scTi (c′)

)
=
∑
c,c′∈C

Cov(scTi (c), scTi (c′))

= m(m− 1)σ +mVT .

Therefore σ = −VT /(m− 1).
Finally, we have E[scT (c)] = nE[scTi (c)/n] = ET and Var[scT (c)] = nVar[scTi (c)/n] =

n(VT /n
2) = VT /n, and similarly Cov(scT (c), scT (c′)) = −VT /(n(m− 1)).

We can now use the central limit theorem to reduce the estimation of scT (cmax) −
scT (c2max) to a question about Gaussians.

Lemma 3.3. Let r ∼ N (0, VT /(n(m − 1))), and let yj = scT (cj) + r. Then
1√

mVt/(n(m−1))
(y1 − ET , . . . , ym − ET ) converges in distribution (as n→∞) to a standard

multivariate normal distribution of dimension m (with zero mean and covariance matrix
Im).

Proof. Let ri ∼ N (0, VT /(m− 1)), and note that r has the same distribution as (r1 + · · ·+
rn)/n. Therefore we can define r = (r1 + · · · + rn)/n. We have E[yj ] = E[scT (cj)] = ET ,
Var[yj ] = Var[scT (cj)]+Var[r] = VT /n+VT /(n(m−1)) = mVT /(n(m−1)) and Cov(yj , yk) =
Cov(scT (cj), sc

T (ck)) + Var(r) = 0. Since (y1, . . . , ym) is an average of n i.i.d. well-behaved
random variables (scTi (1)+ri, . . . , sc

T
i (m)+ri), the central limit theorem applies and shows

that (y1, . . . , ym) converges in distribution to m i.i.d. copies of N (ET ,mVT /(n(m − 1))).
This implies the lemma.

The trick here is that yj − yk = scT (cj) − scT (ck). The question we need to solve now
is the following: Suppose that x1, . . . , xm are i.i.d. standard random variables; what is the
typical value of xmax − x2max? In order to obtain a concentration bound on this difference,
we will seek to bound on both x2max − x22max and xmax + x2max, knowing that the ratio of
these two terms will give us our desired bound.

We let uc = Φ(xc), where Φ is the complementary cumulative distribution function of a
standard normal variable. The idea is to use the fact that uc = Φ(xc) ∼ U(0, 1), and to
analyze the typical values of umin = Φ(xmax) and u2min = Φ(x2max) as well as the ratio
u2min/umin. We are interested in the ratio since it is well known that

log Φ(x) ≈ −x
2

2
.

and in particular,

log
u2min

umin
≈ x2max − x22max

2
.

We start our analysis with u2min/umin.

Lemma 3.4. Let 1 ≤ `1 ≤ `2 ≤ ∞.

Pr[`1 ≤ u2min

umin
≤ `2] =

1

`1
− 1

`2
.



Proof. The cumulative distribution function of umin is easily calculated to be 1− (1− u)m,
and therefore its density is m(1 − u)m−1. Given umin, the other uc’s have distribution
U(umin, 1). Therefore the cumulative distribution function of u2min is 1 − ( 1−u

1−umin
)m−1.

Therefore for 1 ≤ ` ≤ ∞,

Pr[u2min

umin
≥ `]

= Pr[u2min ≥ `umin]

=

∫ 1/`

0

Pr[u2min ≥ `u|umin = u]m(1− u)m−1 du

=

∫ 1/`

0

(
1− `u
1− u

)m−1
m(1− u)m−1 du

=

∫ 1/`

0

m(1− `u)m−1 du

= − (1− `u)m

`

∣∣∣∣1/`
0

=
1

`
.

Therefore

Pr[`1 ≤ u2min

umin
≤ `2]

= Pr[u2min

umin
≥ `1]− Pr[u2min

umin
≥ `2]

=
1

`1
− 1

`2
.

Using this lemma, we can show that with high probability (with respect to m), both
xmax and x2max are Θ(

√
logm). We will need to use some estimates on tails of the normal

distribution, starting with the following well-known estimate (e.g., [7]):

e−x
2/2

x
√

2π

(
1− 1

x2

)
≤ Φ(x) ≤ e−x

2/2

x
√

2π
. (3.1)

Lemma 3.5.

− d

dx
log Φ(x) = x+O

(
1

x

)
.

Proof. Since Φ
′
(x) = −e−x2/2/

√
2π and (log Φ(x))′ = Φ

′
(x)/Φ(x), we deduce from (3.1)

that

x ≤ − d

dx
log Φ(x) ≤ x

1− 1/x2
= x(1 +O(1/x2)).

Lemma 3.6. With probability 1− om(1), both xmax = Θ(
√

logm) and x2max = Θ(
√

logm).

Proof. We start with a concentration estimate for umin:

Pr

[
1

m2
≤ umin ≤

1√
m

]
=

(
1− 1√

m

)m
−
(

1− 1

m2

)m
=(1− om(1))− om(1) = 1− om(1).

The estimate for xmax is immediate from (3.1). In order to handle x2max, we use Lemma 3.4.
Choosing `1 = 1 and `2 = m1/3, we see that u2min/umin ≤ m1/3 with probability 1 −
1/m1/3 = 1 − om(1). Therefore with probability 1 − om(1), 1/m2 ≤ umin ≤ u2min ≤
m1/3umin ≤ 1/m1/6. The estimate for x2max is now immediate from (3.1).



Putting everything together, we can prove our estimate on xmax − x2max.

Lemma 3.7. Let 1 ≤ `1 ≤ `2 ≤ ∞. With probability 1/`1 − 1/`2 − om(1),

Ω

(
log `1√
logm

)
≤ xmax − x2max ≤ O

(
log `2√
logm

)
.

Proof. Lemma 3.4 and Lemma 3.6 show that with probability 1/`1 − 1/`2 − om(1), the
following estimates hold: xmax = Θ(

√
logm), x2max = Θ(

√
logm), and `1 ≤ u2min/umin ≤

`2. We can restate the latter fact as

log `1 ≤ log Φ(x2max)− log Φ(xmax) ≤ log `2.

The mean value theorem shows that

log Φ(x2max)− log Φ(xmax)

xmax − x2max
= − d

dx
log Φ(x∗)

for some x2max ≤ x∗ ≤ xmax. Clearly x∗ = Θ(
√

logm), and so Lemma 3.5 shows that
−(d/dx) log Φ(x∗) = Θ(

√
logm). Therefore

xmax − x2max =
log Φ(x2max)− log Φ(xmax)

Θ(
√

logm)
.

