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Abstract

The Gibbard-Satterthwaite theorem implies the ubiquity of manipulators—the vot-
ers who could change the election outcome in their favor by unilaterally modifying
their vote. In this paper, we ask what happens if a given profile admits several
such voters. We model the strategic interactions among these voters, whom we call
Gibbard-Satterthwaite manipulators, as a normal-form game. We classify the two-
by-two games that can arise in this setting for some simple voting rules, and study
the complexity of determining whether a given manipulative vote weakly dominates
truthtelling, as well as existence of Nash equilibria.

1 Introduction

Voting is a common method of preference aggregation, which enables the participating agents
to identify the best candidate given the individual agents’ rankings of the candidates. How-
ever, no “reasonable” voting rule is immune to manipulation: as shown by Gibbard (1973)
and Satterthwaite (1975), if there are at least 3 candidates, then any onto, non-dictatorial
voting rule admits a preference profile (a collection of voters’ rankings) where some voter
would be better off by submitting a ranking that differs from his truthful one. This is prob-
lematic enough when such a manipulator is unique, as he then has a disproportional influence
on the election outcome. However, the problem may be further exacerbated by the presence
of multiple voters each of whom could get a more desirable outcome by lying—if he was the
only one to do so. Indeed, if several such voters—we will call them Gibbard–Satterthwaite
manipulators, or GS-manipulators—attempt to manipulate the election simultaneously in
an uncoordinated fashion, the outcome may differ not just from the outcome under truthful
voting, but also from the outcome that any of the GS-manipulators was trying to implement,
due to complex interference among the different manipulative votes.

The goal of our paper is to develop a basic understanding of how multiple GS-
manipulators can help or hurt each other when acting simultaneously, under some sim-
ple voting rules. We model the interaction among the GS-manipulators as a normal-form
game, where the players are the GS-manipulators in a given profile, each player’s set of
actions consists of his truthful vote and (a subset of) his manipulative votes, and players’
preferences over action profiles are determined by who wins in the resulting elections (see
Section 4 for formal definitions). We call such games the GS-games. An important feature
of these games, which distinguishes them from voting games that have been considered in
prior literature (see Section 2), is that their set of players consists of the GS-manipulators
only, and in their choice of actions the players are limited to strategies that would constitute
a successful manipulation in the original profile. Thus, we aim at exploring the implications
of the fact that many Gibbard–Satterthwaite manipulators can co-exist in a given profile,
rather than investigating the full spectrum of strategic behaviors that may occur in voting
scenarios.

We are interested in the properties of the normal-form games that arise in our model
under common voting rules. Since the simplest non-trivial example of our framework in-
volves two GS-manipulators, with one manipulative action each, we first focus on 2-by-2
games, and ask whether any such game can be represented as a GS-game. To answer this



question we develop a simple classification, and observe that the definition of GS-games
imposes certain restrictions on players’ preferences. Combining this observation with sym-
metry arguments, we arrive at 6 basic types of 2-by-2 GS-games. We then show that, while
all 6 games can be obtained as GS-games under the Borda rule, for Plurality rule this is not
the case.

We then move on to games with more than two players. Perhaps the most basic question
one can ask in such games is whether a given manipulative vote is “safe”, i.e., whether the
outcome obtained by submitting this vote is always at least as good as the outcome of
truthful voting, no matter what actions other GS-manipulators choose. A vote with this
property would be very attractive to a GS-manipulator, as he could then ignore the actions
of other GS-manipulators. This question was originally investigated by Slinko and White
(2008, 2013), in a setting where one considers a subset of GS-manipulators who all have
identical preferences; it has been shown that finding a safe manipulation in this setting is
easy for k-approval (Hazon and Elkind, 2010) and Borda (Ianovski et al., 2011). We show
that in our model this problem is efficiently solvable for Plurality, and, with a mild restriction
on players’ strategy sets, for 2-approval; however, for 4-approval it becomes coNP-hard. We
conjecture that the problem of safe manipulation is hard also for the case of 3-approval.

To further refine our understanding of GS-games, we study the existence of pure strategy
Nash equilibria in such games. We show that every GS-game for Plurality has a Nash
equilibrium, and identify natural conditions implying the existence of Nash equilibria for
k-approval with k = 2, 3. However, we show that these conditions fail to ensure the existence
of Nash equilibria for 4-approval.

In the remainder of the paper we omitted or sketched some proofs in the interest of
space. Full versions of the proofs are available from the authors on request.

2 Related Work

There is a substantial body of research dating back to Farquharson (1969) that explores
the consequences of modeling non-truthful voting as a strategic game; see, e.g., (Moulin,
1979; Myerson and Weber, 1993; Dhillon and Lockwood, 2004; Feddersen et al., 1990). The
algorithmic aspects of such models have recently received some attention as well (Desmedt
and Elkind, 2010; Xia and Conitzer, 2010; Thompson et al., 2013; Obraztsova et al., 2013).
A closely related topic is voting dynamics, where players change their votes one by one in
response to the current outcome (Meir et al., 2010; Lev and Rosenschein, 2012; Reijngoud
and Endriss, 2012; Reyhaneh and Wilson, 2012). However, to the best of our knowledge,
in all of these papers the set of players consists of all voters, i.e., a player is allowed to
vote non-truthfully even if he would be unable or unwilling to manipulate the election on
his own. Restricting the set of players to GS-manipulators in the original profile alters the
problem substantially; for instance, it rules out “bad” Nash equilibria where all players vote
for the same undesirable candidate.

Our work can be seen as an extension of the model of safe strategic voting proposed by
Slinko and White (2008, 2013). However, unlike us, Slinko and White focus on a subset of
GS-manipulators who (a) all have identical preferences and (b) choose between truthtelling
and using a specific manipulative vote, and on the existence of weakly dominant non-truthful
votes in this setting (such votes are called safe strategic votes). In contrast, we allow
manipulators to have diverse preferences and to use strategy sets that contain more than
one non-truthful vote, and the questions we are interested in include, but are not limited
to, the existence of weakly dominant strategies.



3 Preliminaries

We consider n-voter elections over a candidate set C = {c1, . . . , cm}. An election is defined
by a preference profile V = (v1, . . . , vn), where each vi, i = 1, . . . , n, is a total order over
C; we refer to vi as the vote, or preferences, of voter i. For two candidates c1, c2 ∈ C we
write c1 �i c2 if i ranks c1 above c2; if this is the case, we say that voter i prefers c1 to c2.
For brevity we will sometimes write ab . . . z to represent a vote vi with a �i b �i . . . �i z.
We denote by top(vi) the top candidate in vi. Also, we denote by topk(vi) the set of top k
candidates in vi.

Given a preference profile V = (v1, . . . , vn), we denote by (V−i, v
′
i) the preference profile

obtained from V by replacing vi with v′i; for readability, we will sometimes omit the paren-
theses around V−i, v

′
i. Let X = {x1, . . . , x`} and Y = {y1, . . . , y`} be two disjoint sets of

candidates. Then v[X;Y ] denotes the vote obtained by swapping xj with yj for j = 1, . . . , `
in the individual preference ordering v. If the sets X and Y are singletons, i.e., X = {x},
Y = {y}, we omit the curly braces, and simply write v[x; y].

A voting rule is a mapping R that, given a profile V , outputs a candidate R(V ) ∈ C.
We consider the following voting rules in this paper.

• k-approval, 1 ≤ k ≤ m − 1: under this rule, each candidate receives one point from
each voter that ranks her in top k positions; 1-approval is also known as Plurality.

• Borda: under this rule, each candidate gets m − j points from each voter that ranks
her in position j.

Under both of these rules, the score of each candidate is the total number of points she
receives, and the winner is the candidate with the highest score, with ties broken according
to a fixed order > over C. We denote the k-approval score of a candidate c in a profile V
by sck(c, V ); c’s Borda score in V is denoted by scB(c, V ). We will sometimes denote the
k-approval rule by k-App.

We say that two votes v and v′ over the same candidate set C are equivalent with respect
to a voting rule R if R(V−i, v) = R(V−i, v

′) for every profile V . It is easy to see that v and
v′ are equivalent with respect to k-approval if and only if topk(v) = topk(v′), and v and v′

are equivalent with respect to Borda if and only if v = v′.

4 The Model

Our goal is to investigate strategic situations that arise when one or more voters could
improve the outcome of the election from their perspective by unilaterally changing their
votes. We will now define such situations formally.

Definition 1. We say that a voter i is a Gibbard–Satterthwaite manipulator, or a GS-
manipulator, in a profile V = (v1, . . . , vn) with respect to a voting rule R if there exists a vote
v′i 6= vi such that i prefers R(V−i, v

′
i) to R(V ). We denote the set of all GS-manipulators in

a profile V with respect to a voting rule R by N(V,R). A vote v′i is called a GS-manipulation
of voter i if i prefers R(V−i, v

′
i) to R(V ), and, moreover, for every v′′i it holds that either

R(V−i, v
′
i) = R(V−i, v

′′
i ) or i prefers R(V−i, v

′
i) to R(V−i, v

′′
i ).

We say that i manipulates in favor of p by submitting a vote v′i 6= vi if p is the winner
in R(V−i, v

′
i). Note that a voter can manipulate in favor of several different candidates;

however, in the definition of a GS-manipulation we require the voter to focus on his most
preferred candidate among the ones he can make the election winner.

Recall that a normal-form game is defined by a set of players N , and, for each player
i ∈ N , a set of actions Ai and a preference relation �i defined on the space of action



profiles, i.e., tuples of the form (a1, . . . , an), where ai ∈ Ai for all i ∈ N (while one could
define normal-form games in terms of utility functions or in terms of preference relations,
the latter approach is more suitable for our setting, as we only have ordinal information
about the voters’ preferences).