The lemma easily follows.

Combining this with Lemma 3.3, we obtain a similar result on scTmax − scT2max.

Lemma 3.8. Let 1 ≤ `1 ≤ `2 ≤ ∞. With probability 1/`1 − 1/`2 − om(1)− on(1),

Ω

(
log `1

√
VT

n logm

)
≤ scT (cmax)− scT (c2max) ≤ O

(
log `2

√
VT

n logm

)
.

Proof. First, note that scT (cmax)−scT (c2max) = ymax−y2max = (ymax−ET )−(y2max−ET ).
Since the mapping (x1, . . . , xm) 7→ xmax − x2max is continuous, Lemma 3.3 shows that
scT (cmax)−scT (c2max)√

mVt/(n(m−1))
converges in distribution to the distribution of xmax − x2max. That

means that up to an error factor of on(1), we can translate the results of Lemma 3.7 to
results about scores by multiplying throughout by Θ(

√
Vt/n), which gives the lemma.

As a corollary, we can show that scT (cmax)− scT (c2max) is “roughly”
√
VT /(n logm).

Lemma 3.9. Let τ1(m) = om(1) and τ2(m) = ωm(1). For large enough n,m,

Ω(τ1(m)
√
VT /(n logm)) ≤ scT (cmax)− scT (c2max) ≤ O(τ2(m)

√
VT /(n logm))

with probability 1− om(1)− on(1).

Proof. Choose `1 = exp τ1(m) and `2 = exp τ2(m) in Lemma 3.8 to obtain the stated bound,
which holds with probability 1/`1−1/`2−om(1)−on(1). The lemma follows since 1/`1 → 1
and 1/`2 → 0.

This lemma is good enough to prove a lower bound on k. In order to prove a good upper
bound, we need to estimate the difference scT (cmax) − scT (cp−max), for other values of p;
here c1−max = cmax, c2−max = c2max, and so on.



Lemma 3.10. Suppose p = o(
√
m/ logm) satisfies also p = ωm(1). Then scT (cmax) −

scT (cp−max) = Θ(log p
√
VT /(n logm)) with probability 1− om(1)− on(1).

The analysis is similar (albeit more involved), and is deferred to the end of this section
(Subsection 3.3).

Now, we take a similar approach by estimating scB(cmax)−scB(c2max) (the direction of the
bound will depend on the type of bound on k). If cmax, c2max were two arbitrary candidates
then we could use the central limit theorem to directly estimate scB(cmax) − scB(c2max).
The expectation would be 0 because of symmetry, and the variance is given by the following
lemma.

Lemma 3.11. Let c ∈ C be an arbitrary candidate. The mean of scBi (c) is 0, and its
variance is

VB =
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

The variance of scB(c)− scB(c′) is 2 m
m−1VB/n.

Proof. The expectation is given by

E[scBi (c)] =
1

m

m∑
i=k+1

α(i)− 1

m− k

m∑
j=k+1

α(j)


=

1

m

m∑
i=k+1

α(i)− m− k
m(m− k)

m∑
j=k+1

α(j) = 0.

Since E[scBi (c)] = 0,

VB = E[scBi (c)2]

=
1

m

m∑
i=k+1

α(i)− 1

m− k

m∑
j=k+1

α(j)

2

=
1

m

m∑
i=k+1

α(i)2

+
1

m

[
− 2

m− k
+

m− k
(m− k)2

]( m∑
i=k+1

α(i)

)2

=
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

Next, as in the proof of Lemma 3.2, Cov(scBi (c), scBi (c′)) = − VB
m−1 . Since E[scBi (c)] = 0,

E[(scBi (c)− scBi (c′))2] = 2VB − 2 Cov(scBi (c), scBi (c′))

= 2
m

m− 1
VB .

Therefore Var[scBi (c) − scBi (c′)] = 2 m
m−1VB . Finally, Var[scB(c) − scB(c′)] = Var[scB(c) −

scB(c′)]/n = 2 m
m−1VB/n.



Notice however that, cmax and c2max are not arbitrary candidates. We will show that the
effect of this issue on the difference in the scores is quite negligible. The idea is to eliminate
the dependence on the choosing rule by dividing the voters into four groups, according to
whether cmax came up in the bottom or top, and whether c2max came up in the bottom or
top:

P1 = {σ ∈ P : σ(cmax), σ(c2max) ≤ k}, P2 = {σ ∈ P : σ(cmax) > k, σ(c2max) ≤ k},
P3 = {σ ∈ P : σ(cmax) ≤ k, σ(c2max) > k}, P4 = {σ ∈ P : σ(cmax), σ(c2max) > k}.

The voters in each of these groups behave as if cmax, c2max were arbitrary candidates, under
the condition that some of them are at the top k and some not. The number of voters in
these groups ni = |Pi| are strongly concentrated around their means ν1, ν2, ν3, ν4 due to a
Chernoff bound. Given n1, n2, n3, n4, we can use the central limit theorem to approximate
the distribution of scB(cmax)− scB(c2max).

We start by analyzing the distribution of scB(cmax) − scB(c2max) given the deviation
parameters εi = ni − νi. We present here the (easily verifiable) values of ν1, ν2, ν3, ν4:

ν1 =
k(k − 1)

m(m− 1)
n, ν2 = ν3 =

k(m− k)

m(m− 1)
n ν4 =

(m− k)(m− k − 1)

m(m− 1)
n.

First, we establish the mean and variance of scB(cmax)− scB(c2max).

Lemma 3.12. Suppose εi = ni − νi are given. Then

E[scB(cmax)− scB(c2max)] = 0,

Var[scB(cmax)− scB(c2max)] =
2 m
m−1VB

n
±Oα

(
max(ε2, ε3, ε4)

n2

)
.

Here Oα(·) means that the constant depends on the weights α(1), . . . , α(m).

Proof. We start with the mean. If i ∈ P1 ∪ P3 then scBi (cmax) = 0. If i ∈ P2 ∪ P4 then
as in the proof of Lemma 3.11, E[scBi (cmax)] = 0. We conclude that E[scB(cmax)] = 0, and
similarly E[scB(c2max)] = 0.

As for the variance, let v1, v2, v3, v4 be the variance arising from a single voter in
P1, P2, P3, P4, respectively. Note that v1 = 0 and v2 = v3. Thus

Var[scB(cmax)− scB(c2max)] =
n2 + n3
n2

v3 +
n4
n2
v4.

We know that when ε2 = ε3 = ε4 = 0, the above must equal 2 m
m−1VB/n. Therefore

Var[scB(cmax)− scB(c2max)] =
2 m
m−1VB

n
±Oα

(
max(ε2, ε3, ε4)

n2

)
.

This allows us to conclude that scB(cmax)−scB(c2max) is close in distribution to a normal
random variable.

Lemma 3.13. Suppose k 6= 1,m. The random variable scB(cmax) − scB(c2max) converges
in distribution to a Gaussian N (0, 2 m

m−1VB/n).

Proof. Given ε1, ε2, ε3, ε4, the random variable scB(cmax)− scB(c2max) is the average of n1
constant random variables and n2+n3+n4 non-constant random variables with one of three
given bounded distributions. Since k 6= m, n2+n3+n4 = Ω(n) with probability 1−on(1), and



in that case the Berry–Esseen theorem shows that scB(cmax)− scB(c2max) is on(1)-close in
distribution to a Gaussian N (0, V ), where V = Var[scB(cmax)−scB(c2max)]; the expectation
vanished due to Lemma 3.12. Now ε2, ε3, ε4 are all o(n) with probability 1− on(1), and so
the lemma shows that V = 2 m

m−1VB/n(1 + on(1)) in that case. Therefore with probability

1 − on(1), scB(cmax) − scB(c2max) is on(1)-close in distribution to N (0, 2 m
m−1VB/n). The

lemma follows.

Nothing in the proof of Lemma 3.13 used any special properties of cmax, c2max; rather,
they were arbitrary candidates. Therefore the lemma holds for any two candidates.

Combining Lemma 3.9 with Lemma 3.13, we can prove our main theorem.
We are now ready to prove Theorem 3.1.

Proof. Lower bound. Let τ2(m) =
√
VB logm/VT → ∞. Lemma 3.9 shows that

scT (cmax) − scT (c2max) = O(τ2(m)
√
VT /(n logm)) = O(

√
VB/n) with probability 1 −

om(1)−on(1), and Lemma 3.13 shows that scB(cmax)−scB(c2max) converges in distribution
to N (0, 2 m

m−1VB/n). Therefore:

• With constant probability, scB(cmax)− scB(c2max) < −(scT (cmax)− scT (c2max)), and
so sc(cmax) < sc(c2max) (according to the properties of the Gaussian distribution, the
difference can be a constant multiple of standard deviations away from its mean). In
particular, with constant probability cmax is not the overall winner.

• With constant probability, scB(cmax)− scB(c2max) ≥ 0, and so sc(cmax) ≥ sc(c2max).
In particular, with constant probability c2max is not the overall winner.

• Let c be any other candidate. The proof of Lemma 3.13 used no special properties of
cmax or c2max, and so it applies to scB(cmax)−scB(c) as well. Therefore with constant
probability, scB(cmax) − scB(c) ≥ 0, and so sc(cmax) ≥ sc(c). In particular, with
constant probability c is not the overall winner.

We conclude that each candidate fails to be the overall winner with some constant proba-
bility.

Upper bound. Let p = elog
1/3m. Define τ(m) =

√
VB log4/3m/VT = om(1) and

τ2(m) =
√
τ(m) = om(1). We have the following:

• Lemma 3.9 shows that with probability 1 − om(1) − on(1) and all q ≥ 2,
scT (cmax) − scT (cq−max) ≥ scT (cmax) − scT (c2max) = Ω(τ2(m)

√
VT /(n logm)) =

Ω(τ(m)−1/2τ(m)
√
VT /(n logm)) = Ω(τ(m)−1/2

√
(VB/n) log p) = ω(

√
(VB/n) log p).

• Hence Lemma 3.13, together with the tail bound (3.1), shows that sc(cmax) >
sc(cq−max) for all 2 ≤ q ≤ p with probability 1− om(1) for large enough n.

• Lemma 3.10 shows that scT (cmax) − scT (cp−max) = Θ(log p
√
VT /(n logm)) =

ω(
√

(VB/n) logm) with probability 1− om(1)− on(1).

• Hence Lemma 3.13, together with the tail bound (3.1), shows that sc(cmax) >
sc(cq−max) for all q ≥ p with probability 1− om(1) for large enough n.

We conclude that with probability 1−om(1) and large enough n, cmax has the largest overall
score.



3.3 Proving Lemma 3.10

We start by showing that when p = o(
√
m/ logm), the corresponding uniform random

statistics are smaller than 1/
√
m, and so xp−max = Θ(

√
logm).

Lemma 3.14. Suppose p = o(
√
m/ logm). With probability 1 − om(1), up−min ≤ 1/

√
m

and xp−max = Θ(
√

logm).

Proof. It is well-known (e.g. [1, (2.2.2)]) that the density of up−min is m!
(p−1)!(m−p)!u

p−1(1−
u)m−p. Therefore

Pr[up−min ≥ 1/
√
m]

=

∫ 1

1/
√
m

m!

(p− 1)!(m− p)!
up−1(1− p)m−p du

≤
∫ 1

1/
√
m

m!

(p− 1)!(m− p)!
(1− p)m−p du

=

(
m

p− 1

)
(1− p)m−p+1

∣∣∣∣1
1/
√
m

=

(
m

p− 1

)
(1− 1/

√
m)m−p+1

≤mp−1(1− 1/
√
m)m−p+1.

Taking the logarithm,

log Pr[up−min ≥ 1/
√
m]

≤(p− 1) logm− m− p+ 1√
m

=(p− 1)(logm+ 1√
m

)−
√
m.

Where the inequality follows from the previous bound and the bound ln(1 − x) ≤ −x, for
1 < x < 1. Since p = o(

√
m/ logm), the logarithm tends to −∞, and so the probability is

om(1). The corresponding result for xp−max follows from estimate (3.1) for the lower bound,
and Lemma 3.6 for the upper bound.

Next, we extend Lemma 3.4.

Lemma 3.15. Let 1 ≤ `1 ≤ `2 ≤ ∞.

Pr[`1 ≤ up−min

umin
≤ `2] =

(
1− 1

`2

)p−1
−
(

1− 1

`1

)p−1
.

Proof. It is well-known (e.g. [1, (2.3.9)]) that the joint density function of u = umin and



v = up−min is n!
(p−2)!(n−j)! (v − u)p−2(1− v)n−p. Therefore

Pr[up−min ≥ `umin]

=

∫ 1

0

∫ v/`

0

n!