For each preference profile V and each voting rule R, we consider a family of normal-
form games defined as follows. For each game in this family, the set of players N is the
set of all GS-manipulators in V under R. For each player i, his set of actions Ai consists
of his truthful vote and a subset of his GS-manipulations; different choices of these subsets
correspond to different games in the family. Finally, the preference relation of player i is
determined by the outcome of R on the preference profile that corresponds to a given action
profile. Specifically, given an action profile V ∗ = (v∗i )i∈N , let V [V ∗] = (v′1, . . . , v

′
n) be the

preference profile such that v′i = vi for i 6∈ N and v′i = v∗i for i ∈ N . Then, given two
action profiles V ∗ and V ∗∗, we write V ∗ �i V ∗∗ if and only if R(V [V ∗]) = R(V [V ∗∗]) or
player i prefers R(V [V ∗]) to R(V [V ∗∗]). We refer to any game of this form as a GS-game
for a profile V and the voting rule R, and denote the set of all GS-games for V and R by
GS(V,R). Note that all games in GS(V,R) have the same set of players, namely, N(V,R),
so an individual game in GS(V,R) is fully determined by the players’ sets of actions, i.e.,
(Ai)i∈N(V,R). Thus, in what follows, we write G = (V,R, (Ai)i∈N(V,R)); when V and R are
clear from the context, we simply write G = (Ai)i∈N . We refer to an action profile in a
GS-game as a GS-profile; we will sometimes identify the GS-profile V ∗ = (v∗i )i∈N with the
preference profile V [V ∗]. We denote the set of all GS-profiles in a game G by GSP(G).

We emphasize that we allow the players to limit themselves to subsets of their GS-
manipulations, rather than considering a single game where each player’s set of actions
consists of his truthful vote and all of his GS-manipulations. There are several reasons for
that. First, the space of all GS-manipulations for a given voter can be very large, and a
player may be unable to identify all such votes; indeed, even counting the number of GS-
manipulations for a given voter is a non-trivial computational problem (Bachrach et al.,
2010). Second, the player may use a specific algorithm (e.g., that of Bartholdi et al., 1989)
to find his GS-manipulation; in this case, his set of actions would consist of his truthful vote
and the output of this algorithm. Third, the player may choose to ignore manipulations
that are (weakly) dominated by other manipulations. Finally, a player may prefer not to
change his vote beyond what is necessary to make his target candidate the election winner.
One possible reason for this behavior is to keep his vote as close to his true preferences as
possible (see Obraztsova and Elkind, 2012), or the fear of unintended consequences in the
complex environment of the game.

5 2-by-2 GS Games

In this section, we investigate which 2-by-2 games (i.e., games with two players, and two
actions per player) can be represented as GS-games. To address this question, we need a
suitable classification of 2-by-2 games. Note first that every such game corresponds to 4
action profiles, and is fully described by giving both players’ preferences over these profiles.
By considering all possible pairs of preference relations over domains of size 4, Fraser and
Kilgour (1986) show that there are 724 distinct 2-by-2 games. However, this classification
is too fine-grained for our purposes. Thus, we propose a simplified approach that is based
on the following two principles. First, we only compare action profiles that differ in exactly
one component. Second, when comparing two profiles that differ in the i-th component
(i = 1, 2), we only take into account the preferences of the i-th player. Thus, every 2-by-2
game can be represented by a diagram with 4 vertices and 4 directed edges, where an edge
is directed from a less preferred profile to a more preferred profile (a bidirectional edge
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Figure 1: Diagrams for 2-by-2 GS-games

indicates indifference).
Now, let us focus on GS-games with 2 players and 2 actions per player. For each player,

let s denote his truthful vote and let i denote his manipulative vote; thus, the vertices of our
diagram are (s, s), (i, s), (s, i), and (i, i). For two edges of this diagram their direction is
determined by the fact that i is a GS-manipulation: namely, both of the edges adjacent to
(s, s) are directed away from (s, s). Thus, by renaming the players if necessary, any 2-by-2
GS-game can be represented by one of the 6 diagrams in Figure 1.

Observe that an action profile in a 2-by-2 game is a Nash equilibrium if and only if the
corresponding vertex in the diagram of the game has two incoming edges. The following
proposition is immediate from Figure 1.

Proposition 2. Every 2-by-2 GS-game has at least one Nash equilibrium.

Example 3. Consider the GS-game for the preference profile (abc, bac, cab, cba) under the
Plurality voting rule, with ties broken according to a > b > c. In this game players 1 and 2
are the GS-manipulators; we can assume that their GS-manipulations are v∗1 = v1[a; b] and
v∗2 = v2[b; a], respectively. Note that if both GS-manipulators vote insincerely, c remains
the election winner. Thus, this game corresponds to diagram (ii) in Figure 1.

We will say that a diagram D is realizable by a voting rule R if there exists a preference
profile V and a 2-by-2 game G ∈ GS(V,R) such that D is the diagram for G. Our next goal
is to understand which diagrams are realizable by common voting rules.

Theorem 4. The only diagrams realizable by Plurality are (ii), (iii), (iv) and (v).

Proof. Consider a profile V , and assume that voters 1 and 2 are the GS-manipulators in
V . Suppose that the Plurality winner in V is w, voter 1 manipulates in favor of a, and
voter 2 manipulates in favor of b. Since 1 and 2 are GS-manipulators, we have w 6= top(v1)
and w 6= top(v2): otherwise the two voters would not have an incentive to manipulate.
We can therefore assume that the GS-manipulations of voters 1 and 2 are given by v∗1 =
v1[top(v1); a], v∗2 = v2[top(v2); b]. Let V 1 = (V−1, v

∗
1), V 2 = (V−2, v

∗
2), V 12 = (V 1

−2, v
∗
2).