(p− 2)!(n− p)!
(v − u)j−2(1− v)n−p dudv

=−
∫ 1

0

n!

(p− 1)!(n− p)!
(v − u)p−1(1− v)n−p

∣∣∣∣v/`
0

dv

=

∫ 1

0

n!

(j − 1)!(n− p)!
vp−1(1− v)n−p

[
1−

(
1− 1

`

)p−1]
dv

=1−
(

1− 1

`

)p−1
.

Where the last equality follows from two of the definitions of the beta function; i.e.,∫ 1

0
xa(1− x)bdx = 1

(a+b+1)(a+ba )
. The lemma easily follows.

Next in turn is a generalization of Lemma 3.7 and Lemma 3.8.

Lemma 3.16. Let 1 ≤ `1 ≤ `2 ≤ ∞, and suppose that p = o(
√
m/ logm). With probability

(1− 1/`2)p−1 − (1− 1/`1)p−1 − om(1),

Ω

(
log `1√
logm

)
≤ xmax − xp−max ≤ O

(
log `2√
logm

)
,

and with probability (1− 1/`2)p−1 − (1− 1/`1)p−1 − om(1)− on(1),

Ω

(
log `1

√
VT

n logm

)
≤ scT (cmax)− scT (cp−max) ≤ O

(
log `2

√
VT

n logm

)
.

Proof. The proof is very similar to the proofs of Lemma 3.7 and Lemma 3.8.

Lemma 3.10 can therefore be thought of as a corollary of the above lemma, and further-
more it is an analogue of Lemma 3.9:

Lemma 3.10. Suppose p = o(
√
m/ logm) satisfies also p = ωm(1). Then scT (cmax) −

scT (cp−max) = Θ(log p
√
VT /(n logm)) with probability 1− om(1)− on(1).

Proof. Choose `1 =
√
p− 1 and `2 = (p− 1)2 to obtain the stated bound, which holds with

probability (1− 1/`2)p−1 − (1− 1/`1)p−1 − om(1)− on(1) = 1− om(1)− on(1).

4 Copeland’s Voting Rule

Having considered positional scoring rules, we now further demonstrate the applicability of
our of approach by considering the (non-positional) Copeland scoring rule. We give a lower
bound on k that corresponds to any top-k algorithm:

Theorem 4.1. For k ≤ m/
√

logm, no algorithm can predict the winner under Copeland
with probability better than 1− Ω(1).

We first give an outline of the proof, and afterwards provide the detailed proof. Relating
to the definition of the scoring rule, for an individual vote i ∈ N and two distinct candidates
c, c′ ∈ C, we set sci(c, c

′) = 1 if πi(c) < πi(c
′), and sci(c, c

′) = −1 if πi(c) > πi(c
′). Note that



a candidate c beats a candidate c′ exactly when sc(c, c′) > 0. As done for positional scoring
rules, we can rewrite sci(c, c

′) as the sum of two pairwise scores scTi (c, c′) and scBi (c, c′).
The score scTi (c, c′) behaves like sci(c, c

′) if at least one of the candidates is positioned in
the top-k ranking of voter i (thus allowing us to deduce the relation of c and c′), and is zero
otherwise. The score scBi (c, c′) is defined so that sci(c, c

′) = scTi (c, c′) + scBi (c, c′).
The idea of the analysis is to show that for small enough k, each candidate c has a constant

probability of losing. The top and bottom scores are both roughly normally distributed (with
correlations). In contrast to the case of positional scoring rules, dealing with correlations is
simpler in our case: for every three distinct candidates c, c′, c′′ ∈ C, it can be shown that
scTi (c, c′) and scTi (c, c′′) are positively correlated. Treating the score of a candidate as the
sum of the entries of the vector (scTi (c, c′))c′ 6=c, we use this fact to decompose this (random)
vector into two, more tractable, vectors. This allows us to bound the advantage of c over
most other candidates c′ in the top score.

Similarly, the bottom scores are positively correlated, due to a “bias” corresponding to
the average position of c in voters in which it appears outside the top-k. With constant
probability, this bias is negative, and so the total score is roughly binomially distributed
with a negative bias. This shows that c could lose with constant probability.

We suspect that the true lower bound for k is, in fact, Ω(m).
We now proceed with the detailed proof of Theorem 4.1. For completeness, we give the

complete the definitions of the voter-specific, Copeland score, as well as the top-k scores and
bottom-(m− k) scores, scT (·, ·), scB(·, ·), that correspond to the definition of the Copeland
scoring rule:

sci(c, c
′) =

{
+1 if πi(c) < πi(c

′),

−1 if πi(c
′) < πi(c).

scTi (c, c′) =


+1 if πi(c) < πi(c

′) and πi(c) ≤ k,
−1 if πi(c

′) < πi(c) and πi(c
′) ≤ k,

0 if πi(c), πi(c
′) > k.

scBi (c, c′) =


+1 if k < πi(c) < πi(c

′),

−1 if k < πi(c
′) < πi(c),

0 if πi(c) ≤ k or πi(c
′) ≤ k.

By definition, we have sci(c, c
′) = scTi (c, c′) + scBi (c, c′).

As done for positional scoring rules, we will consider the normalized sum sc(c, c′) =
1√
n

∑n
i=1 sci(c, c

′). Recall that for positional scoring rules, we were concerned with the

average score; this slightly different normalization is used to make the proof less cumbersome.
Fix a candidate c, and let p = k/m, q = 1− p. In order to arrive at simpler terms, from

now on, whenever we write A v B, we mean that A differs from B by a multiplicative
(and negligible) error of 1 ± om(1), assuming that p = om(1). We start by approximating
the distributions of the vectors scT (c, c′)c′ 6=c and scB(c, c′)c′ 6=c, for two distinct candidates
c, c′ ∈ C.

Lemma 4.1. We have E[scT (c, c′)] = E[scB(c, c′)] = 0, and for c′ 6= c′′,

VT = Var[scT (c, c′)] ≈ 1− q2 v 2p, ηT = Cov(scT (c, c′), scT (c, c′′)) ≈ 1− q3

3
v p,

VB = Var[scB(c, c′)] ≈ q2 v 1, ηB = Cov(scB(c, c′), scB(c, c′′)) ≈ q3

3
v

1

3
.



Proof. Clearly E[scT (c, c′)] = E[scB(c, c′)] = 0. Due to our choice of normalization, scT , scB

have the same variance and covariance as scTi , sc
B
i . The top variances are

Var[scTi (c, c′)] = Pr[π−1i (c) ≤ k or π−1i (c′) ≤ k]

= 1− (m− k)(m− k − 1)

m(m− 1)
.

The top covariances are

Cov(scTi (c, c′), scTi (c, c′′)) = Pr[π−1(c) < π−1(c′), π−1(c′′) and π−1(c) ≤ k]

+ Pr[π−1(c′), π−1(c′′) < π−1(c) and π−1(c′), π−1(c′′) ≤ k]

− Pr[π−1(c′) < π−1(c) < π−1(c′′) and π−1(c) ≤ k]

− Pr[π−1(c′′) < π−1(c) < π−1(c′) and π−1(c) ≤ k]

=
1

3

(
1− (m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)

)
+

1

3

k(k − 1)(k − 2)

m(m− 1)(m− 2)
+

k(k − 1)(m− k)

m(m− 1)(m− 2)

− 2

6

k(k − 1)(k − 2)

m(m− 1)(m− 2)
− 2

2

k(k − 1)(m− k)

m(m− 1)(m− 2)

=
1

3

(
1− (m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)

)
.

The bottom variances are

Var[scBi (c, c′)] = Pr[π−1i (c), π−1i (c′) > k]

=
(m− k)(m− k − 1)

m(m− 1)
.

Finally, the bottom covariances are

Cov(scBi (c, c′), scBi (c, c′′)) = Pr[k < π−1(c) < π−1(c′), π−1(c′′)] + Pr[k < π−1(c′), π−1(c′′) < π−1(c)]

− Pr[k < π−1(c′) < π−1(c) < π−1(c′′)]− Pr[k < π−1(c′′) < π−1(c) < π−1(c′)]

=
(m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)

(
1

3
+

1

3
− 2

6

)
=

1

3

(m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)
.

The distributions of the vectors scT (c, c′)c′ 6=c and scB(c, c′)c′ 6=c approach normal distribu-
tions with the given variance and covariance. Note that in contrast to the case of positional
scoring rules, the pairwise scores exhibit positive correlations. In order to handle these cor-
relations, we will decompose these vectors, and treat them as sums of independent random
variables. This will make the analysis simpler, as it allows us to deal with these vectors as
sums of two, easier to work with, random vectors.

Consider the following decomposition, which relates to the distribution of the vectors
scT (c, c′)c′ 6=c, sc

B(c, c′)c′ 6=c. For ` ∈ {T,B}, sample a single normal random variable z`
from N (0, η`). Then, sample m − 1 i.i.d. normal random variables from the distribution
N (0, V` − η`), and denote the resulting (m − 1)-dimensional vector by y`. Finally, let x`



denote the vector that results from adding z` to every entry in y`. For convenience, we
denote the entries corresponding to candidate c′ (6= c) in y` and x` by y`(c

′) and x`(c
′).

First, sample a single zero mean normal vector with individual variance V and pairwise
covariance η can be generated by first sampling a normal random variable from N (0, η)
normal variable to a vector of N (0, V − η) normal variables. The following lemma shows
that the above sum of two vectors essentially describes a decomposition of the vectors
scT (c, c′)c′ 6=c, sc

B(c, c′)c′ 6=c.

Lemma 4.2. The random vectors scT (c, c′)c′ 6=c and scB(c, c′)c′ 6=c converge in distribution
to the distribution of the random vectors xT and xB (respectively).

Proof. The lemma follows from the central limit theorem, once we notice that the expecta-
tion and covariance matrices match in both cases.

As the vector xT is obtained by adding a uniform biasN (0, (VT−ηT ) v p) to i.i.d. samples
of the distribution N (0, ηT v p), we would expect that most of the vector is O(

√
p), with

high probability. This is stated formally in the following lemma.

Lemma 4.3. Let ε > 0 be given. For M = 2
√

log 2
ε the following holds, assuming M ≥ 1.

For large enough n, with probability 1 − ε at least a 1 − ε fraction of c′ satisfy scT (c, c′) ≤
M
√
VT .

Proof. We show that this holds for the vector xT with probability 1 − ε/2, whence the
lemma follows from convergence in distribution (Lemma 4.2). The bound on the cdf of the
normal distribution (Eq. (3.1)) shows that Pr[zT ≤ M

√
ηT /2] ≥ 1 − ε/2 and Pr[yT (c′) ≤

M
√

(VT − ηT )/2] ≥ 1− ε/2. Hence with probability 1− ε/2, a 1− ε/2 fraction of c′ satisfy

xT (c′) = zT + yT (c′) ≤M(
√
ηT /2 +

√
(VT − ηT )/2) ≤M

√
VT .

On the other hand, conditioned on zB , the number of candidates c′ such that xB(c′) +
M
√
VT > 0 is binomially distributed. In particular, if zB < −M

√
VT then it is extremely

likely that c′ loses. This argument (which has to be adjusted to handle the ε fraction of
“bad” candidates c′) is given in the following lemma.

Lemma 4.4. There is a global constant ε0 > 0 such that the following holds. Suppose that
a 1− ε0 fraction of c′ satisfy scT (c, c′) ≤M

√
VT , for some M > 0. Let σ = M

√
VT /
√
ηB +√

VB − ηB/
√
ηB v O(M

√
p + 1). For large enough n, candidate c loses with probability

approaching Φ(σ) v O(1).

Proof. With probability Φ(σ) = Φ(−σ), we have zB < −σ · √ηB = −M
√
VT −

√
VB − ηB .

Therefore for a 1 − ε0 fraction of the candidates, scT (c, c′) + xB(c′) is a normal random
variable with expectation at most −

√
VB − ηB . The number N of these candidates satisfying

scT (c, c′) + xB(c′) < 0 is thus stochastically bounded from below by Bin((1 − ε0)m,Φ(1)).
In particular, we have N ≥ (1 − ε0)Φ(0.9)m with probability 1 − on(1). This guarantees
that c loses as long as (1− ε0)Φ(0.9) > 1/2, which holds for small enough ε0 > 0. The proof
is complete by taking the normal approximation via Lemma 4.2.

We can now prove the main theorem.