The winner in V 12 can be w, a, or b, and the case where it is w corresponds to diagram
(ii). Further, if a = b, then a is the winner at V 1, V 2, and V 12, corresponding to diagram
(iii). Thus, suppose the winner at V 12 be a or b and a 6= b. This means that one of the
arrows adjacent to (i, i) must be bidirectional, ruling out the three diagrams (i), (ii) and (vi).



We have argued that diagrams (i) and (vi) are not realizable by Plurality. Example 3
shows how to realize diagram (ii). We now construct examples for the remaining three cases.
Diagram (iii) can be realized in profile V = (cabd, dabc, bacd) with ties broken alphabetically.
The winner at V is b, and both the first and second players can manipulate in favor of a,
which is therefore the winner at all manipulated profiles V 1, V 2, and V 12.

Consider now the profile V = (dabce, ebacd, cabde) with tie-breaking order b > a >
c > d > e. Candidate c is the winner in V , v1 manipulates in favor of a, and v2 in favor
of b. If both players manipulate, the result is still b by the tie-breaking order. Since v2

prefers b to a this example realizes diagram (iv). Diagram (v) can be obtained in profile
V = (dabc, abdc, cabd), and use b > c > a > d as a tie-breaking rule. Candidate c is
the winner in the initial profile, candidate a is winning at V 1, and candidate b is winning
at both V 2 and V 12, however this time v2 prefers a to b and hence regrets her choice of
manipulating.

In contrast, for Borda all six diagrams are realizable.

Theorem 5. Diagrams (i)–(vi) are all realizable by Borda.

Proof. We provide examples for each diagram in Figure 1:

Diagram (i). Let V = (dbcae, dbcae, acebd, acebd), and assume that ties are broken accord-
ing to a > b > c > d > e. The Borda winner in V is a. The first two voters are the
GS-manipulators, and for each of them the vote v∗ = bdcea is a GS-manipulation in
favor of c. Further, in (v∗, v∗, v3, v4) the Borda winner is b.

Diagram (ii). Let V = (abc, abc, bca, cba), with a > b > c as the tie-breaking order. The
Borda winner at V is b, and each of the first two voters can manipulate in favor of a
by submitting v∗ = acb. However, in profile (v∗, v∗, v3, v4) the Borda winner is c, and
both v1 and v2 prefer a to c.

Diagram (iii). Let V = (cbad, dbac, abcd, abcd) with ties broken according to a > b > c > d.
The Borda winner is a, and both v1 and v2 can manipulate in favor of b with strategies
v∗1 = bcad and v∗2 = bdac. If both manipulate, the winner is still b.

Diagram (iv). Let V = (acdbe, bcdae), with a > b > c > d > e as the tie-breaking order.
The Borda winner is c. Let v∗1 = adceb be v1’s manipulation strategy in favor of a,
and let v∗2 = becda be v2’s manipulation strategy in favor of b. The winner in profile
(v∗1 , v

∗
2) is a, hence realizing diagram (iv).

Diagram (v). Let V = (dacbe, abcde, cbead, cebad) with ties broken according to a > b >
c > d > e. The Borda winner in V is c. Voter v1 has a manipulation strategy
v∗1 = adbec in favor of a, and voter v2 has a manipulation strategy v∗2 = badec in favor
of b (note that v2 cannot make her favorite candidate a win). The Borda winner in
(v∗1 , v

∗
2 , v3, v4) is still b, and v2 prefers a to b. Thus, this example realizes diagram (v).

Diagram (vi). Let V = (abcd, cbda), with a > b > c > d as the tie-breaking rule. The
Borda winner is b. Let v∗1 = adbc and v∗2 = cdba be two manipulation strategies in
favor of, respectively, a and c. The winner of (v∗1 , v

∗
2) is d. Voter v2 prefers d to a and

does not regret manipulating, while v1 prefers c to d, hence realizing diagram (vi).

6 Weak Dominance

In this section, we consider the complexity of checking whether a given GS-manipulation is
always at least as good as truthful voting. This problem is captured by the game-theoretic
notion of weak dominance.



Definition 6. Given a GS-game G = (V,R, (Ai)i∈N(V,R)) and two strategies v∗i , v
∗∗
i ∈ Ai,

we say that v∗i weakly dominates v∗∗i if for every profile V ′ ∈ GSP(G) either R(V ′−i, v
∗
i ) =

R(V ′−i, v
∗∗
i ) or voter i prefers R(V ′−i, v

∗
i ) to R(V ′−i, v

∗∗
i ). We say that v∗i is weakly dominant

if v∗i weakly dominates v∗∗i for every v∗∗i ∈ Ai.
In what follows, we will mostly be interested in determining whether a given GS-

manipulation v∗i weakly dominates the truthful vote vi. A related problem is whether
v∗i is weakly dominant. However, in the context of GS-games the former problem is more
relevant than the latter. Indeed, the main issue faced by a GS-manipulator is whether to
manipulate or not, and if a certain vote can always ensure an outcome that is at least as
good as that of truthful voting, this is a very strong incentive to use it, even if another
non-truthful vote may be better in some situations. Note that our approach is consistent
with the one taken in the study of safe manipulation (Slinko and White, 2008, 2013), where
different manipulations are not compared to each other either.