Proof of Theorem 4.1. Choose ε = 1/m2 in Lemma 4.3. Applying the union bound, we
obtain that with probability 1− 1/m, for all candidates c it holds that a 1− 1/m2 fraction
of other candidates c′ 6= c satisfies scT (c, c′) ≤ M

√
VT , where M = O(

√
logm). Applying

Lemma 4.4, we see that each candidate loses with probability approaching Φ(σ), where
σ = O(M

√
k/m+1) = O(1). The lemma follows since σ = O(1) implies Φ(σ) = 1−Ω(1).



5 Mallows distribution

Theorem 3.1 shows that top-k allows for efficient elicitation under the harmonic and geo-
metric positional scoring rules, even under the most neutral preferences distribution. For
the Borda and Copeland scoring rules, we’ve shown that it is not the case (this is confirmed
empirically in our simulation results, presented in Section 7). This motivates the following
question: are there any classes of preference distributions for which top-k performs well
under these supposedly inefficient scoring rules? The purpose of our following discussion is
to provide such general distributions, and to argue that in the limiting case where n→∞,
only a constant k is sufficient.

The following piece of notation would be useful: given a distribution D over L and a
candidate c ∈ C, we let qt(c) = Prπ∼D[π(c) ≤ t]; i.e., the probability that ci is positioned
in the first t positions.

Consider the following class of distributions:

Definition 3. Let D be a distribution over the set of preferences L. Then D is said to be
positionally-biased (PoB) if there exists a distinguished candidate c ∈ C such that qt(c) >
qt(c

′) for all candidates c′ 6= c and 1 ≤ t < m. Furthermore, we call the said candidate c
the favored candidate.

Theorem 5.1. Let D be a positionally-biased distribution over L, and let c be its favored
candidate. Suppose that the election is defined by a non-constant positional scoring rule.
Then candidate c wins with probability 1−on(1), and so the overall winner under distribution
D can be predicted without looking at the votes at all.

Sketch of Proof First, by a majorization argument, it follows that the expected score of
c is strictly higher than that of all other candidates. The statement of the theorem follows
by a straightforward application of the Chernoff bound.

We now argue that the Mallows distribution is PoB, and that furthermore, natural gen-
eralizations of it are also PoB. To do so, we will need the following simple properties:

Definition 4 (Swap increasing distance). A distance function d : L × L → Z≥0 is swap-
increasing if for any two π1, π2 ∈ L and any two c, c′ ∈ C such that π1(c) < π1(c′) and
π2(c) < π2(c′) we have d(π1, π

′
2) > d(π1, π2), where π′2 is obtained from π2 by switching c

and c′. 2

Definition 5 (Monotone distributions). Let D be a distribution over L, parametrized by
some fixed reference ranking π̂ and a swap-increasing distance function d(·, ·). Then D is
said to be monotone if Prπ∼D[π] is decreasing with d(π, π̂).

Lemma 5.1. A monotone distribution is positionally-biased, with c = π̂(1) being the favored
candidate.

Sketch of Proof Let c′ 6= c. If σ−1(c) < σ−1(c′) and σ′ is obtained from σ by switching
c and c′, then Pr[σ] > Pr[σ′]. This implies that qt(c) > qt(c

′) for all 1 ≤ t < m.

The following is a well-known folk theorem (e.g., [4]):

Lemma 5.2. The Kendall tau distance function is swap-increasing.

2Our definition is a weakening of a similar definition in [4] (every distance function satisfying their
definition also satisfies ours).



As a corollary, we deduce that Mallows distributions with dispersion parameter φ < 1 are
positionally-biased, and so Theorem 5.1 applies to them.

Theorem 5.1 shows that if the preference distribution is positionally-biased then there
is no need to elicit votes at all, for large enough n. However, that may be an unrealistic
assumption. It could be, for example, that the preferences are known to be distributed
according to a Mallows distribution, but the reference profile π̂ is not known in advance. It
is not hard to show that even in this case, for large enough n, k = 1 is sufficient to recover
π̂(1) and so predict the winner with high probability.

We note that Caragiannis et al. made a very similar set of arguments in the context of
predicting the underlying ranking using scoring rules in [4].

We now generalize all the foregoing for the case of Copeland, and more generally
Condorcet-compatible rules. Recall that a voting rule is said to be Condorcet-compatible if
the candidate who beats all other candidates in pairwise elections, always wins the elections.
First, we define a corresponding class of distributions:

Definition 6. A distribution D over the set of preferences L is pairwise-biased (PwB) if
there exists a distinguished candidate c ∈ C (the favored candidate) such that for every other
candidate c′ ∈ C \ {c}, Prπ∼D[π(c) < π(c′)] > 1/2; i.e., c is more likely to precede c′ than
the other way around.

Theorem 5.2. Suppose that the voter preferences are drawn from a pairwise-biased distri-
bution D, with a favored candidate c ∈ C. Then candidate c is the Condorcet winner with
probability 1−on(1), and so the overall winner under distribution D can be predicted without
looking at the votes at all for any Condorcet-compatible rule.

Proof. For ci 6= c, let ci > 1/2 be the probability that c precedes ci. Chernoff’s bound
shows that c beats ci in a pairwise election with probability 1 − on(1). As this is true for
all ci 6= c, we deduce that c is a Condorcet winner with probability 1− on(1).

Note that the Copeland voting rule is indeed Condorcet compatible, and so this result
contrasts strongly with the setting of an impartial culture.

6 Worst-case distributions

Having shown a contrast between the neutral distribution (IC), and the far less demanding
(in terms of the bounds on k) Mallows distribution and its generalization, it would be
interesting to consider the following worst-approach: suppose that an adversary chooses
a distribution D, and makes its full details public. In an analogy to the previous input
models, we are interested in studying the limitations (or sometimes, capabilities), for this
worst-case, fully-known distribution D.

We focus on two of the scoring rules that were shown to be the least demanding, under
the impartial culture assumption. For the harmonic scoring rule, we construct a worst case
distribution, giving a worst-case lower bound of Ω(m). Note that this distribution admits
this lower bound despite of its exhibiting a significant amount of noise. Then, we prove the
robustness of the geometric positional scoring rule, proving an upper bound of k = O(logm)
for any distribution, for sufficiently high n.

We start by arguing that the harmonic rule is difficult under this model.

Theorem 6.1. There is a distribution DH (more properly, a family of distributions de-
pending on m) such that predicting the winner (with respect to the harmonic weights) with
probability 1− om(1) requires k = Ω(m).