In the rest of the paper, we limit our attention to k-approval rules. Thus, we will now
state some definitions and observations that apply to this class of rules.

Note first that under k-approval any GS-manipulation of voter i is equivalent to a vote
of the form vi[X;Y ], where X ⊆ topk(vi), Y ⊆ C \ topk(vi). Consider a GS-manipulation
vi[X;Y ] of voter i in V under k-approval; we say that vi[X;Y ] is minimal if for every other
GS-manipulation v′i of voter i it holds that v′i = vi[X

′;Y ′], where |X ′| ≥ |X|. That is, a
GS-manipulation is minimal if it performs as few swaps as possible.

Consider a profile V such that the k-approval winner in V is w, and sck(w, V ) = t. Let

S1(V, k) = {c ∈ C | sck(c, V ) = t, w > c},
S2(V, k) = {c ∈ C | sck(c, V ) = t− 1, c > w},

and set S(V, k) = S1(V, k) ∪ S2(V, k). We say that a candidate c is k-competitive in V
if c ∈ S(V, k). Since every manipulative vote increases the score of each candidate by at
most 1 and decreases the score of the winner by at most 1, it follows that under k-approval
every GS-manipulation in V is in favor of some candidate p ∈ S(V, k). In particular, if
S(V, k) is empty, there are no GS-manipulators. Further, we say that a candidate c ∈
S(V, k) is k-plausible in V if there is a voter i such that c 6∈ topk(vi) and c �i a for all
a ∈ S(V, k) \ {topk(vi), c}; we denote the set of all k-plausible candidates in V by S+(V, k).
Given a candidate set X, let w(X,V, k) be the candidate with the highest k-approval score
in V , with ties broken according to >. Set p∗(V, k) = w(S(V, k), V, k), and if S+ 6= ∅, set
p+(V, k) = w(S+(V, k), V, k). We omit V and k from the notation when they are clear from
the context.

The following proposition characterizes the possible effects of a manipulative vote under
k-approval.

Proposition 7. Let w be the k-approval winner in a profile V , let v∗i = vi[X;Y ], where
X ⊆ topk(vi), Y ⊆ C \ topk(vi), let V ′ = (V−i, v

∗
i ), and let w′ be the k-approval winner in

V ′. Then we have w ∈ X or w′ ∈ Y or w = w′.

Proof. Suppose that w 6∈ X, w′ 6∈ Y , but w 6= w′. Then sck(w, V ′) ≥ sck(w, V ) and
sck(w′, V ′) ≤ sck(w′, V ). Since w beats w′ in V , it follows that w also beats w′ in V ′, a
contradiction.

With these definitions and results in hand, we can proceed with our analysis.

6.1 Plurality

Consider a GS-manipulator i in a profile V under Plurality, and let v∗i be his GS-
manipulation. Note that i does not rank the current winner first, since otherwise he would



not be a GS-manipulator. Let pi be i’s most preferred candidate in S \ {top(v)}. It is
clear that v∗i is equivalent to vi[top(vi); pi] and pi is the winner in (V−i, v

∗
i ), i.e., all GS-

manipulations of voter i in V are equivalent to each other. Hence, there is essentially a
unique GS-game that corresponds to V , namely, the one where Ai = {vi, vi[top(vi); pi]}
for each player i; we will denote this game by G∗1(V ). We will now characterize GS-
manipulations that are weakly dominant in this game (as each player i has two strategies,
his GS-manipulation v∗i is weakly dominant if and only if it weakly dominates vi).

Theorem 8. Let v∗i be the GS-manipulation of voter i in G∗1(V ), and let c = top(vi). Then
v∗i is not weakly dominant in G∗1(V ) if and only if c ∈ S+(V, 1).

Proof. Let w be the Plurality winner in V . Suppose that there exists a GS-manipulator j
such that c �j a for all a ∈ S \ {top(vj), c}, and consider the profile V ′ where j submits
his GS-manipulation (i.e., swaps top(vj) and c), whereas every other GS-manipulator votes
truthfully. Clearly, c is the winner in V ′, and moreover sc1(c, V ′) = sc1(c, V ) + 1, and
sc1(a, V ′) ≤ sc1(a, V ) for all a ∈ C \ {c}. Suppose now that i changes his vote to v∗i ; denote
the resulting profile by V ′′. We have sc1(c, V ′′) = sc1(c, V ) and sc1(w, V ′′) = sc1(w, V ), so
c loses to w in V ′′. But c = top(vi), hence v∗i is not weakly dominant.

Conversely, suppose that c 6∈ S+. Then for any profile V ′ = (v′1, . . . , v
′
n) ∈ GSP(G∗1(V ))

such that v′i = vi we have sc1(c, V ′) ≤ sc1(c, V ). On the other hand, since no GS-manipulator
ranks w first, we have sc1(w, V ′) = sc1(w, V ). Thus, c is not the Plurality winner in V ′. Let
w′ be the Plurality winner in V ′; note that w′ ∈ {w}∪S. Let V ′′ = (V ′−i, v

∗
i ). Suppose that

v∗i = v[c; p]. By Proposition 7 the Plurality winner in V ′′ is either p or w′. Since i weakly
prefers p to every other candidate in {w} ∪ S, it follows that v∗i is weakly dominant.