Proof. The distribution DH is a 1/2 − 1/2 mixture of two distributions D1, D2. In distri-
bution D1, candidate c1, c2 are given the positions m/(10 logm) and m/(10 logm) + 1 (at
random), and the rest of the candidates are distributed randomly. In distribution D2, can-
didates c1, c2 are given the positions m/2 and m (at random), and the rest of the candidates
are distributed randomly. It is easy to check that the expected score of candidates c1, c2 is
roughly 5 logm/m, while the expected score of all other candidates is only roughly logm/m.
Therefore one of c1, c2 must win.

If k < m/2 then the top-k votes only reveal information forD1-voters. Let scTi (c1), scTi (c2)
be the scores revealed in the top-k choices of voter i, and let scBi (c1), scBi (c2) be the scores
revealed in the rest of the profile. We have

E[(scTi (c1)− scTi (c2))2] =
1

2

(
10 logm

m
− 10 logm

m+ 10 logm

)2

= Θ

(
log4m

m4

)
,

E[(scBi (c1)− scBi (c2))2] =
1

2

(
2

m
− 1

m

)2

= Θ

(
1

m2

)
.

Let ∆T =
∑
i(sc

T
i (c1)− scTi (c2)) and ∆B =

∑
i(sc

B
i (c1)− scBi (c2)). Individually, the quan-

tities ∆T ,∆B have an approximately normal distribution. Furthermore, if we condition on
the number of D1-voters, then the quantities become independent. Since the number of D1-
voters is strongly concentrated around its mean, ∆T ,∆B are asymptotically independent.
Since Var[∆B ]� Var[∆T ], this shows that the information in the top-k part isn’t enough to
predict the winner: with high probability |∆T | ≤ logm

√
Var[∆T ], while there is constant

probability (close to 1/2) that ∆B > logm
√

Var[∆T ], and constant probability (close to

1/2) that ∆B < − logm
√

Var[∆T ].

Next, we show that the geometric rule is not difficult under this model.

Theorem 6.2. Fix ρ, and consider the geometric scoring rule with a constant decay factor
of ρ. There is a distribution Dρ such that predicting the winner with probability 1 − om(1)
requires k = Ω(logm). Conversely, there is a constant β > 0 such that if k ≥ β logm then
top-k suffices to predict the winner with probability 1 − om(1) for every distribution; we
stress that the distribution is known to the algorithm.

We start with an outline of the proof. The idea is to use a generalization of Algo-
rithm FairCutoff. Fix a scoring rule α (in this case, a geometric rule), a distribution D and
an integer k. The algorithm will compute for each voter i and candidate cj a “top” score
scTi (cj) based only on the top-k part of voter i’s vote:

scTi (cj) =

{
α(t) if π−1i (t) = cj for some t ≤ k,
E[α(πi(cj))|π−1i (1), . . . , π−1i (k)] otherwise.

Here the expectation is taken according to D. The “bottom” score scBi (cj) complements
the top score so that scTi (cj) + scBi (cj) = sci(cj):

scBi (cj) =

{
α(t)− E[α(πi(cj))|π−1i (1), . . . , π−1i (k)] if π−1i (t) = cj for some t > k,

0 otherwise.

Note that E[scBi (cj)] = 0, and so E[scTi (cj)] = E[sci(cj)]. As in Section 3, we define
scT (cj), sc

B(cj), sc(cj) to be averages of scTi (cj), sc
B
i (cj), sci(cj) over all voters i.

The difficult part of the proof of Theorem 6.2 is showing that k ≥ C logm suffices to
predict the winner with high probability. The idea is to use the algorithm just described.



The only real competition is among the set of candidates S obtaining the maximal expected
score. For there to be a competition, S needs to have more than one candidate. Since
the average score over all players is Θ(1/m), any candidate in S has expected score at
least Ω(1/m). We show that this implies a lower bound of Ω(1/m3

√
n) on the variance of

scT (c1) − scT (c2) for any two c1, c2 ∈ S. Since scT (c1) − scT (c2) is roughly normal, this
implies anticoncentration of the random variable scT (c1)− scT (c2). In other words, there is
some gap between the top scores of any two candidates in S. We show that with probability
1− om(1), this gap is at least Ω(1/m4.5

√
n). On the other hand, E[scB(c1)− scB(c2)] = 0,

and the corresponding random variable is roughly normal with variance O(1/m5); the bound
on the variance follows from the fact that |scB(c1)| = O(1/m2.5) since k is large enough.
Therefore the contribution of the bottom scores is not enough to overturn the winner as
judged from the top scores.

We proceed with the full proof of Theorem 6.2.

Proof of Theorem 6.2. The first part is simple. The distribution Dρ puts candidates c1, c2 in
places logρ(1/

√
m), logρ(1/

√
m) + 1 (at random), and distributes the rest of the candidates

randomly. The expected score of candidates c1, c2 is Θ(1/
√
m) = ω(1/m), whereas the

expected score of the other candidates is Θ(1/m). Therefore with probability 1−om(1), one
of c1, c2 wins the elections. If k < logρ

√
m then the winner isn’t determined by the top-k

part of the votes, and so k ≥ logρ
√
m = Ω(logm) is required.

The second part is more involved. Suppose that we are given a distribution D, and let
S be the set of candidates which have the maximal expected score. A Chernoff bound
shows that with probability 1 − on(1), one of the candidates in S wins the elections. If
|S| = 1 then the winner can be determined without eliciting any votes, so we can assume
that |S| ≥ 2. Consider any two candidates c1, c2 ∈ S, and let their positions under D be
the (correlated) random variables t1, t2. Since the expected score of a random candidate is
Θ(1/m), we know that the expected score of c1, c2 is Ω(1/m). We would like to lower bound
E[(scTi (c1)− scTi (c2))2]. Up to constant factors, this quantity is equal to∑

i≤k

Pr[min(t1, t2) = i]ρ2i.

Since E[sci(c1)] = E[ρt1 ] = Ω(1/m), we know that Pr[t1 ≤ logρ(1/m
2)] = Ω(1/m). Since

k ≥ β logm ≥ logρ(1/m
2) (for large enough β),∑

i≤k

Pr[min(t1, t2) = i]ρ2i ≥ 1

m2

∑
i≤logρ(1/m2)

Pr[min(t1, t2) = i]ρi

≥ 1

m2

∑
i≤logρ(1/m2)

Pr[t1 = i]ρi ≥ Ω

(
1

m3

)
.