Theorem 8 illustrates that every GS-game for Plurality is essentially a coordination game:
the GS-manipulators have to coordinate in order to ensure that their efforts do not cancel
out. We will now see that for k-approval with k > 1 the situation is more complicated.

6.2 2-Approval: An Algorithm

In this section, we focus on the 2-approval rule. Just as for Plurality, we first consider a
GS-manipulator i in a profile V , and describe the GS-manipulations that are available to
him. Let w be the 2-approval winner in V with score t. Again, since i is a GS-manipulator,
he does not rank w first.

If i ranks w second, the only way for him to improve the outcome is to vote so that
p = top(vi) wins. This is possible if and only if (1) p = p∗, and (2) there exists a candidate
c 6= p, w such that (2a) sc2(c) ≤ t − 3, or (2b) sc2(c) = t − 2 and either p ∈ S1 or p ∈ S2,
p > c, or (2c) sc2(c) = t − 1, p ∈ S1, and p > c. Note that condition (1) implies that if
there are several GS-manipulators who rank w second, they all rank the same candidate
p∗ first, and have the same set of GS-manipulations. Moreover, every GS-manipulation for
voters of this type is equivalent to swapping w with some candidate c that satisfies one of
the conditions (2a)–(2c). We will therefore refer to such voters as demoters.

Finally, suppose that w 6∈ top2(vi). Then i cannot lower the score of w by changing his
vote. However, he can raise the scores of some candidates in C \ top2(vi) by moving these
candidates into top two positions; note that i can do that for two candidates simultaneously.
Therefore, we refer to GS-manipulators who do not rank w in top two positions as promoters.
Clearly, a promoter’s vote is a GS-manipulation if and only if one of the promoted candidates
is i’s most preferred candidate in S \ top2(vi) (let us denote this candidate by p) and the
other promoted candidate p′ is such that sc2(p′, V ) < sc2(p, V ) or sc2(p′, V ) = sc2(p, V ) and
p > p′ (i.e., promoting p′ does not prevent p from becoming a winner).

Given a profile G, let G∗2(V ) be the GS-game where each player’s set of actions consists
of his truthful vote and all his minimal manipulations. The argument above shows that



for demoters the minimality assumption imposes no additional constraints, whereas for pro-
moters it excludes manipulations where two candidates are swapped into top two positions
simultaneously. We can now state the main result of this section.

Theorem 9. There is a polynomial-time algorithm for checking whether a given GS-
manipulation v′i of voter i weakly dominates his truthful vote vi in G∗2(V ).

Proof sketch. Let w be the winner in V , and let t = sc2(w, V ). Consider a GS-manipulator
i and his GS-manipulation v′i. Let q be the number of demoters in V .

Suppose first that i is a demoter, and let vi[w; c] be his GS-manipulation. Then it can
be shown that vi[w; c] weakly dominates vi if and only if

(i) S1 6= ∅, p∗ > c, and sc2(c, V ) + q ≤ t, or

(ii) S1 6= ∅, c > p∗, and sc2(c, V ) + q ≤ t− 1, or

(iii) S2 = ∅, p∗ > c, and sc2(c, V ) + q ≤ t− 1, or

(iv) S2 = ∅, c > p∗, and sc2(c, V ) + q ≤ t− 2.

For promoters, the analysis is considerably more complicated; we omit it due to space
constraints.

6.3 4-Approval: A Hardness Proof

We will now show that for 4-approval there is a way to select the players’ action sets so
that in the resulting game the problem of checking whether a given GS-manipulation weakly
dominates truthtelling is coNP-complete.

We reduce from the classic NP-complete problem Exact Cover by 3-Sets (X3C).
An instance of this problem is given by a ground set Γ = {g1, . . . , g3ν} and a collection
Σ = {σ1, . . . , σµ} of 3-element subsets of Γ. It is a “yes”-instance if there is a subcollection
Σ′ ⊆ Σ with |Σ′| = ν such that ∪σ∈Σ′σ = Γ, and a “no”-instance otherwise.

Theorem 10. The problem of deciding whether a given strategy v∗i weakly dominates
truthtelling in a GS-game (V, 4-App, (Ai)i∈N(V,4-App)) is coNP-complete.

Proof sketch. It is immediate that this problem is in coNP. To prove coNP-hardness, consider
an instance I = (Γ,Σ) of X3C with |Γ| = 3ν, |Σ| = µ. We can assume without loss of
generality that σ1 = {g1, g2, g3} and no other set in Σ contains g1; if this is not the case,
we can modify I by adding three new elements and a single set containing them. We will
now construct an instance of our problem. In what follows, when writing X � Y in the
description of an order �, we mean that all elements of X are ranked above all elements of
Y , but the order of elements within X and within Y can be arbitrary.

There is a set of candidates C ′ = {c1, . . . , c3ν} that correspond to elements of Γ, three
special candidates w, p, and c, and a set of dummy candidates D =

⋃µ
i=0Di ∪ D′, where

|Di| = 4 for i = 0, . . . , µ. We define the order > by setting w > c > p > c1 > · · · > c3ν > D.
For each set σi ∈ Σ we construct a vote vi of the form

Di � σi � c � . . . ,

where candidates in σi are ordered according to >, and set

v0 = D0 � p � c1 � c � C ′ \ {c1} � . . . .

We also construct additional voters so that in the resulting profile V we have sc4(w, V ) =
sc4(p, V ) = ν + 1, sc4(ci, V ) = ν + 1 for all i = 1, . . . , 3ν, sc4(c, V ) = 1, the 4-approval



score of each candidate in D is at most 1, and the only GS-manipulators in V are voters
0, 1, . . . , µ.

Note that w is the 4-approval winner in V , and S = C ′ ∪ {p}. We now define a GS-
game for this profile by constructing the players’ sets of actions as follows. Let D0 =
{d1, d2, d3, d4}. Then v∗0 = v0[{d1, d2}; {p, c}] is a GS-manipulation for voter 0, which makes
p the winner with ν+ 2 points. Similarly, for each i = 1, . . . , µ the vote v∗i = vi[Di;σi ∪{c}]
is a GS-manipulation which makes i’s top candidate in σi the winner with ν+2 points (note
that i orders σi in the same way > does, so tie-breaking favors i’s most preferred candidate
in σi). We set Ai = {vi, v∗i } for i = 0, . . . , µ. This completes the description of our game.
Clearly, we can construct the profile V and the players’ sets of strategies in polynomial time
given I. It can be shown that v∗0 weakly dominates v0 if and only if we started with a
“no”-instance of X3C; we omit the proof.

7 Nash Equilibrium

In this section, we study the existence of Nash equilibria in GS-games for k-approval with
k = 1, 2, 3, 4. In what follows, when considering a GS-game, we assume that its set of
GS-manipulators is not empty, since otherwise a Nash equilibrium exists trivially.

We will first show that for Plurality, a Nash equilibrium always exists.

Theorem 11. For any profile V the game G∗1(V ) has a Nash equilibrium.

Proof. Fix a profile V . If the set of GS-manipulators in V is not empty, we have S+ 6= ∅,
so p+ is well-defined. Let i be some voter whose GS-manipulation is in favor of p+, and
let v∗i be his GS-manipulation. It is easy to check that (V−i, v

∗
i ) is a Nash equilibrium with

winner p+.

A similar argument proves the existence of Nash equilibria for 2-approval, as long as
every manipulator’s action set contains at least one minimal GS-manipulation.

Theorem 12. Any game G = (V, 2-App, (Ai)i∈N(V,2-App)), where for each i ∈ N(V, 2-App)
the set Ai contains some minimal manipulation of voter i, has a Nash equilibrium.

Proof. We can assume that N(V, 2-App) 6= ∅. Assume first that the set of promoters in
G is not empty. Let p̄ be the plausible candidate with the highest 3-approval score or
highest tie-breaking rank such that there exists a promoter that can manipulate in its favor.
Let therefore i be a promoter in favor of p̄, and let v∗i be her minimal GS-manipulation
strategy. V ∗ = (V−i, v

∗
i ) is a Nash equilibrium with winner p̄. By construction of p̄, no

promoter can change the outcome of V ∗ by deviating from her sincere strategy. Moreover,
demoters can only decrease the score of w, and thus cannot change the outcome at V ∗.
Otherwise, all GS-manipulators are demoters. Then a profile where a demoter, say j,
submits some GS-manipulation and everyone else votes truthfully is a Nash equilibrium
with winner top(vj).

The assumption of minimality in Theorem 12 can be relaxed: for instance, we can allow
a promoter to swap a second candidate into the top 2 positions, as long as he prefers this
candidate to the one he is trying to make the winner (we omit the formal statement of this
result and the proof). However, it is not clear if it can be eliminated altogether.

A similar result holds for 3-approval, though under stronger assumptions. A manipu-
lation strategy vi[X;Y ] is called greedy if it is minimal and if all other minimal strategies
vi[X;Y ′] are such that i’s least preferred candidate in Y ′ is less preferred than i’s least
preferred candidate in Y . Clearly, there is a unique greedy manipulation for each manipu-
lator i.



Theorem 13. Any game G = (V, 3-App, (Ai)i∈N(V,3-App)), where for each player i ∈
N(V, 3-App) the set Ai consists of i’s truthful vote and a greedy GS-manipulation, has a
Nash equilibrium.

Proof. We can assume that the set of GS-manipulators N(V, 3-App) is non-empty, and let
w = 3-App(V ) with sc3(w, V ) = t. As in the case of 2-approval (see Section 6.2), we can
partition the set of GS-manipulators in a set of promoters, i.e., the set of j ∈ N(V, 3-App)
such that w 6∈ top3(vj), and a set of demoters, i.e., with w ∈ top3(vj).