The first inequality follows from ρi ≥ 1/m2 for all i ≤ logρ(1/m
2). The second inequality

follows from the fact that the distribution of min(t1, t2) majorizes the distribution of t1.
The third inequality follows from E[ρt1 ] = Ω(1/m) and the fact that the contribution of
terms i > logρ(1/m

2) to the expectation is at most 1/m2.

We conclude that E[(scTi (c1)− scTi (c2))2] = Ω(1/m3).
The distribution of scTi (c1) − scTi (c2) is asymptotically normal, and since c1, c2 ∈ S,

its expectation is 0. Therefore it is asymptotically N (0, σ2/n) for some σ2 = Ω(1/m3).
Since the density function of N (0, σ2/n) is at most 1/

√
2πσ2/n, Pr[|N (0, σ2/n)| ≤ δ] ≤

2δ/
√

2πσ2/n = O(δ/
√
σ2/n). Taking δ =

√
σ2/n/m3, we deduce that with probability

1 − O(1/m3), |scT (c1) − scT (c2)| ≥
√
σ2/n/m3 = Ω(1/m4.5

√
n). Since there are at most



m2 pairs of elements in S, by taking the union bound, we can conclude that scT (cmax) −
scT (cj) = Ω(1/m4.5

√
n) with probability 1 − om(1) for all cj ∈ S other than cmax, where

cmax ∈ S is the candidate obtaining the highest top score scT among the candidates in S.
On the other hand, for all pairs of distinct candidates c1, c2 ∈ S, we have |scBi (c1) −

scBi (c2)| ≤ ρβ logm = O(ρk) = O(1/m5) (for large enough β), implying an upper bound
of O(1/m10) on the variance of this difference. Using the central limit theorem again, we
get that |scBi (c1)− scBi (c2)| is asymptotically distributed according to N (0, τ2/n) for some
τ2 = O(1/m10). Applying (3.1), we see that with probability 1−1/m3, |scB(c1)−scB(c2)| =
O(logm

√
τ2/n) = O(logm/m5

√
n). After taking the union bound, we get that this is true

for all distinct c1, c2 ∈ S with probability 1−om(1). Since O(logm/m5
√
n) < Ω(1/m4.5

√
n)

for large enough m, this shows that with probability 1 − om(1), candidate cmax wins the
elections.

7 Empirical Results

We ran several simulations to verify the results proved in the previous sections. Our first
set of simulations is designed to verify Theorem 3.1. For various values of n (number of
voters), m (number of candidates) and k (the top-k parameter), and several scoring rules,
we compared three algorithms: (1) the algorithm from [15], that assigns 0 points to the
bottom m − k candidates in a given vote (labeled as Naive), (2) Algorithm FairCutoff,
and (3) the optimal algorithm, which calculates the probability that each candidate wins
(given the top-k portion of the votes), and chooses the candidate with the maximal winning
probability (computing the probabilities was done by sampling).

In order to test the efficacy of top-k voting for the Copeland rule, we ran two different
algorithms, Algorithm FairPWCutoff and the naive algorithm, defined as follows. For every
pair of candidates c, c′ ∈ C and a top-k vote, if both appear in the top-k ranking, then
the higher ranked receives +1 points, whereas the lower ranked one receives −1 points.
Algorithm FairPWCutoff does the same if only one of them appears in the top-k ranking
(implying that the other candidate is ranked lower), whereas the naive algorithm does not
award any points in this case. When both candidates do not appear in the top-k ranking,
no points are awarded in both algorithms.

Figure 1 gives the success probabilities of these algorithms in the case of 20 candidates
and 2,000 voters for four different scoring rules: Borda, the harmonic rule, the geometric
scoring rule with parameter ρ = 1/2, and the Copeland method. Figure 2 gives the success
probabilities of Algorithm FairCutoff and Algorithm FairPWCutoff for 50 candidates and
104 voters.

Figure 1 shows that Algorithm FairCutoff outperforms the naive algorithm, and in most
cases matches the performance of the optimal algorithm. The optimal algorithm performs
significantly better only for Copeland. Figure 2 shows very clearly that Borda and Copeland
are the hardest rules whereas the geometric scoring rule is the easiest. The success prob-
ability of Borda is closely related to the partition variability ratio rk, as calculated in
Theorem 3.2.

Our second set of simulations is designed to verify Theorem 5.1 and its extension to the
case where the reference ranking is unknown (using k = 1). For various values of n and
m, several scoring rules, and several values of the Mallows parameter φ, we computed the
probability that the winner matches the first ranked candidate in the reference ranking, and
the probability that the same candidate also appeared the most times as the first choice
of the voters (marked First in the figure). The results for 20 candidates and 2,000 voters
appear in Figure 3. The results displayed in the figure show that unless φ is very high
(larger than roughly 0.8), the first ranked candidate almost always wins, and is almost
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Figure 1: Success probabilities of various algorithms and various values of k in the case of 20
candidates and 2,000 voters

0 10 20 30 40 50
k

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

Borda
Copeland
Geometric-0.5
Harmonic

Figure 2: Success probabilities of Algo-
rithm FairCutoff and Algorithm FairPWCutoff
for various values of k in the case of 50 candi-
dates and 104 voters
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Figure 3: Recovery of first-ranked candidate in
the case of 20 candidates and 104 voters

always identifiable by looking at the top votes. It also shows that our scoring rules are more
reliable at recovering the first ranked candidate, compared to plurality (which corresponds
to looking at the top votes).



8 Conclusions

We have studied a well-known method of preference elicitation. As we have shown, the
approaches needed for the different input models that were considered differ substantially.
For the neutral prior (impartial culture), we have presented a general technique for ana-
lyzing the bounds on the amount of information needed for correct winner selection, and
demonstrated it on both positional scoring rules and the Copeland scoring rule. We also
analyzed biased distributions, showing that the it is possible to predict the winner given
only the biased distribution, and studied the limitations of the top-k scheme in the context
of arbitrary distributions.

Our study raises a number of natural questions. To begin with the neutral prior, can we
apply our technique to other scoring rules? Also, as mentioned in the paper, we believe that
our bound for Copeland’s voting rule can be improved.

As a different direction, it would be interesting to consider other elicitation schemes, and
see whether analogous approaches can be applied to them. In particular, various iterative
methods, as well as methods that rely on pairwise comparisons, have been studied exten-
sively both empirically and from the perspective of rank aggregation. It would be interesting
to obtain theoretically proven bounds for such schemes.
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