Assume first that the set of promoters is non-empty, and let p̄ be the candidate with
the higest 3-approval score or highest tie-breaking rank such that there exists a promoter
that can manipulate in its favor. Let therefore i be a promoter in favor of p̄, and let v∗i
be her GS-manipulation strategy. We now show that V ∗ = (V−i, v

∗
i ) is a NE. Observe that

by minimality of v∗i and by definition of p̄ no other promoter can change the outcome of
V ∗. We can therefore focus on the set of demoters. Let j be a demoter and let v∗j be
its manipulation strategy in favor of candidate p. By minimality assumption, v∗j either
removes only w from top3(vj), or removes w together with a second candidate. While the
first case would not be a profitable deviation at V ∗ since the result of the election does not
change, we need more attention in the second case. Let therefore v∗j = vj [w, p̄; p, a] where
a is an irrelevant candidate. Observe that by minimality of v∗j we must have that either
sc3(p̄, V ) > sc3(p, V ) or if the score is the same then p̄ is higher in the tie-breaking order
than p. Let V ′ = (V ∗−j , v

∗
j ). Observe that, by minimality again, sc3(V ′, p̄) = sc3(V, p̄), and

moreover that sc3(V ′, p) = sc3(V, p), this time because v∗j is a demoter strategy. Hence p̄
wins against p in V ′, and v∗j is not a profitable deviation for j at V ∗.

We can now assume that the set of promoters is empty, and that therefore all GS-
manipulators in N(V, 3-App) are demoters. We first show that there are at most two
plausible candidates in S+. Assume for the sake of contradiction that p1, p2 and p3 are
three distinct alternatives in S+. Let p3 be the alternatives with minimum 3-score or that
sits lower in the tie-breaking order (and assume p1 and p2 are ordered in the same way).
A demoter strategy in favor of alternative p3 requires a GS-manipulator j to decrease the
score of w, together with the score of p1 and p2. However, with 3-approval this implies that
p3 6∈ top3(vj) in contradiction with the hypothesis that p3 is preferred to w. Hence the
set of demoters can be partitioned into a set V1 of GS-manipulators for p1, whose minimal
strategy is to lower the current winner w only, and a set V2 of GS-manipulators for p2,
whose minimal strategy is to lower both w and p1. Note that voters in V2 has p2 as their
top candidate.

We first construct a NE in case V2 = ∅. Let i be any voter in V1, and let v∗i be
her greedy manipulation strategy. It is easy to see that V ∗ = (V−i, v

∗
i ) is a NE, since

all GS-manipulators, i.e., all demoters in V1, cannot change the winner in V ∗ – they
can only increase the score of p1 by minimal manipulation. Consider then the case in
which V1 and V2 are not empty. For all pairs of candidates x, y different than w, p1, or
p2, let V x,y2 = {j ∈ V2 | vj [w, p1;x, y] ∈ Aj}. Voters in V1 who rank p2 lower than
x may have a countermanipulation strategy to voters in V x,y2 , so we need to design a
NE in which such deviations are not possible. Let therefore V x1 = {j ∈ V1 | vj [w, x] ∈
Aj and 3-app(V−{i,j}, v

∗
i , v
∗
j ) = x for some j ∈ V x,−2 }, i.e., V x1 is the set of voters who have

a countermanipulation move when x’s score is being raised to favor p2 by some voters in V2.
If there exists j ∈ V2 and x, y such that j ∈ V x,y2 but both V x1 and V y1 are empty, then it is
easy to see that (V−j , vj [w, p1;x, y]) is a NE: voters in V1 cannot change the outcome, and
voters in V2 are satisfied with having p2 the winner. Suppose then this is not the case, i.e.,
for each pair of candidates x, y, either V x,y2 is empty, or one of V x1 and V y1 are not empty.
Pick one voter from each non-empty V x1 – they are all distinct since each voter belongs to at
most one V x1 , having a single manipulation strategy. Without loss of generality let them be
J = {v1, . . . , vk}, and let V ∗ = (V−J , v

∗
1 , . . . , v

∗
k) be the profile in which all GS-manipulators



in J play the manipulation strategy. Since p1 is the winner in V ∗, all voters in V1 do not
have incentives to deviate. Voters in V2 also do not have incentives to deviate. For if any
j ∈ V x,y2 manipulate in V ∗ the result would change in favor of either x or y, which by
construction are less preferred by j than p1. This concludes the proof.

In contrast, for 4-approval the existence of Nash equilibria is no longer guaranteed, even
if manipulation is restricted to greedy GS-manipulation strategies. We omit the proof in
the interest of space.

Theorem 14. There exists a game for 4-approval G = (V, 4-App, (Ai)i∈N(V,4-App)), where
for each player i ∈ N(V, 4-App) the set Ai consists of i’s truthful vote and a greedy GS-
manipulation, such that G has no Nash equilibrium.

8 Conclusions

We have initiated the study of games played by GS-manipulators. We have shown that for
Plurality these games exhibit a fairly simple structure; however, for Borda and k-approval
with k > 1 GS-games are quite complicated, and it may therefore be difficult for the players
to coordinate their actions. Thus, these games may require extensive communication and a
non-trivial computational effort, which may serve as a barrier against manipulation.

Many questions concerning GS-games remain open. The most immediate of them is to
fully understand the role of minimality assumptions in our proofs. Further afield, it would be
interesting to extend our study to other voting rules, and to identify reasonable restrictions
on the manipulators’ strategy spaces that lead to existence and uniqueness of Nash equilibria,
and make it easy to compute manipulations that weakly dominate truthtelling.
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